Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = thermomechanical and chemical treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 913 KB  
Article
Exploring the Effects of Reactive Extrusion on Spent Coffee Grounds: Chemical Composition, Bioactive Compounds and Techno-Functional Properties
by Jaquellyne B. M. D. Silva, Mayara T. P. Paiva, Fabíola A. Carvalho, Eduardo Lolato, Nathália Silvestre, Marta T. Benassi and Suzana Mali
Nutraceuticals 2026, 6(1), 9; https://doi.org/10.3390/nutraceuticals6010009 - 2 Feb 2026
Viewed by 52
Abstract
The objective of this study was to investigate the effect of reactive extrusion (thermomechanical and chemical process) on the chemical composition, techno-functional properties, glucose and cholesterol adsorption capacity, and bioactive compound profile of spent coffee grounds (SCG). SCG was extruded using citric acid [...] Read more.
The objective of this study was to investigate the effect of reactive extrusion (thermomechanical and chemical process) on the chemical composition, techno-functional properties, glucose and cholesterol adsorption capacity, and bioactive compound profile of spent coffee grounds (SCG). SCG was extruded using citric acid or alkaline hydrogen peroxide as reagents, and a control sample was extruded without reagents. Treatment with citric acid resulted in the highest levels of total dietary fiber (79.6 g/100 g) and insoluble fiber (76.2 g/100 g), especially cellulose, and significantly improved glucose (32.7 mmol/L) and cholesterol (4.5 mg/g) adsorption at neutral pH. Treatment with alkaline hydrogen peroxide increased water retention capacity (3.9 g/g). Although chemical treatments reduced total polyphenol and antioxidant activity, they effectively broke down the lignocellulosic matrix, thereby increasing fiber availability and functionality. Extrusion without reagents (processes induced by mechanical and thermal factors) favored the retention of caffeine and chlorogenic acids, increasing soluble fiber and maintaining antioxidant capacity. Therefore, reactive extrusion is a technological strategy that aligns with the principles of the circular economy, offering an environmentally friendly alternative to landfill disposal and adding value to spent coffee grounds by transforming lignocellulosic residue into functional ingredients with broad application potential. Full article
Show Figures

Graphical abstract

21 pages, 1811 KB  
Article
Data-Driven Prediction of Tensile Strength in Heat-Treated Steels Using Random Forests for Sustainable Materials Design
by Yousef Alqurashi
Sustainability 2026, 18(2), 1087; https://doi.org/10.3390/su18021087 - 21 Jan 2026
Viewed by 117
Abstract
Accurate prediction of ultimate tensile strength (UTS) is central to the design and optimization of heat-treated steels but is traditionally achieved through costly and iterative experimental trials. This study presents a transparent, physics-aware machine learning (ML) framework for predicting UTS using an open-access [...] Read more.
Accurate prediction of ultimate tensile strength (UTS) is central to the design and optimization of heat-treated steels but is traditionally achieved through costly and iterative experimental trials. This study presents a transparent, physics-aware machine learning (ML) framework for predicting UTS using an open-access steel database. A curated dataset of 1255 steel samples was constructed by combining 18 chemical composition variables with 7 processing descriptors extracted from free-text heat-treatment records and filtering them using physically justified consistency criteria. To avoid information leakage arising from repeated measurements, model development and evaluation were conducted under a group-aware validation framework based on thermomechanical states. A Random Forest (RF) regression model achieved robust, conservative test-set performance (R2 ≈ 0.90, MAE ≈ 40 MPa), with unbiased residuals and realistic generalization across diverse composition–processing conditions. Performance robustness was further examined using repeated group-aware resampling and strength-stratified error analysis, highlighting increased uncertainty in sparsely populated high-strength regimes. Model interpretability was assessed using SHAP-based feature importance and partial dependence analysis, revealing that UTS is primarily governed by the overall alloying level, carbon content, and processing parameters controlling transformation kinetics, particularly bar diameter and tempering temperature. The results demonstrate that reliable predictions and physically meaningful insights can be obtained from publicly available data using a conservative, reproducible machine-learning workflow. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

