Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (226)

Search Parameters:
Keywords = thermoresponsive solutions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5119 KB  
Review
Thermo-Responsive Smart Hydrogels: Molecular Engineering, Dynamic Cross-Linking Strategies, and Therapeutics Applications
by Jiten Yadav, Surjeet Chahal, Prashant Kumar and Chandra Kumar
Gels 2026, 12(1), 12; https://doi.org/10.3390/gels12010012 - 23 Dec 2025
Viewed by 559
Abstract
Temperature-responsive hydrogels are sophisticated stimuli-responsive biomaterials that undergo rapid, reversible sol–gel phase transitions in response to subtle thermal stimuli, most notably around physiological temperature. This inherent thermosensitivity enables non-invasive, precise spatiotemporal control of material properties and bioactive payload release, rendering them highly promising [...] Read more.
Temperature-responsive hydrogels are sophisticated stimuli-responsive biomaterials that undergo rapid, reversible sol–gel phase transitions in response to subtle thermal stimuli, most notably around physiological temperature. This inherent thermosensitivity enables non-invasive, precise spatiotemporal control of material properties and bioactive payload release, rendering them highly promising for advanced biomedical applications. This review critically surveys recent advances in the design, synthesis, and translational potential of thermo-responsive hydrogels, emphasizing nanoscale and hybrid architectures optimized for superior tunability and biological performance. Foundational systems remain dominated by poly(N-isopropylacrylamide) (PNIPAAm), which exhibits a sharp lower critical solution temperature near 32 °C, alongside Pluronic/Poloxamer triblock copolymers and thermosensitive cellulose derivatives. Contemporary developments increasingly exploit biohybrid and nanocomposite strategies that incorporate natural polymers such as chitosan, gelatin, or hyaluronic acid with synthetic thermo-responsive segments, yielding materials with markedly enhanced mechanical robustness, biocompatibility, and physiologically relevant transition behavior. Cross-linking methodologies—encompassing covalent chemical approaches, dynamic physical interactions, and radiation-induced polymerization are rigorously assessed for their effects on network topology, swelling/deswelling kinetics, pore structure, and degradation characteristics. Prominent applications include on-demand drug and gene delivery, injectable in situ gelling systems, three-dimensional matrices for cell encapsulation and organoid culture, tissue engineering scaffolds, self-healing wound dressings, and responsive biosensing platforms. The integration of multi-stimuli orthogonality, nanotechnology, and artificial intelligence-guided materials discovery is anticipated to deliver fully programmable, patient-specific hydrogels, establishing them as pivotal enabling technologies in precision and regenerative medicine. Full article
(This article belongs to the Special Issue Characterization Techniques for Hydrogels and Their Applications)
Show Figures

Graphical abstract

16 pages, 1480 KB  
Article
Living Cationic Polymerization of Silyl-Protected β-Methyl Vinyl Ethers (Propenyl Ethers): Synthesis of Hydroxy-Functional Polymers with High Tg and LCST-Type Thermoresponse
by Kohei Watanabe, Ryuya Yamada and Takeshi Namikoshi
Molecules 2025, 30(22), 4345; https://doi.org/10.3390/molecules30224345 - 10 Nov 2025
Viewed by 720
Abstract
Hydroxy-functional poly(propenyl ether)s are promising thermoresponsive materials; here we establish a controlled synthesis via living cationic polymerization of silyl-protected monomers. Among the silyl protecting groups examined, only tert-butyldiphenylsilyl (TBDPS) enabled living cationic polymerization. The living cationic polymerization of tert-butyldiphenylsiloxybutyl propenyl ether [...] Read more.
Hydroxy-functional poly(propenyl ether)s are promising thermoresponsive materials; here we establish a controlled synthesis via living cationic polymerization of silyl-protected monomers. Among the silyl protecting groups examined, only tert-butyldiphenylsilyl (TBDPS) enabled living cationic polymerization. The living cationic polymerization of tert-butyldiphenylsiloxybutyl propenyl ether (TBDPSBPE) afforded a high-molecular-weight polymer (poly(TBDPSBPE)) with a narrow molecular weight distribution (Mn = 12,900; Mw/Mn = 1.22). Additionally, chain propagation continued in monomer addition experiments, and the molecular weight increased further with a narrow molecular weight distribution, confirming the success of living cationic polymerization. Poly(TBDPSBPE) was successfully desilylated to afford poly(HBPE) with a narrow molecular weight distribution. Poly(HBPE) exhibited a glass transition temperature (Tg) of 44 °C, 82 °C higher than that of the corresponding polymer without β-methyl groups, poly(HBVE). The enhanced thermal properties of poly(HBPE) were attributed to the steric hindrance of the β-methyl group, which fixes the position of the hydroxy group and allows stronger hydrogen bonding. To investigate the aqueous thermoresponse, a hydroxylated analog with a shorter side-chain spacer (poly(HPPE)) was synthesized, and poly(HPPE) exhibited lower critical solution temperature (LCST)-type phase separation in water with a cloud-point temperature (Tcp) of 6 °C, showing reversible transitions with thermal hysteresis. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Figure 1

