Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (108)

Search Parameters:
Keywords = thermo-sensitive paper

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2749 KB  
Article
A Novel Poly-Potassium Salt Osmotic Technique for High-Suction Water Retention in Compacted Kaolin
by Abolfazl Baghbani, Yi Lu, Sankara Narayanan Murugesan, Hossam Abuel Naga and Eng-Choon Leong
Geosciences 2025, 15(12), 461; https://doi.org/10.3390/geosciences15120461 - 4 Dec 2025
Viewed by 304
Abstract
Accurate suction control underpins thermo-hydro-mechanical (THM) characterization of unsaturated soils, yet conventional polyethylene-glycol (PEG) osmotic methods suffer from membrane degradation, polymer intrusion, and marked temperature sensitivity. This study evaluates a potassium-neutralized poly (acrylamide-co-acrylic acid) hydrogel (PP) as a high-suction osmotic medium for water-retention [...] Read more.
Accurate suction control underpins thermo-hydro-mechanical (THM) characterization of unsaturated soils, yet conventional polyethylene-glycol (PEG) osmotic methods suffer from membrane degradation, polymer intrusion, and marked temperature sensitivity. This study evaluates a potassium-neutralized poly (acrylamide-co-acrylic acid) hydrogel (PP) as a high-suction osmotic medium for water-retention testing of compacted kaolin using a sealed cell with a grade-42 filter paper separator (no semi-permeable membrane). The water-activity–suction relation of PP was calibrated with a chilled-mirror hygrometer (WP4C) over the high-suction domain, and temperature effects were assessed between 20–30 °C. The PP imposed stable target suctions across the practical engineering range, with cross-validation to WP4C of R2 ≈ 0.985 and RMSE ≈ 0.09 MPa, and exhibited modest thermal sensitivity (~2–3% per 10 °C). Mass–time records showed a two-regime equilibration (rapid first-day moisture loss then slowing to asymptote), with time to 95% equilibrium t95 ≈ 3–7 days depending on suction, and equilibrium within ~2 weeks under a normalized mass change, 1mmt<0.1%24h criterion. The resulting kaolin water-retention curves are smooth soil moisture factor (SMF) reproducible, and exhibited minor wetting–drying hysteresis (~20–25% gap at matched suctions). Collectively, the results indicate that PP provides a practical, membrane-free (in the semi-permeable sense) and accurate means to control high-range suction for unsaturated soil testing, showing only modest suction variations within the tested 20–30 °C range, while mitigating long-standing PEG limitations and simplifying laboratory workflows. Full article
Show Figures

Figure 1

19 pages, 3273 KB  
Article
Thermo-Economic Investigation of an ORC-Based Carnot Battery Driven by the Ocean Temperature Gradient
by Liuchen Liu, Yining Yang and Jiarui Dai
Energies 2025, 18(22), 6005; https://doi.org/10.3390/en18226005 - 16 Nov 2025
Viewed by 428
Abstract
Carnot Batteries with thermal integration stand as one of the most promising approaches to tackling contemporary global energy problems. Currently, research on Carnot Battery systems utilizing the ocean thermal gradient is still in its early stages. This paper establishes a holistic thermo-economic model [...] Read more.
Carnot Batteries with thermal integration stand as one of the most promising approaches to tackling contemporary global energy problems. Currently, research on Carnot Battery systems utilizing the ocean thermal gradient is still in its early stages. This paper establishes a holistic thermo-economic model to assess the system’s performance. Through working fluid screening and subsequent multi-objective optimization, this study identifies the optimal working fluid and clarifies the system’s thermal economy at the optimal design point. With round-trip efficiency and total cost as metrics, a sensitivity analysis identified key parameter effects on the system. This was followed by a multi-objective optimization, where the TOPSIS method selected the optimal solution. It was found that, when Ammonia and R1234yf were used as the working fluids in the RC and ORC sub-cycles, respectively, the system can achieve peak performances of 71.79% round-trip efficiency and 36.24% exergy efficiency. Moreover, the RC evaporation temperature exerts the most significant influence on the overall thermodynamic performance. Multi-objective optimization successfully identified a balanced thermo-economic design, yielding an optimal solution with a round-trip efficiency of 65.30% at a total cost of USD 65.90 M. These results offer critical insights for the design and optimization of this promising ocean thermal-powered Carnot Battery system. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