25 pages, 20966 KB  
Article
Enhancing the Activation of Saudi Natural Pozzolan Using Thermal, Mechanical, Chemical, and Hybrid Treatment Approaches
by Ardhymanto Am Tanjung, Haitham M. Ahmed and Hussin A. M. Ahmed
Buildings 2025, 15(24), 4535; https://doi.org/10.3390/buildings15244535 - 16 Dec 2025
Viewed by 546
Abstract
Saudi Natural Pozzolan (SNP) can be processed and used in construction as a partial replacement for Ordinary Portland Cement (OPC). Its use as a supplementary cementitious material supports more sustainable and eco-friendly building practices. This study investigates various treatment methods for enhancing the [...] Read more.
Saudi Natural Pozzolan (SNP) can be processed and used in construction as a partial replacement for Ordinary Portland Cement (OPC). Its use as a supplementary cementitious material supports more sustainable and eco-friendly building practices. This study investigates various treatment methods for enhancing the reactivity of SNPs, including thermal, mechanical, thermo-mechanical, mechano-thermal, and chemical techniques. The activity of 18 different treated SNP mixtures was evaluated using the Strength Activity Index (SAI). Results identified the optimum conditions for each treatment: thermal treatment at 600 °C, mechanical treatment through 6 h of grinding, and chemical treatment with a 9% addition of hydrated lime. The SAI results demonstrated that a 6 h mechanical treatment was the most effective method for activating the raw pozzolan. X-ray diffraction (XRD) analysis revealed that phases such as quartz, anorthite, and aluminate are significant contributors to pozzolanic activity. The XRD analysis was further supported by scanning electron microscopy (SEM), which examined microstructural changes. This study highlights the potential of maximizing the utilization of extensive pozzolan resources in the Harrat region of the Kingdom of Saudi Arabia. Treated SNP can be applied in various industries, such as mining backfills, brick industry, and pozzolanic concrete, as a sustainable and environmentally friendly material. Full article
Show Figures

Figure 1

13 pages, 4315 KB  
Article
Formation of the Structure, Properties, and Corrosion Resistance of Zirconium Alloy Under Three-Roll Skew Rolling Conditions
by Anna Kawałek, Alexandr Arbuz, Kirill Ozhmegov, Irina Volokitina, Andrey Volokitin, Nikita Lutchenko and Fedor Popov
Materials 2025, 18(24), 5578; https://doi.org/10.3390/ma18245578 - 11 Dec 2025
Viewed by 349
Abstract
Zirconium and its alloys are widely used in nuclear power engineering due to their favorable physical and mechanical properties and their low thermal-neutron absorption cross-section. Their high corrosion resistance in aqueous and steam environments at elevated temperatures is essential for the reliable operation [...] Read more.
Zirconium and its alloys are widely used in nuclear power engineering due to their favorable physical and mechanical properties and their low thermal-neutron absorption cross-section. Their high corrosion resistance in aqueous and steam environments at elevated temperatures is essential for the reliable operation of fuel assemblies and is associated with the formation of a stable, compact ZrO2 oxide layer. However, under reactor conditions, the presence of hydrogen, iodine and other fission products can reduce corrosion resistance, making detailed corrosion assessment necessary. Manufacturing technology, alongside alloy composition, also plays a decisive role in determining corrosion behavior. This study presents corrosion test results for a Zr-1%Nb alloy processed under thermomechanical conditions corresponding to rolling in a special type of three-roll skew rolling–Radial-Shear Rolling (RSR). The applied rolling technology ensured the formation of a pronounced ultrafine-grained (UFG) structure in the near-surface layers, with an average grain size below 0.6 µm. EBSD and TEM observations revealed a largely equiaxed microstructure with refined grains and increased grain boundary density. The corrosion testing was performed in high-temperature steam vessels at 400 °C and 10.3 MPa for 72, 336, 720 and 1440 h. The results demonstrate that RSR processing is an efficient alternative to conventional multi-pass normal bar rolling with vacuum heat treatments, allowing a significant reduction in processing steps and eliminating the need for expensive tooling and intermediate thermal or chemical treatments. Bars manufactured using this method meet the ASTM B351 requirements. The specific weight gain did not exceed 22 mg/dm2 after 72 h and 34.5 mg/dm2 after 336 h. After 1440 h, the samples exhibited a continuous, uniform dark-grey oxide layer with an average thickness below 5.3 µm. Full article
Show Figures