20 pages, 2264 KB  
Article
Development and Characterization of Citalopram-Loaded Thermosensitive Polymeric Micelles for Nasal Administration
by Fatima Rajab, Bence Sipos, Gábor Katona and Ildikó Csóka
Pharmaceutics 2025, 17(9), 1147; https://doi.org/10.3390/pharmaceutics17091147 - 1 Sep 2025
Viewed by 1166
Abstract
Background/Objectives: The intranasal (IN) route of administration is a promising non-invasive approach for brain targeting, bypassing the blood–brain barrier and enhancing bioavailability. Citalopram hydrobromide (CT), a widely prescribed sparingly water-soluble selective serotonin reuptake inhibitor (SSRI), faces challenges with oral and intravenous administration, including [...] Read more.
Background/Objectives: The intranasal (IN) route of administration is a promising non-invasive approach for brain targeting, bypassing the blood–brain barrier and enhancing bioavailability. Citalopram hydrobromide (CT), a widely prescribed sparingly water-soluble selective serotonin reuptake inhibitor (SSRI), faces challenges with oral and intravenous administration, including delayed onset, adverse effects, and patient compliance issues. Methods: This study aimed to develop a novel thermoresponsive polymeric micelle (PM) system based on Pluronic® copolymers (Pluronic F127 and Poloxamer 188) improving CT’s solubility, stability, and nasal permeability for enhanced antidepressant efficacy. A preliminary study was conducted to select the optimized formulation. The preparation process involved using the thin-film hydration method, followed by freeze-drying. Comprehensive evaluations of optimized formulation characteristics included Z-average, polydispersity index (PdI), thermal behavior (lower critical solution temperature, LCST), encapsulation efficiency, X-ray powder diffraction (XRPD), thermodynamic solubility, and biological stability. Additionally, in vitro CT release and CT permeability in nasal conditions were studied. Stability under storage was also evaluated. Results: The optimized CT-PM formulation showed nanoscale micelle size (Z-average of 31.41 ± 0.99 nm), narrow size distribution (polydispersity index = 0.241), and a suitable thermal behavior for intranasal delivery (lower critical solution temperature (LCST) ~31 °C). Encapsulation efficiency reached approximately 90%, with an amorphous structure confirmed via XRPD, leading to a 95-fold increase in CT solubility. The formulation demonstrated appropriate biological and physical stability. In vitro studies showed a 25-fold faster CT release from optimized formulation compared to the initial CT, while CT-PM permeability in nasal conditions increased four-fold. Conclusions: This novel nanoscale thermosensitive formulation is a value-added strategy for nasal drug delivery systems, offering enhanced drug solubility, rapid drug release, stability, and improved permeability. This smart nanosystem represents a promising platform to overcome the limitations of conventional CT administration, improving therapeutic outcomes and patient compliance in depression management. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