17 pages, 2192 KB  
Article
Cascaded MZI and FPI Sensor for Simultaneous Measurement of Air Pressure and Temperature Using Capillary Fiber and Dual-Core Fiber
by Tongtong Zhu, Xintong Zhong, Xinhao Guo, Qipeng Huang, Xiaoyong Chen, Chuanxin Teng, Peng-Cheng Li, Xuehao Hu and Hang Qu
Photonics 2025, 12(11), 1047; https://doi.org/10.3390/photonics12111047 - 23 Oct 2025
Viewed by 482
Abstract
In this paper, we propose and experimentally demonstrate a dual-parameter fiber optic sensor, which combines a Fabry–Perot interferometer (FPI) and a Mach–Zehnder interferometer (MZI) for simultaneous pressure and temperature sensing. The Fabry–Perot (FP) cavity is formed by sandwiching a capillary fiber between a [...] Read more.
In this paper, we propose and experimentally demonstrate a dual-parameter fiber optic sensor, which combines a Fabry–Perot interferometer (FPI) and a Mach–Zehnder interferometer (MZI) for simultaneous pressure and temperature sensing. The Fabry–Perot (FP) cavity is formed by sandwiching a capillary fiber between a single-mode fiber and a dual-core fiber (DCF). A fluid channel is very close to the central core of the DCF. By precisely drilling micro-air chambers in the annular cladding of a capillary fiber (CF) using a femtosecond laser, external air pressure can directly affect the capillary fiber and induce changes in the refractive index of the air in the CF. The F-P cavity achieves a pressure sensitivity of 3.67 nm/MPa with a temperature cross-sensitivity of 2.82 pm/°C. The MZI is constructed using a dual-core fiber filled with silicone oil in the fluidic channel, which enhances temperature sensitivity through the thermo-optic effect. The MZI sensor exhibits a nonlinear temperature response with an average sensitivity of 103.43 pm/°C. The corresponding pressure cross-sensitivity is about –0.11 nm/MPa. Due to very low cross-sensitivity, simultaneous measurement of temperature and gas pressure is feasible. In addition, we implement a variant by replacing silicone oil with a UV-curable adhesive, which delivers a comparable FP-based pressure sensitivity of ~3.93 nm/MPa while yielding an MZI-based temperature sensitivity of 71.7 pm/°C and potentially improved long-term stability. Full article
(This article belongs to the Special Issue Advances in Optical Fiber Sensing Technology)
Show Figures

Figure 1

20 pages, 6071 KB  
Article
Study on Gas Pre-Extraction Law of Along-Layer Boreholes Based on Thermo-Hydro-Mechanical-Damage Coupled Model
by Biao Hu, Xuyang Lei, Lu Zhang, Hang Long, Pengfei Ji, Lianmeng Wang, Yonghao Ding and Cuixia Wang
Mathematics 2025, 13(21), 3375; https://doi.org/10.3390/math13213375 - 23 Oct 2025
Viewed by 427
Abstract
Modeling the pre-extraction of coalbed methane presents a significant mathematical challenge due to the complex interplay of multiple physical fields. This paper presents a robust mathematical model based on a thermo-hydro-mechanical damage (THMD) framework to describe this process. The model is formulated as [...] Read more.
Modeling the pre-extraction of coalbed methane presents a significant mathematical challenge due to the complex interplay of multiple physical fields. This paper presents a robust mathematical model based on a thermo-hydro-mechanical damage (THMD) framework to describe this process. The model is formulated as a system of coupled, non-linear partial differential equations (PDEs) that integrate governing equations for heat transfer, fluid seepage, and solid mechanics with a damage evolution law derived from continuum damage mechanics. A key contribution of this work is the integration of this multi-physics model, solved numerically using the Finite Element Method (FEM), with a statistical modeling approach using Response Surface Methodology (RSM) and Analysis of Variance (ANOVA). This integrated framework allows for a systematic analysis of the model’s parameter space and a rigorous quantification of sensitivities. The ANOVA results reveal that the model’s damage output is most sensitive to the borehole diameter (F = 2531.51), while the effective extraction radius is predominantly governed by the initial permeability (F = 4219.59). This work demonstrates the power of combining a PDE-based multi-physics model with statistical metamodeling to provide deep, quantitative insights for optimizing gas extraction strategies in deep, low-permeability coal seams. Full article
Show Figures