Figure 1

20 pages, 8243 KB  
Article
Press Hardening of High-Carbon Low-Density Steels
by Filip Votava, Ludmila Kučerová, Štěpán Jeníček, Radek Leták, Jiří Hájek and Zbyšek Nový
Materials 2025, 18(22), 5163; https://doi.org/10.3390/ma18225163 - 13 Nov 2025
Viewed by 557
Abstract
In this study, sheets of experimental high-carbon low-density steels (LDSs) with a thickness of 1.7 mm were processed in a combined tool designed for press-hardening. Press hardening, also known as hot stamping or hot press forming, is a manufacturing process used to create [...] Read more.
In this study, sheets of experimental high-carbon low-density steels (LDSs) with a thickness of 1.7 mm were processed in a combined tool designed for press-hardening. Press hardening, also known as hot stamping or hot press forming, is a manufacturing process used to create car body parts with exceptional mechanical properties and safety standards. These components often require tailored properties, meaning different mechanical characteristics in various parts of the component. LDSs have a lower specific density than conventional steels, so their use would be particularly suitable in automotive applications. Combined tools achieve distinct mechanical properties within a single part through thermomechanical processing. Simultaneous forming and heat treatment create tailored zones of high strength and ductility within the sheet metal. The hardened zone provides crashworthiness, while the more ductile zone absorbs kinetic energy and converts it into deformation energy. Hot stamping enables forming complex geometries from high-strength sheets with limited cold formability, a capability that can also be exploited for the aluminium-alloyed LDS under investigation in this work. Three different high-carbon LDSs with differences in chemical composition were subjected to this experiment, and the hardness, microstructure, and mechanical properties of the two areas of each sheet were evaluated. The aim is to determine their suitability for processing by press hardening and to try to achieve tailored properties (i.e., differences in ductility and strength across one part) as in a typical representative of 22MnB5 boron steel, where a strength limit of 1500 MPa at 5% ductility is achieved in the cooled part and 600 MPa at 15% in the heated part. Tailored properties were also achieved in the investigated LDS, but with only relatively small differences between the two tool areas. The omega profiles were produced by press hardening without visible defects, and it was possible to process the steels without any difficulties. Full article
Show Figures

Figure 1

20 pages, 2443 KB  
Article
Advancing Sustainable Production of High-Performance Cellulose Pulps
by María Guadalupe Morán-Aguilar, Iván Costa-Trigo, Gabriela A. Bastida, André Mazega, Josep Duran, José Manuel Domínguez and Fabiola Vilaseca
Materials 2025, 18(21), 4968; https://doi.org/10.3390/ma18214968 - 30 Oct 2025
Viewed by 644
Abstract
With a growing demand for renewable resources in high-performance materials, sustainable methods are preferred for their lower environmental impact and alignment with circular economy principles. Among these, enzymatic hydrolysis remains relatively underexplored yet shows strong potential for cellulose fibrillation, offering a promising route [...] Read more.
With a growing demand for renewable resources in high-performance materials, sustainable methods are preferred for their lower environmental impact and alignment with circular economy principles. Among these, enzymatic hydrolysis remains relatively underexplored yet shows strong potential for cellulose fibrillation, offering a promising route that may lower energy requirements by minimizing the need for extensive refining compared to conventional mechanical or chemical approaches. In this study, enzyme cocktails rich in cellulase and xylanase were applied to three industrial pulps, sulphite, bleached Kraft eucalyptus and thermomechanical pine, to produce high-performance cellulose pulps. Treatments were carried out using varying enzyme loads (5–40 filter paper units per gram of dry pulp, FPU/gdp) and reaction times (1–16 h). The resulting chemical composition, structural morphology, and physical–mechanical properties were systematically evaluated. The findings revealed that pulp composition strongly influenced enzymatic treatment, affecting surface fibrillation, fibre aggregation, swelling, and fibre shortening. Under optimized conditions, enzymatic pretreatment significantly enhanced paper performance, with improvements in tensile strength, air permeability, hydrophobicity, and internal bonding. Overall, enzymatic hydrolysis represents a sustainable solution and a strategy which could reduce energy expenditures to high-performance cellulose pulps, suitable as reinforcing fibres in packaging applications. Full article
Show Figures