13 pages, 3189 KB  
Article
Synthesis of Thermo-Responsive Hydrogel Stabilizer and Its Impact on the Performance of Ecological Soil
by Xiaoyan Zhou, Weihao Zhang, Peng Yuan, Zhao Liu, Jiaqiang Zhao, Yue Gu and Hongqiang Chu
Appl. Sci. 2025, 15(15), 8279; https://doi.org/10.3390/app15158279 - 25 Jul 2025
Viewed by 700
Abstract
In high-slope substrates, special requirements are imposed on sprayed ecological soil, which needs to exhibit high rheological properties before spraying and rapid curing after spraying. Traditional stabilizers are often unable to meet these demands. This study developed a thermo-responsive hydrogel stabilizer (HSZ) and [...] Read more.
In high-slope substrates, special requirements are imposed on sprayed ecological soil, which needs to exhibit high rheological properties before spraying and rapid curing after spraying. Traditional stabilizers are often unable to meet these demands. This study developed a thermo-responsive hydrogel stabilizer (HSZ) and applied it to ecological soil. The effects of HSZ on the rheological, mechanical, and vegetation performance of ecological soil were investigated, and the mechanism of the responsive carrier in the stabilizer was explored. The experimental results show that the ecological soil containing HSZ has high flowability before response, but its flowability rapidly decreases and consistency sharply increases after response. After the addition of HSZ, the 7 d unconfined compressive strength of the ecological soil reaches 1.55 MPa. The pH value of the ecological soil generally ranges from 6.5 to 8.0, and plant growth in a simulated vegetation box is favorable. Conductivity and viscosity tests demonstrate that the core–shell microcarriers, upon thermal response, release crosslinking components from the carrier, which rapidly react with the precursor solution components to form a curing system. This study provides a novel method for regulating ecological soil using a responsive stabilizer, further expanding its capacity to adapt to various complex scenarios. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

19 pages, 4349 KB  
Article
Thermoresponsive Behavior, Degradation, and Bioactivity of Nanohydroxyapatite on Graphene Oxide Nanoscroll-Enhanced Poly(N-isopropylacrylamide)-Based Scaffolds
by Lillian Tsitsi Mambiri, Riley Guillory and Dilip Depan
Polymers 2025, 17(15), 2014; https://doi.org/10.3390/polym17152014 - 23 Jul 2025
Viewed by 743
Abstract
Osteoarthritis and metastatic bone cancers create pathological oxidative environments characterized by elevated reactive oxygen species (ROS). ROS impair bone regeneration by degrading the scaffold and suppressing mineralization. To address these challenges, we fabricated thermoresponsive scaffolds based on poly(N-isopropylacrylamide) (PNIPAAm) incorporating in situ-grown nanohydroxyapatite [...] Read more.
Osteoarthritis and metastatic bone cancers create pathological oxidative environments characterized by elevated reactive oxygen species (ROS). ROS impair bone regeneration by degrading the scaffold and suppressing mineralization. To address these challenges, we fabricated thermoresponsive scaffolds based on poly(N-isopropylacrylamide) (PNIPAAm) incorporating in situ-grown nanohydroxyapatite on graphene oxide nanoscrolls (nHA-GONS) using stereolithography (SLA). Three scaffold formulations were studied: pure PNIPAAm (PNP), PNIPAAm with 5 wt.% nHA-GONS (P5G), and PNIPAAm with 5 wt.% nHA-GONS reinforced with polycaprolactone (PCL) microspheres (PN5GP). Each scaffold was evaluated for (i) swelling and lower critical solution temperature (LCST) using differential scanning calorimetry (DSC); (ii) oxidative degradation assessed using Fourier-transform infrared spectroscopy (FTIR), mass loss, and antioxidant assays; and (iii) mineralization and morphology via immersion in simulated body fluid followed by microscopy. The PN5GP and P5G scaffolds demonstrated reversible swelling, sustained antioxidant activity, and enhanced calcium deposition, which enable redox stability and mineralization under oxidative environments, critical for scaffold functionality in bone repair. PNP scaffolds exhibited copper accumulation, while PN5GP suffered from accelerated mass loss driven by the PCL phase. These findings identify the P5G formulation as a promising scaffold. This study introduces a quantitative framework that enables the predictive design of oxidation-resilient scaffolds. Full article
Show Figures