Figure 1

17 pages, 2926 KB  
Article
Comparative Analysis of Thermal Models for Test Masses in Next-Generation Gravitational Wave Interferometers
by Vincenzo Pierro, Vincenzo Fiumara, Guerino Avallone, Giovanni Carapella, Francesco Chiadini, Roberta De Simone, Rosalba Fittipaldi, Gerardo Iannone, Alessandro Magalotti, Enrico Silva and Veronica Granata
Appl. Sci. 2025, 15(20), 10975; https://doi.org/10.3390/app152010975 - 13 Oct 2025
Viewed by 478
Abstract
Accurate thermal modeling of Terminal Test Masses (TTMs) is crucial for optimizing the sensitivity of gravitational wave interferometers like Virgo. In fact, in such gravitational wave detectors even minimal laser power absorption can induce performance-limiting thermal effects. This paper presents a detailed investigation [...] Read more.
Accurate thermal modeling of Terminal Test Masses (TTMs) is crucial for optimizing the sensitivity of gravitational wave interferometers like Virgo. In fact, in such gravitational wave detectors even minimal laser power absorption can induce performance-limiting thermal effects. This paper presents a detailed investigation into the steady-state thermal behavior of TTMs. In particular, future scenarios of increased intracavity laser beam power and optical coating absorption are considered. We develop and compare two numerical models: a comprehensive model incorporating volumetric heat absorption in both the multilayer coating and the bulk substrate, and a simplified reduced model where the coating’s thermal impact is represented as an effective surface boundary condition on the substrate. Our simulations were focused on a ternary coating design, which is a candidate for use in next-generation detectors. Results reveal that higher coating absorption localizes peak temperatures near the coating–vacuum interface. Importantly, the comparative analysis demonstrates that temperature predictions from the reduced model differ from the detailed model by only milli-Kelvins, a discrepancy often within the experimental uncertainties of the system’s thermo-physical parameters. This finding suggests that computationally efficient reduced models can provide sufficiently accurate results for thermal management and first-order distortion analyses. Moreover, the critical role of accurately characterizing the total power absorbed by the coating is emphasized. Full article
Show Figures

Figure 1

45 pages, 7852 KB  
Article
Determination of the Steady State Fiber Orientation Tensor States in Homogeneous Flows with Newton–Raphson Iteration Using Exact Jacobians
by Aigbe E. Awenlimobor and Douglas E. Smith
J. Compos. Sci. 2025, 9(8), 433; https://doi.org/10.3390/jcs9080433 - 9 Aug 2025
Viewed by 1710
Abstract
Fiber orientation is an important descriptor of the microstructure for short fiber polymer composite materials where accurate and efficient prediction of the orientation state is crucial when evaluating the bulk thermo-mechanical response of the material. Macroscopic fiber orientation models employ the moment-tensor form [...] Read more.
Fiber orientation is an important descriptor of the microstructure for short fiber polymer composite materials where accurate and efficient prediction of the orientation state is crucial when evaluating the bulk thermo-mechanical response of the material. Macroscopic fiber orientation models employ the moment-tensor form in representing the fiber orientation state, and they all require a closure approximation for the higher-order orientation tensors. In addition, various models have more recently been developed to account for rotary diffusion due to fiber-fiber and fiber-matrix interactions which can now more accurately simulate the experimentally observed slow fiber kinematics in polymer composite processing. It is common to use explicit numerical initial value problem-ordinary differential equation (IVP-ODE) solvers such as the 4th- and 5th-order Dormand Prince Runge–Kutta (RK45) method to predict the transient and steady-state fiber orientation response. Here, we propose a computationally efficient method based on the Newton-Raphson (NR) iterative technique for determining steady state orientation tensor values by evaluating exact derivatives of the moment-tensor evolution equation with respect to the independent components of the orientation tensor. We consider various existing macroscopic-fiber orientation models and several closure approximations to ensure the robustness and reliability of the method. The performance and stability of the approach for obtaining physical solutions in various homogeneous flow fields is demonstrated through several examples. Validation of our orientation tensor exact derivatives is performed by benchmarking with results of finite difference techniques. Overall, our results show that the proposed NR method accurately predicts the steady state orientation for all tensor models, closure approximations and flow types considered in this paper and was relatively faster compared to the RK45 method. The NR convergence and stability behavior was seen to be sensitive to the initial orientation tensor guess value, the fiber orientation tensor model type and complexity, the flow type and extension to shear rate ratio. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