Figure 1

13 pages, 1712 KB  
Article
Deep Learning-Driven Insights into Hardness and Electrical Conductivity of Low-Alloyed Copper Alloys
by Mihail Kolev, Juliana Javorova, Tatiana Simeonova, Yasen Hadjitodorov and Boyko Krastev
Alloys 2025, 4(4), 22; https://doi.org/10.3390/alloys4040022 - 10 Oct 2025
Viewed by 909
Abstract
Understanding the intricate relationship between composition, processing conditions, and material properties is essential for optimizing Cu-based alloys. Machine learning offers a powerful tool for decoding these complex interactions, enabling more efficient alloy design. This work introduces a comprehensive machine learning framework aimed at [...] Read more.
Understanding the intricate relationship between composition, processing conditions, and material properties is essential for optimizing Cu-based alloys. Machine learning offers a powerful tool for decoding these complex interactions, enabling more efficient alloy design. This work introduces a comprehensive machine learning framework aimed at accurately predicting key properties such as hardness and electrical conductivity of low-alloyed Cu-based alloys. By integrating various input parameters, including chemical composition and thermo-mechanical processing parameters, the study develops and validates multiple machine learning models, including Multi-Layer Perceptron with Production-Aware Deep Architecture (MLP-PADA), Deep Feedforward Network with Multi-Regularization Framework (DFF-MRF), Feedforward Network with Self-Adaptive Optimization (FFN-SAO), and Feedforward Network with Materials Mapping (FFN-TMM). On a held-out test set, DFF-MRF achieved the best generalization (R2_test = 0.9066; RMSE_test = 5.3644), followed by MLP-PADA (R2_test = 0.8953; RMSE_test = 5.7080) and FFN-TMM (R2_test = 0.8914; RMSE_test = 5.8126), with FFN-SAO slightly lower (R2_test = 0.8709). Additionally, a computational performance analysis was conducted to evaluate inference time, memory usage, energy consumption, and batch scalability across all models. Feature importance analysis was conducted, revealing that aging temperature, Cr, and aging duration were the most influential factors for hardness. In contrast, aging duration, aging temperature, solution treatment temperature, and Cu played key roles in electrical conductivity. The results demonstrate the effectiveness of these advanced machine learning models in predicting critical material properties, offering insightful advancements for materials science research. This study introduces the first controlled, statistically validated, multi-model benchmark that integrates composition and thermo-mechanical processing with deployment-grade profiling for property prediction of low-alloyed Cu alloys. Full article
Show Figures