Figure 1

19 pages, 2246 KB  
Article
Ammonium-Containing Methacrylic Polymer Brushes with Adjustable Hydrophilicity: Synthesis and Properties in Aqueous Solutions
by Denis Kamorin, Alexander Simagin, Oleg Kazantsev, Maria Savinova, Maria Simonova, Denis Sadkov, Ildar Arifullin and Yaroslav Dolinov
Polymers 2025, 17(9), 1200; https://doi.org/10.3390/polym17091200 - 27 Apr 2025
Viewed by 881
Abstract
Reversible addition–fragmentation chain-transfer (RAFT) polymerization was used to synthesize novel thermoresponsive cationic molecular brushes with high yields—namely of copolymers of methoxyoligo(ethylene glycol) methacrylate, alkoxyoligo(ethylene glycol) methacrylate, and N-methacryloylaminopropyl-N,N-dimethyl-N-propylammonium bromide. Controlled polymerization yielded polymers with a molecular weight dispersity of ≤1.3 and conversions exceeding [...] Read more.
Reversible addition–fragmentation chain-transfer (RAFT) polymerization was used to synthesize novel thermoresponsive cationic molecular brushes with high yields—namely of copolymers of methoxyoligo(ethylene glycol) methacrylate, alkoxyoligo(ethylene glycol) methacrylate, and N-methacryloylaminopropyl-N,N-dimethyl-N-propylammonium bromide. Controlled polymerization yielded polymers with a molecular weight dispersity of ≤1.3 and conversions exceeding 80%. The influence of the cationic molecular brushes’ composition on their solubility in water and organic solvents, interfacial tension at the water–oil interface, and aggregation behavior in aqueous solutions was investigated. For the first time, we report the design of thermoresponsive cationic molecular brushes combining an antibacterial potential and tunable hydrophilic–hydrophobic properties, enabling highly precise control over their LCST behavior (17–68 °C) through composition tuning. The solubilization capacity of the hydrophobic compounds of brush micelles in water increased with the hydrophobic comonomer content. These polymers exhibited interfacial activity, significantly reducing the water–oil interfacial tension, with critical micelle concentrations (CMCs) of 3–10 mg/L. It was shown that the amphiphilic properties of the copolymers in aqueous solutions can be easily tuned in a desired direction by varying the content of the comonomer units. The obtained data indicate the potential of the polymers as micellar nanocarriers for controlled drug delivery. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

14 pages, 6561 KB  
Article
Free Radical Copolymerization of N-Isopropylacrylamide and 2,3-Dihydroxypropyl Methacrylate: Reaction Kinetics and Characterizations
by Zhishu Chen and Chao Zhang
Materials 2025, 18(7), 1614; https://doi.org/10.3390/ma18071614 - 2 Apr 2025
Viewed by 1101
Abstract
Poly(N-isopropylacrylamide) (PNIPAm) undergoes a sharp phase transition in aqueous solutions at around 32 °C, which is called the lower critical solution temperature; the tuning of the LCST of PNIPAm could be achieved by the copolymerization of N-isopropylacrylamide (NIPAm) with other [...] Read more.
Poly(N-isopropylacrylamide) (PNIPAm) undergoes a sharp phase transition in aqueous solutions at around 32 °C, which is called the lower critical solution temperature; the tuning of the LCST of PNIPAm could be achieved by the copolymerization of N-isopropylacrylamide (NIPAm) with other hydrophilic/hydrophobic monomers to regulate the solvation state of PNIPAm and meet the requirements of possible applications. Herein, a hydrophilic monomer, 2,3-dihydroxypropyl methacrylate (DHPMA), w introduced to regulate the phase transition behavior of PNIPAm via free radical copolymerization. A series of poly(N-isopropylacrylamide-co-2,3-dihydroxypropyl methacrylate) (P(NIPAm-co-DHPMA)) was synthesized and characterized. The reaction kinetics were investigated in detail. In this copolymerization, the reactivity ratios of DHPMA and NIPAm were found to be 3.09 and 0.11, suggesting that DHPMA had greater preference for homopolymerization than for copolymerization, while NIPAm had greater preference for copolymerization than for homopolymerization. The phase transition temperature of P(NIPAm-co-DHPMA) copolymers varied from 31 to 42 °C by controlling the content of DHPMA in the copolymers from 0 to 58 mol%. Finally, the good cytocompatibility of P(NIPAm-co-DHPMA) was confirmed. These results provide insights into designing thermo-responsive polymers with suitable responsive behaviors that meet the requirements of different applications. Full article
(This article belongs to the Special Issue Manufacturing, Characterization and Modeling of Advanced Materials)
Show Figures