53 pages, 3300 KB  
Review
A Comprehensive Review of Smart Thermosensitive Nanocarriers for Precision Cancer Therapy
by Atena Yaramiri, Rand Abo Asalh, Majd Abo Asalh, Nour AlSawaftah, Waad H. Abuwatfa and Ghaleb A. Husseini
Int. J. Mol. Sci. 2025, 26(15), 7322; https://doi.org/10.3390/ijms26157322 - 29 Jul 2025
Cited by 3 | Viewed by 4237
Abstract
By 2030, millions of new cancer cases will be diagnosed, as well as millions of cancer-related deaths. Traditional drug delivery methods have limitations, so developing smart drug delivery systems (SDDs) has emerged as a promising avenue for more effective and precise cancer treatment. [...] Read more.
By 2030, millions of new cancer cases will be diagnosed, as well as millions of cancer-related deaths. Traditional drug delivery methods have limitations, so developing smart drug delivery systems (SDDs) has emerged as a promising avenue for more effective and precise cancer treatment. Nanotechnology, particularly nanomedicine, provides innovative approaches to enhance drug delivery, including the use of nanoparticles. One such type of SDD is thermosensitive nanoparticles, which respond to internal and external stimuli, such as temperature changes, to release drugs precisely at tumor sites and minimize off-target effects. On the other hand, hyperthermia is a cancer treatment mode that goes back centuries and has become popular because it can target cancer cells while sparing healthy tissue. This paper presents a comprehensive review of smart thermosensitive nanoparticles for cancer treatment, with a primary focus on organic nanoparticles. The integration of hyperthermia with temperature-sensitive nanocarriers, such as micelles, hydrogels, dendrimers, liposomes, and solid lipid nanoparticles, offers a promising approach to improving the precision and efficacy of cancer therapy. By leveraging temperature as a controlled drug release mechanism, this review highlights the potential of these innovative systems to enhance treatment outcomes while minimizing adverse side effects. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