Figure 1

18 pages, 2921 KB  
Article
Comprehensive Evaluation and Analysis of Aging Performance of Polymer-Rich Anchoring Adhesives
by Bing Zeng, Shuo Wu and Shufang Yao
Materials 2025, 18(15), 3484; https://doi.org/10.3390/ma18153484 - 25 Jul 2025
Viewed by 770
Abstract
In civil engineering, with the increasing demand for structural reinforcement and renovation projects, polymer-rich anchoring adhesives have attracted much attention due to their performance advantage of having high strength and have become a key factor in ensuring the safety and durability of buildings. [...] Read more.
In civil engineering, with the increasing demand for structural reinforcement and renovation projects, polymer-rich anchoring adhesives have attracted much attention due to their performance advantage of having high strength and have become a key factor in ensuring the safety and durability of buildings. In this study, polymer-rich anchoring adhesives underwent three artificial aging treatments (alkali medium, hygrothermal, and water bath) to evaluate their aging performance. Alkali treatment reduced bending strength by up to 70% (sample 5#) within 500 h before stabilizing, while hygrothermal and water-curing treatments caused reductions of 16–51% and 15–77%, respectively, depending on adhesive composition. Dynamic thermomechanical analysis revealed significant loss factor decreases (e.g., epoxy adhesives dropped from >1.0 to stable lower values after 500 h aging), indicating increased rigidity. Infrared spectroscopy confirmed chemical degradation, including ester group breakage in vinyl ester resins (peak shifts at 1700 cm−1 and 1100 cm−1) and molecular chain scission in unsaturated polyesters. The three test methods consistently demonstrated that 500 h of aging sufficiently captured performance trends, with alkali exposure causing the most severe degradation in sensitive formulations (e.g., samples 5# and 6#). These results can be used to establish quantitative benchmarks for adhesive durability assessment in structural applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

16 pages, 3399 KB  
Article
Relationship Between Filler Type, Thermomechanical Properties, and Aging of RTV Silicone Foams
by Xavier M. Torres, John R. Stockdale, Adam Pacheco, Shelbie A. Legett, Lindsey B. Bezek, Bart Benedikt, Andrea Labouriau and Santosh Adhikari
Polymers 2025, 17(14), 1998; https://doi.org/10.3390/polym17141998 - 21 Jul 2025
Cited by 1 | Viewed by 924
Abstract
Room-temperature vulcanizing (RTV) silicone foams are used in many industrial applications that require the material to perform over long time periods. However, mechanical properties tend to deteriorate when these foams age under a compressive load. The chemical aging is attributed to the presence [...] Read more.
Room-temperature vulcanizing (RTV) silicone foams are used in many industrial applications that require the material to perform over long time periods. However, mechanical properties tend to deteriorate when these foams age under a compressive load. The chemical aging is attributed to the presence of unreacted functional groups of the prepolymers, residues from acid, and catalytically active tin (II) species. Here, an optimized thermal treatment of an RTV foam that achieves completion of curing reactions and deactivation of reactive species is proposed. Foams that were thermally aged for three months under compressive load showed no signs of compression set, indicative of the effectiveness of the implemented post-curing approach. In addition, the effects of fillers (diatomaceous earth, fumed silica, and carbon nanofibers) on thermomechanical properties were investigated. Tensile strength, tear strength, and thermal conductivity increased when these fillers were added to the unfilled RTV formulation, with carbon nanofibers (CNFs) being the most effective filler. Rheological studies of RTV formulations indicated that 2.5 wt.% of CNFs is the upper limit that can be added to the RTV formulation. Full article
(This article belongs to the Special Issue Functional Polymer Composites: Synthesis and Application)
Show Figures