Figure 1

39 pages, 4885 KB  
Review
Smart Poly(N-isopropylacrylamide)-Based Hydrogels: A Tour D’horizon of Biomedical Applications
by Soumya Narayana, B. H. Jaswanth Gowda, Umme Hani, Mohammed Gulzar Ahmed, Zahrah Ali Asiri and Karthika Paul
Gels 2025, 11(3), 207; https://doi.org/10.3390/gels11030207 - 15 Mar 2025
Cited by 23 | Viewed by 9219
Abstract
Hydrogels are innovative materials characterized by a water-swollen, crosslinked polymeric network capable of retaining substantial amounts of water while maintaining structural integrity. Their unique ability to swell or contract in response to environmental stimuli makes them integral to biomedical applications, including drug delivery, [...] Read more.
Hydrogels are innovative materials characterized by a water-swollen, crosslinked polymeric network capable of retaining substantial amounts of water while maintaining structural integrity. Their unique ability to swell or contract in response to environmental stimuli makes them integral to biomedical applications, including drug delivery, tissue engineering, and wound healing. Among these, “smart” hydrogels, sensitive to stimuli such as pH, temperature, and light, showcase reversible transitions between liquid and semi-solid states. Thermoresponsive hydrogels, exemplified by poly(N-isopropylacrylamide) (PNIPAM), are particularly notable for their sensitivity to temperature changes, transitioning near their lower critical solution temperature (LCST) of approximately 32 °C in water. Structurally, PNIPAM-based hydrogels (PNIPAM-HYDs) are chemically versatile, allowing for modifications that enhance biocompatibility and functional adaptability. These properties enable their application in diverse therapeutic areas such as cancer therapy, phototherapy, wound healing, and tissue engineering. In this review, the unique properties and behavior of smart PNIPAM are explored, with an emphasis on diverse synthesis methods and a brief note on biocompatibility. Furthermore, the structural and functional modifications of PNIPAM-HYDs are detailed, along with their biomedical applications in cancer therapy, phototherapy, wound healing, tissue engineering, skin conditions, ocular diseases, etc. Various delivery routes and patents highlighting therapeutic advancements are also examined. Finally, the future prospects of PNIPAM-HYDs remain promising, with ongoing research focused on enhancing their stability, responsiveness, and clinical applicability. Their continued development is expected to revolutionize biomedical technologies, paving the way for more efficient and targeted therapeutic solutions. Full article
Show Figures

Graphical abstract

25 pages, 9495 KB  
Article
Natural–Synthetic Hybrid Nanostructures Formed Through the Interaction of Chitosan with Carboxylate-Ended PNIPAM: Structure and Curcumin Encapsulation
by Elena-Daniela Lotos, Maria Karayianni, Ana-Lavinia Vasiliu, Marcela Mihai and Stergios Pispas
Nanomaterials 2025, 15(5), 350; https://doi.org/10.3390/nano15050350 - 24 Feb 2025
Cited by 3 | Viewed by 1326
Abstract
Chitosan is widely used in drug delivery applications, due to its biocompatibility, bio-degradability, and low toxicity. Nevertheless, its properties can be enhanced through the physical or chemical modification of its amino and hydroxyl groups. This work explores the electrostatic complexation of two chitosan [...] Read more.
Chitosan is widely used in drug delivery applications, due to its biocompatibility, bio-degradability, and low toxicity. Nevertheless, its properties can be enhanced through the physical or chemical modification of its amino and hydroxyl groups. This work explores the electrostatic complexation of two chitosan samples of differing lengths with two poly(N-isopropylacrylamide) (PNIPAM) homopolymers of different molecular weight carrying a chargeable carboxyl end group. This interaction enables the electrostatic binding of PNIPAM side chains onto the chitosan backbone through the amino groups, and could be considered as an alternative grafting method. Dynamic and electrophoretic light scattering techniques were employed in order to study the solution/dispersion properties of the formed complexes as a function of the PNIPAM concentration, or, equivalently, the molar/charge ratio of the two components. The obtained results revealed that their mass, size, and charge mostly depend on the length of the two individual constituents, as well as their mixing ratio. Furthermore, their response to changes in their environment, namely temperature and ionic strength, was also examined, demonstrating the effect of either the thermoresponsiveness of PNIPAM or the electrostatic charge screening, respectively. Fluorescence spectroscopy, utilizing pyrene as a probe, provided information regarding the hydrophobicity of the formed complexes, while images from scanning transmission electron and atomic force microscopies further elucidated their morphology, which was found to be closely related to that of the corresponding chitosan molecule. Finally, their potential as drug delivery vehicles was also investigated, utilizing curcumin as a model drug at various loading concentrations. Full article
Show Figures