22 pages, 4058 KB  
Article
Thermal, Mechanical, Morphological, and Piezoresistive Properties of Poly(ethylene-co-methacrylic acid) (EMAA) with Carbon Nanotubes and Expanded Graphite
by Francesca Aliberti, Luigi Vertuccio, Raffaele Longo, Andrea Sorrentino, Roberto Pantani, Liberata Guadagno and Marialuigia Raimondo
Nanomaterials 2025, 15(13), 994; https://doi.org/10.3390/nano15130994 - 26 Jun 2025
Cited by 4 | Viewed by 1093
Abstract
This paper presents a comparative study examining the effects of carbon nanotubes (CNTs) and expanded graphite (EG) on the thermal, mechanical, morphological, electrical, and piezoresistive properties of poly(ethylene-co-methacrylic acid) (EMAA) nanocomposites. To this end, different amounts of carbonaceous fillers (EG and CNTs separately) [...] Read more.
This paper presents a comparative study examining the effects of carbon nanotubes (CNTs) and expanded graphite (EG) on the thermal, mechanical, morphological, electrical, and piezoresistive properties of poly(ethylene-co-methacrylic acid) (EMAA) nanocomposites. To this end, different amounts of carbonaceous fillers (EG and CNTs separately) were added to the EMAA thermoplastic matrix, and the relative electrical percolation thresholds (EPTs) were determined. The effect of filler concentration on thermo-oxidative degradation and the EMAA crystallinity was investigated via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. Dynamic mechanical analysis (DMA) demonstrated that both fillers enhance the Young’s and storage moduli, as well as the glass transition temperature, with a greater improvement for the bidimensional nanofiller, most likely due to the cumulative effect of more extensive EG-matrix interactions. In tensile tests, a very relevant difference was detected in the Gauge Factor (G.F.) and the elongation at break of the two typologies of nanocomposites. The G.F. of EMAA 10% CNT and EMAA 15% EG were found to be 0.5 ± 0.08 and 165 ± 14, respectively, while elongation at break was about 68% for EMAA 10% CNT and 8% for EMAA 15% EG. Emission Scanning Electron Microscopy (FESEM) and Tunneling Atomic Force Microscopy (TUNA) have contributed to explaining the differences between EG- and CNT-based nanocomposites from a morphological point of view, underlying the pivotal role of the filler aspect ratio and its structural features in determining different mechanical and piezoresistive performance. The comprehensive analysis of EMAA-EG and EMAA-CNT nanocomposites provides a guide for selecting the best self-sensing system for the specific application. More specifically, EMAA-CNT nanocomposites with high elongation at break and lower sensitivity to small strains are suitable for movement sensors in the soft robotic field, where high deformation has to be detected. On the other hand, the high sensitivity at a low strain of EMAA-EG systems makes them suitable for integrated sensors in more rigid composite structures, such as aeronautical and automotive components or wind turbines. Full article
(This article belongs to the Special Issue Functional and Structural Properties of Polymeric Nanocomposites)
Show Figures

Graphical abstract

14 pages, 1661 KB  
Article
Investigating the Reliability and Dynamic Response of Fully 3D-Printed Thermistors
by Umur Cicek, Darren Southee and Andrew Johnson
Appl. Sci. 2025, 15(12), 6822; https://doi.org/10.3390/app15126822 - 17 Jun 2025
Cited by 3 | Viewed by 1075
Abstract
This paper investigates the measurement capability, dynamic response, and mechanical reliability of all 3D-printed multi-material thermistors. The thermistor design consisted of three main components: a polycarbonate (PC) substrate, a silver (Ag) electrode pair, and a poly(3,4-ethylenedioxythophene):poly(4-styrenesulfonate) (PEDOT:PSS) thermosensitive layer. The thermistors were fabricated [...] Read more.
This paper investigates the measurement capability, dynamic response, and mechanical reliability of all 3D-printed multi-material thermistors. The thermistor design consisted of three main components: a polycarbonate (PC) substrate, a silver (Ag) electrode pair, and a poly(3,4-ethylenedioxythophene):poly(4-styrenesulfonate) (PEDOT:PSS) thermosensitive layer. The thermistors were fabricated using two manufacturing techniques: fused deposition modeling (FDM) for the substrate and micro-dispensing for the Ag and PEDOT:PSS films. Two designs with different sensing areas, D1 (90 mm2) and D2 (54 mm2), were fabricated. As the indicator of measurement capability, the highest thermal indexes were recorded as 905.64 and 813.03 K for D1 and D2 thermistors, respectively. Thermistors exhibited comparable dynamic performance, with normalized resistance variations ranging from 0.96 to 1 for temperature changes between 25 and 45 °C. The sensing area influenced both measurement capability and dynamic performance, where larger sensing areas enhanced measurement capability but extended the time required to complete dynamic cycles, around 400 s for D1 versus 350 s for D2. Adhesion tests revealed a strong bonding between the PEDOT:PSS and Ag layer with less than 5% material removal. However, the adhesion of the PEDOT:PSS to the PC substrate was weak, with over 65% material removal. Morphological analysis indicated that the poor adhesion was caused by suboptimal surface properties of the 3D-printed substrate, even resulting in gaps between these two surfaces. This study demonstrates that our all 3D-printed multi-material thermistors can match reported measurement performance with an acceptable dynamic performance while highlighting the need to improve 3D-printed substrate surface properties to enhance the performance of such multi-material structures. Full article
Show Figures