Figure 1

27 pages, 3568 KB  
Review
Impact of Chemicals and Processing Treatments on Thermo-Mechanical Recycling of Polyester Textiles
by Zara Standring, Lisa Macintyre, Gigi Jiang, David Bucknall and Valeria Arrighi
Molecules 2025, 30(13), 2758; https://doi.org/10.3390/molecules30132758 - 26 Jun 2025
Cited by 1 | Viewed by 2409
Abstract
The textile industry is among the world’s largest, producing an estimated 124 million tonnes of fibres in 2023, with more than half of these being made from virgin polyester. Less than 0.1% of polyester fibres are recycled into new textiles at the end [...] Read more.
The textile industry is among the world’s largest, producing an estimated 124 million tonnes of fibres in 2023, with more than half of these being made from virgin polyester. Less than 0.1% of polyester fibres are recycled into new textiles at the end of their lives. Mechanical, thermo-mechanical, and chemical textile-to-textile polyester recycling are all technically possible, but thermo-mechanical recycling is reported to provide the most promising compromise between cost and quality. Myriad chemicals are used in polyester production, and this paper is the first to review the related academic literature to better understand their impact on recyclability. It has been demonstrated that chemicals used during the production and processing of polyester textiles can either provide resistance to, or catalyse, the degradation of polyester during thermo-mechanical recycling processes. However, the effect of combinations of these chemicals on recycling is largely unknown. Limiting, standardising, and transparently reporting the chemicals used during textile production would simplify research and could lead to better quality products after recycling. Full article
(This article belongs to the Special Issue Macromolecular Chemistry in Europe, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 4018 KB  
Article
Assessing the Efficiency of Open-System Densification on Chemically Treated Dendrocalamus asper Bamboo
by André Luiz Pereira de Godoy Junior, Marzieh Kadivar, Leo Maia do Amaral, Adriano Galvão de Souza Azevedo, Juan Camilo Adrada Molano, Esmaeil Biazar and Holmer Savastano Junior
Materials 2025, 18(12), 2719; https://doi.org/10.3390/ma18122719 - 10 Jun 2025
Cited by 1 | Viewed by 1033
Abstract
The natural variability and moisture sensitivity of bamboo limit its widespread use in construction applications. To address these challenges, densification and delignification processes have emerged as promising modification techniques. Densification and delignification processes can lead to significant improvements in the physical, mechanical, and [...] Read more.
The natural variability and moisture sensitivity of bamboo limit its widespread use in construction applications. To address these challenges, densification and delignification processes have emerged as promising modification techniques. Densification and delignification processes can lead to significant improvements in the physical, mechanical, and chemical properties of solid wood. In this study, a two-step process of delignification and densification was carried out on Dendrocalamus asper bamboo specimens. The objective was to assess whether the optimized parameters of densification for natural bamboo on an open pressing system can be transferred for delignified bamboo. Delignification was achieved using an alkali solution (NaOH and Na2SO3) with two different temperature settings (25 °C or 100 °C). The pre-treated samples were dried in one of the two different conditions, either at 100 °C for 24 h or 25 °C for 30 days, resulting in four different groups with an average moisture content ranging from 7 to 10%. The samples were densified to 50% of their original thickness through an open thermo-mechanical press system at 160 °C with a compression rate of 6.7 mm/min and compared to densified bamboo without delignification (reference). The compression stress required to achieve a 50% degree of densification was evaluated, with untreated samples exhibiting an average value close to 17 MPa. Following treatment, the compression stress ranged from 7 to 13.4 MPa, indicating that the exposure to a high pH solution facilitates the densification process. However, a reduction in flexural properties (MOR, LOP, and MOE) was observed on the alkali-treated samples after a three-point bending test. Physical properties (water absorption and thickness swelling) were not altered after delignification. These findings demonstrate that the direct application of a densification process optimized for natural bamboo is not fully effective for chemically modified bamboo, highlighting the need for adjustments. Delignified bamboo showed an increase in free space after chemical treatment, which should be further densified under higher degrees. Full article
Show Figures