Figure 1

34 pages, 1230 KB  
Review
Advanced Hydrogel Systems for Local Anesthetic Delivery: Toward Prolonged and Targeted Pain Relief
by Jin-Oh Jeong, Minjoo Kim, Seonwook Kim, Kyung Kwan Lee and Hoon Choi
Gels 2025, 11(2), 131; https://doi.org/10.3390/gels11020131 - 12 Feb 2025
Cited by 10 | Viewed by 6915
Abstract
Local anesthetics (LAs) have been indispensable in clinical pain management, yet their limitations, such as short duration of action and systemic toxicity, necessitate improved delivery strategies. Hydrogels, with their biocompatibility, tunable properties, and ability to modulate drug release, have been extensively explored as [...] Read more.
Local anesthetics (LAs) have been indispensable in clinical pain management, yet their limitations, such as short duration of action and systemic toxicity, necessitate improved delivery strategies. Hydrogels, with their biocompatibility, tunable properties, and ability to modulate drug release, have been extensively explored as platforms for enhancing LA efficacy and safety. This narrative review explores the historical development of LAs, their physicochemical properties, and clinical applications, providing a foundation for understanding the integration of hydrogels in anesthetic delivery. Advances in thermoresponsive, stimuli-responsive, and multifunctional hydrogels have demonstrated significant potential in prolonging analgesia and reducing systemic exposure in preclinical studies, while early clinical findings highlight the feasibility of thermoresponsive hydrogel formulations. Despite these advancements, challenges such as burst release, mechanical instability, and regulatory considerations remain critical barriers to clinical translation. Emerging innovations, including nanocomposite hydrogels, biofunctionalized matrices, and smart materials, offer potential solutions to these limitations. Future research should focus on optimizing hydrogel formulations, expanding clinical validation, and integrating advanced fabrication technologies such as 3D printing and artificial intelligence-driven design to enhance personalized pain management. By bridging materials science and anesthetic pharmacology, this review provides a comprehensive perspective on current trends and future directions in hydrogel-based LA delivery systems. Full article
(This article belongs to the Special Issue Advances in Functional Hydrogels and Their Applications)
Show Figures

Figure 1

21 pages, 16367 KB  
Article
Integration of Thermo-Responsive Materials Applied to Bio-Inspired Structures
by Elton Lima, Hilma Ferreira, Luís Mateus and Amilton Arruda
Biomimetics 2025, 10(2), 68; https://doi.org/10.3390/biomimetics10020068 - 22 Jan 2025
Cited by 1 | Viewed by 2182
Abstract
This paper investigates the integration of thermo-responsive materials into bio-inspired structures, combining biomimicry and adaptive technologies in architecture. A problem-based biomimetic approach and a morphological analogy with the plate-type snowflake—known for its lightness, transparency, and crystalline organisation—were adopted to develop the geometry of [...] Read more.
This paper investigates the integration of thermo-responsive materials into bio-inspired structures, combining biomimicry and adaptive technologies in architecture. A problem-based biomimetic approach and a morphological analogy with the plate-type snowflake—known for its lightness, transparency, and crystalline organisation—were adopted to develop the geometry of an architectural pavilion. This research highlights glass as a main constructive material, analysing the potential of thermochromic film and the hydrogel technique, both inserted in the context of thermo-responsiveness. In this regard, the focus is on adaptations to temperature changes, exploring how these materials can alter their properties in response to solar incidence, offering solutions for energy efficiency, thermal regulation, and environmental adaptation. The pavilion demonstrates that this integration is feasible, and this is supported by an interdisciplinary approach that combines materials science, bio-inspired design, and practical experimentation. It also highlights biomimicry’s fundamental role as a tool for guiding the development of innovative architectural geometries, while thermo-responsive materials expand the possibilities for creating structures that are adaptable to temperature variations and solar exposure. The conclusion points to the applicability and relevance of this combination, highlighting the transformative potential of thermo-responsive materials in architectural projects, especially in the development of lightweight, transparent, and environmentally responsive structures. Full article
Show Figures

Figure 1

17 pages, 2666 KB  
Article
When a Small Amount of Comonomer Is Enough: Tailoring the Critical Solution Temperature of LCST-Type Thermoresponsive Random Copolymers by PEG Methyl Ether Methacrylate with 1100 g/mol Molecular Weight
by György Kasza, Bence Sármezey, Dóra Fecske, Klára Verebélyi and Béla Iván
Materials 2025, 18(2), 372; https://doi.org/10.3390/ma18020372 - 15 Jan 2025
Viewed by 3216
Abstract
Tuning the critical solution temperature (CST) of thermoresponsive polymers is essential to exploit their immense potential in various applications. In the present study, the effect of PEG-methyl ether methacrylate with a higher molecular weight of 1100 g/mol (mPEGMA1100) as a comonomer [...] Read more.
Tuning the critical solution temperature (CST) of thermoresponsive polymers is essential to exploit their immense potential in various applications. In the present study, the effect of PEG-methyl ether methacrylate with a higher molecular weight of 1100 g/mol (mPEGMA1100) as a comonomer was investigated for its suitability for the CST adjustment of LCST-type polymers. Accordingly, a library of mPEGMA1100-based copolymers was established with varying compositions (XmPEGMA1100) using four main comonomers, namely di(ethylene glycol) ethyl ether acrylate, N-isopropyl acrylamide and methacrylamide, and mPEGMA300, with different CST values (cloud points, TCP, and clearing points, TCL, by turbidimetry). It was found that less than 20 mol% of the mPEGMA1100 in the copolymers is practically sufficient for tuning the CST in the entire measurable temperature range, i.e., up to 100 °C, regardless of the CST of the homopolymer of the main comonomer (CST0). Moreover, a predictive asymptotic model was developed based on the measured CST values, which strikingly revealed that the CSTs of mPEGMA1100-containing copolymers depend only on the two main parameters of these copolymers, XmPEGMA1100 and the CST of the homopolymer of the main comonomer (CST0), that is, CST = f(CST0, XmPEGMA1100). The revealed two-parameter relationship defines a surface in 3D plotting, and it is applicable to determine the CST of copolymers in advance for a given composition or to define the suitable composition for a required CST value. These unprecedented results on the dependence of CSTs on two major well-defined parameters enable to design a variety of novel macromolecular structures with tailored thermoresponsive properties. Full article
(This article belongs to the Special Issue Applied Stimuli-Responsive Polymer Based Materials)
Show Figures

Figure 1

16 pages, 2715 KB  
Article
Anionic Oligo(ethylene glycol)-Based Molecular Brushes: Thermo- and pH-Responsive Properties
by Alexey Sivokhin, Dmitry Orekhov, Oleg Kazantsev, Ksenia Otopkova, Olga Sivokhina, Ilya Chuzhaykin, Ekaterina Spitsina and Dmitry Barinov
Polymers 2024, 16(24), 3493; https://doi.org/10.3390/polym16243493 - 14 Dec 2024
Cited by 1 | Viewed by 1214
Abstract
Anionic thermo- and pH-responsive copolymers were synthesized by photoiniferter reversible addition–fragmentation chain transfer polymerization (PI-RAFT). The thermo-responsive properties were provided by oligo(ethylene glycol)-based macromonomer units containing hydrophilic and hydrophobic moieties. The pH-responsive properties were enabled by the addition of 5–20 mol% of strong [...] Read more.
Anionic thermo- and pH-responsive copolymers were synthesized by photoiniferter reversible addition–fragmentation chain transfer polymerization (PI-RAFT). The thermo-responsive properties were provided by oligo(ethylene glycol)-based macromonomer units containing hydrophilic and hydrophobic moieties. The pH-responsive properties were enabled by the addition of 5–20 mol% of strong (2-acrylamido-2-methylpropanesulfonic) and weak (methacrylic) acids. Upon initiation by visible light at 470 nm and in the absence of radical initiators, yields from the ternary copolymers reached 94% in 2.5 h when the process was carried out in continuous flow mode using 4-cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid as a light-sensitive RAFT agent. The polymers were characterized using size exclusion chromatography, IR and NMR spectroscopy, and differential scanning calorimetry. The copolymers featured a sufficiently high molecular weight (93–146 kDa) consistent with theoretical values and satisfactory dispersities in the range of 1.18–1.45. The pH-responsive properties were studied in deionized water, saline, and buffer solutions. Dramatic differences in LCST behavior were observed in strong and weak acid-based polyelectrolytes. The introduction of sulfonic acid units, even in very small amounts, completely suppressed the LCST transition in deionized water while maintaining it in the saline and buffer solutions, with a negligible LCST dependence on the pH. In contrast, the incorporation of weak methacrylic acid demonstrated a pronounced pH dependence. The peculiarities of micelle formation in aqueous solutions were investigated and critical micelle concentrations and their ability to retain pyrene, a hydrophobic drug model, were determined. It was observed that anionic molecular brushes formed small micelles with aggregation numbers of 1–2 at concentrations in the order of 10−4 mg/mL. These micelles have a high ability to entrap pyrene, which makes them a promising tool for targeted drug delivery. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