Figure 1

18 pages, 2391 KB  
Article
Effect of Superheated Steam Technology on the Deformation Recovery Performance of Teakwood Bending Components and Its Mechanism
by Linghua Yao, Yanxia Pan, Lina Ji, Zhangheng Wang and Junnan Liu
Forests 2025, 16(3), 521; https://doi.org/10.3390/f16030521 - 16 Mar 2025
Viewed by 939
Abstract
To address the issue of the deformation recovery in teakwood bending components when they undergo moisture absorption, the potential for superheated steam technology to improve the dimensional stability of the material and the means of optimizing this improvement were systematically analyzed. After setting [...] Read more.
To address the issue of the deformation recovery in teakwood bending components when they undergo moisture absorption, the potential for superheated steam technology to improve the dimensional stability of the material and the means of optimizing this improvement were systematically analyzed. After setting a medium temperature, treatment time, and initial moisture content, we performed a 120 h water immersion test and dynamic thermo-mechanical analysis (DMA), which revealed the multi-scale mechanism by which superheated steam technology inhibits deformation recovery. It was shown that under the optimized conditions of 130 °C, a 2 h treatment time, and a 30% initial moisture content, the deformation recovery of water-immersed teakwood bending components could be reduced to 2.02–5.13%. The water-absorption resilience was decreased by 41.05% compared with the conventional drying and shaping, which was attributed to the synergistic effect of the degradation of hemicellulose and the cross-linking of lignin, which released residual stresses efficiently. Our investigation of the chemical–mechanical coupling revealed a significant positive correlation between the water-absorption resilience and the hemicellulose content (R2 = 0.912), and the interaction of the chemical constituents resulted in a directional evolution of the energy storage modulus and loss modulus, which enhanced the stiffness of the material and effectively inhibited water-absorption resilience. This study provides a theoretical basis and process guidance for the efficient industrialization of solid wood bending components, which has important guiding value for the innovation of manufacturing technology for bending wood furniture. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

36 pages, 12897 KB  
Review
Research Progress on Post-Treatment Technologies of Cold Spray Coatings
by Yueyu Huang, Haifeng Li, Jianwu Liu, Zizhao Wu, Qun Wang and Chidambaram Seshadri Ramachandran
Coatings 2025, 15(3), 265; https://doi.org/10.3390/coatings15030265 - 23 Feb 2025
Cited by 4 | Viewed by 2795
Abstract
Cold spraying (CS), also known as cold gas dynamic spraying or supersonic cold spraying, is a process in which particles collide with the substrate at a speed greater than the critical value and deposit layer by layer to form a coating. As an [...] Read more.
Cold spraying (CS), also known as cold gas dynamic spraying or supersonic cold spraying, is a process in which particles collide with the substrate at a speed greater than the critical value and deposit layer by layer to form a coating. As an emerging coating preparation technology that has been developed rapidly in recent years, CS is characterized by a low deposition temperature, a minimal thermal effect on substrate, and a high deposition efficiency. It has received extensive attention from industry. However, the inherent high strength and low plasticity of CS coatings and the numerous defects present limit their wider application to some extent. Therefore, various post-treatment technologies are successfully applied to the CS coatings to improve their comprehensive performance. This paper reviews the latest research progress of common post-treatment techniques for CS coatings, including five categories: thermal, mechanical, thermo-mechanical, chemical, and electrochemical processing. A considerable amount of experimental research has demonstrated that post-treatment can effectively enhance the microstructure and properties of CS coatings, and this can serve as a powerful approach to expand the application scope of CS technology. In addition, the relevant post-processing parameters and corresponding results are summarized and compared systematically. Full article
Show Figures