13 pages, 3540 KB  
Article
Facile Synthesis of Thermoresponsive Alternating Copolymers with Tunable Phase-Transition Temperatures
by Zichen Huang, Fan Chen, Qi Wang, Dingxiang Zhang, Hongdong Wang and Xiacong Zhang
Polymers 2024, 16(24), 3470; https://doi.org/10.3390/polym16243470 - 12 Dec 2024
Cited by 1 | Viewed by 1365
Abstract
A series of novel amphiphilic alternating CPEG copolymers were synthesized through an amine–epoxy click reaction comprising aliphatic amine and polyethylene glycol diglycidyl ether (PEGDE). These polymers were characterized in detail via nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), Fourier-transform infrared spectroscopy (FTIR), [...] Read more.
A series of novel amphiphilic alternating CPEG copolymers were synthesized through an amine–epoxy click reaction comprising aliphatic amine and polyethylene glycol diglycidyl ether (PEGDE). These polymers were characterized in detail via nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) to confirm the successful synthesis. Due to their amphiphilic structure, these polymers display thermoresponsiveness, with tunable cloud points (Tcps) that are adjustable from 20.8 °C to 46.8 °C by altering the side-chain length of the aliphatic amine, varying the mixing ratios of copolymers, the solution’s pH, and salt additions. This tunable thermoresponsive behavior positions CPEG copolymers as promising candidates for a range of functional material applications. Full article
(This article belongs to the Special Issue Advanced Stimuli-Responsive Polymer Composites)
Show Figures

Figure 1

23 pages, 15560 KB  
Article
Surface Modification of Gold Nanorods (GNRDs) Using Double Thermo-Responsive Block Copolymers: Evaluation of Self-Assembly and Stability of Nanohybrids
by Jesús E. Márquez-Castro, Angel Licea-Claverie, Carlos Guerrero-Sánchez and Eugenio R. Méndez
Polymers 2024, 16(23), 3293; https://doi.org/10.3390/polym16233293 - 26 Nov 2024
Viewed by 2332
Abstract
A series of copolymers containing a thermo-responsive biocompatible first block of poly[di(ethylene glycol) methyl ether methacrylate)-co-(oligo(ethylene glycol) methyl ether methacrylate], P(DEGMA-co-OEGMA) were chain-extended to incorporate either poly(N-isopropylacrylamide), PNIPAAm or poly(N-isopropylacrylamide-co-butyl acrylate), P(NIPAAm-co-BA) as [...] Read more.
A series of copolymers containing a thermo-responsive biocompatible first block of poly[di(ethylene glycol) methyl ether methacrylate)-co-(oligo(ethylene glycol) methyl ether methacrylate], P(DEGMA-co-OEGMA) were chain-extended to incorporate either poly(N-isopropylacrylamide), PNIPAAm or poly(N-isopropylacrylamide-co-butyl acrylate), P(NIPAAm-co-BA) as second thermo-responsive block using reversible addition–fragmentation chain transfer (RAFT) polymerization. P(DEGMA-co-OEGMA)-b-PNIPAAm copolymers showed two response temperatures at 33 and 43 °C in an aqueous solution forming stable aggregates at 37 °C. In contrast, P(DEGMA-co-OEGMA)-b-P(NIPAAm-co-BA) copolymers showed aggregation below room temperature due to the shift in response temperature provoked by the presence of hydrophobic butyl acrylate (BA) units, and shrinkage upon heating up to body temperature, while maintaining the second response temperature above 40 °C. The terminal trithiocarbonate group of the block copolymers was modified to a thiol functionality and used to stabilize gold nanorods (GNRDs) via the “grafting to” approach. The Localized Surface Plasmon Resonance (LSPR) absorption band of GNRDs with an aspect ratio of 3.9 (length/diameter) was located at 820 nm after surface grafting with block copolymers showing a hydrodynamic diameter of 160 nm at 37 °C. On the other hand, the stability of the P(DEGMA-co-OEGMA)-b-PNIPAAm@GNRDs and P(DEGMA-co-OEGMA)-b-P(NIPAAm-co-BA)@GNRDs nanohybrids was monitored for 8 days; where the LSPR absorption band did not shift or show any broadening. Aqueous dispersed nanohybrids were irradiated with a near-infrared laser (300 mW), where the temperature of the surroundings increased 16 °C after 16 min, where conditions for no precipitation were determined. These tailored temperature-responsive nanohybrids represent interesting candidates to develop drug nanocarriers for photo-thermal therapies. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Mexico)
Show Figures

Graphical abstract

Back to TopTop