Figure 1

33 pages, 7087 KB  
Article
Demulsification of Water-in-Oil Emulsion with Carbon Quantum Dot (CQD)-Enhanced Demulsifier
by Jhon F. Gallego, Oscar E. Medina, Jose A. Tengono, Camilo Mazo, Andres F. Maya, Cristina Caro, Farid B. Cortés and Camilo A. Franco
Processes 2025, 13(2), 575; https://doi.org/10.3390/pr13020575 - 18 Feb 2025
Cited by 4 | Viewed by 4027
Abstract
This study aims to optimize the demulsification performance of a carbon quantum dot (CQD)-enhanced chemical demulsifier in industrial emulsions under thermal, mechanical, and thermomechanical effects. Experiments were conducted to assess treatments like organic treatment (OT), zeta potential modifier aqueous solution (ZPMAS), and acid [...] Read more.
This study aims to optimize the demulsification performance of a carbon quantum dot (CQD)-enhanced chemical demulsifier in industrial emulsions under thermal, mechanical, and thermomechanical effects. Experiments were conducted to assess treatments like organic treatment (OT), zeta potential modifier aqueous solution (ZPMAS), and acid treatment (9.25 wt.% HCl) at varying dosages, along with CQD–chemical mixtures optimized through a simplex-centroid mixture design (SCMD) to minimize basic sediment and water (BSW). Under the thermomechanical scenario, a system with 500 mg∙L−1 CQDs and OT achieves 0.5% BSW and a droplet size of 63 nm, while an SCMD-optimized system (500 mg∙L−1 CQDs + 380 mg∙L−1 OT + 120 mg∙L−1 ZPMAS) achieves 0% BSW and larger droplets (>70 nm). CQDs enhance demulsifiers by destabilizing water-in-oil (W/O) Pickering emulsions, leveraging their nanometric size, high surface area, thermal conductivity, and amphiphilicity, thanks to their hydrophobic core and surface hydrophilic groups (-OH, NH2, -COOH). This research enhances the understanding of demulsification by employing green demulsifiers based on CQDs and provides a promising cost-efficient solution for breaking stable emulsions in the petroleum industry. It minimizes the use of complex and expensive active ingredients, achieving BSW values below 0.5%, the standard required for crude oil transport and sale, while also reducing separation equipment operation times, and improving overall process efficiency. Full article
Show Figures

Graphical abstract

14 pages, 21828 KB  
Article
A Study of the Effects of Mechanical Alloying Fraction, Solution Treatment Temperature and Pre-Straining Degree on the Structure and Properties of a Powder Metallurgy-Produced FeMnSiCrNi Shape Memory Alloy
by Elena Matcovschi, Bogdan Pricop, Nicoleta-Monica Lohan, Mihai Popa, Gheorghe Bădărău, Nicanor Cimpoeșu, Burak Ozkal and Leandru-Gheorghe Bujoreanu
Crystals 2025, 15(2), 105; https://doi.org/10.3390/cryst15020105 - 21 Jan 2025
Cited by 1 | Viewed by 1140
Abstract
A shape memory alloy with the chemical composition Fe-14Mn-6Si-9Cr-5Ni (mass %) was produced by powder metallurgy (PM) from as-blended powders mixed with mechanically alloyed (MA’ed) powder volumes in amounts of 0, 10 and 20. After powder blending, pressing and sintering, the specimens were [...] Read more.
A shape memory alloy with the chemical composition Fe-14Mn-6Si-9Cr-5Ni (mass %) was produced by powder metallurgy (PM) from as-blended powders mixed with mechanically alloyed (MA’ed) powder volumes in amounts of 0, 10 and 20. After powder blending, pressing and sintering, the specimens were hot-rolled, spark erosion cut with different configurations and solution-treated between 700 and 1100 °C. After metallographic preparation, structural analyses were performed by X-ray diffraction and microscopic observation performed by optical and scanning electron microscopy (SEM). The analyses revealed the presence of thermal- and stress-induced martensites caused by solution treatment and pre-straining. Due to the relatively low Mn amount, significant quantities of α′ body center cubic martensite were formed during post-solution treatment water cooling. Solution-treated lamellar specimens underwent a training thermomechanical treatment comprising repeated cycles of room temperature bending, heating and sputtered water cooling. By cinematographic analysis, the occurrence of the shape memory effect (SME) was revealed, in spite of the large amount of α′ bcc martensite. Tensile specimens were subjected to room temperature failure tests and pre-straining (up to 4% permanent strain, after loading–unloading). After tensile pre-straining, a diminution of α′ martensite amount was noticed on XRD patterns, which was associated with the formation of internal sub-bands in the substructure of martensite and were observed by high-resolution SEM. These results prove that SME can be obtained in trained PM_MA’ed Fe-14Mn-6Si-9Cr-5Ni specimens in spite of the large amount of thermally induced α′ bcc martensite, the stress-induced formation of which is impeded by the presence of internal sub-bands. Full article
(This article belongs to the Special Issue Advances in Multifunctional Materials and Structures)
Show Figures

Figure 1

Back to TopTop