Figure 1

27 pages, 1091 KB  
Review
Advances in Thermoregulating Textiles: Materials, Mechanisms, and Applications
by Kuok Ho Daniel Tang
Textiles 2025, 5(2), 22; https://doi.org/10.3390/textiles5020022 - 11 Jun 2025
Cited by 4 | Viewed by 8607
Abstract
Advancements in thermoregulating textiles have been propelled by innovations in nanotechnology, composite materials, and smart fiber engineering. This article reviews recent scholarly papers on experimental passive and active thermoregulating textiles to present the latest advancements in these fabrics, their mechanisms of thermoregulation, and [...] Read more.
Advancements in thermoregulating textiles have been propelled by innovations in nanotechnology, composite materials, and smart fiber engineering. This article reviews recent scholarly papers on experimental passive and active thermoregulating textiles to present the latest advancements in these fabrics, their mechanisms of thermoregulation, and their feasibility for use. The review underscores that phase-change materials enhanced with graphene, boron nitride, and carbon nanofibers offer superior thermal conductivity, phase stability, and flexibility, making them ideal for wearable applications. Shape-stabilized phase-change materials and aerogel-infused fibers have shown promising results in outdoor, industrial, and emergency settings due to their durability and high insulation efficiency. Radiative cooling textiles, engineered with hierarchical nanostructures and Janus wettability, demonstrate passive temperature regulation through selective solar reflection and infrared emission, achieving substantial cooling effects without external energy input. Thermo-responsive, shape-memory materials, and moisture-sensitive polymers enable dynamic insulation and actuation. Liquid-cooling garments and thermoelectric hybrids deliver precise temperature control but face challenges in portability and power consumption. While thermoregulating textiles show promise, the main challenges include achieving scalable manufacturing, ensuring material flexibility, and integrating multiple functions without sacrificing comfort. Future research should focus on hybrid systems combining passive and active mechanisms, user-centric wearability studies, and cost-effective fabrication methods. These innovations hold significant potential for applications in extreme environments, athletic wear, military uniforms, and smart clothing, contributing to energy efficiency, health, and comfort in a warming climate. Full article
Show Figures

Figure 1

17 pages, 6898 KB  
Article
Thermo-Optic Nanomaterial Fiber Hydrogen Sensor
by Xuhui Zhang, Liang Guo, Xinran Wei, Qiang Liu, Yuzhang Liang, Junsheng Wang and Wei Peng
Nanomaterials 2025, 15(6), 440; https://doi.org/10.3390/nano15060440 - 13 Mar 2025
Cited by 2 | Viewed by 1278
Abstract
In the current energy transition procedure, the application prospect of hydrogen as a clean energy material has attracted much attention. However, the widespread use of hydrogen is also accompanied by safety hazards, and how to detect hydrogen safely and efficiently has become a [...] Read more.
In the current energy transition procedure, the application prospect of hydrogen as a clean energy material has attracted much attention. However, the widespread use of hydrogen is also accompanied by safety hazards, and how to detect hydrogen safely and efficiently has become a research focus. In this paper, we propose a fiber-optic hydrogen sensor based on the thermo-optic effect and nanomaterials, which combines the unique advantages of fiber-optic grating and platinum-loaded tungsten trioxide and is capable of detecting hydrogen concentration with high sensitivity. The principle of this sensor is to absorb hydrogen molecules by nanomaterials and trigger the exothermic effect, which leads to grating period change and refractive index change in the fiber, thus modulating the resonant wavelength of grating. By monitoring the wavelength drift in real time, the hydrogen concentration can be accurately detected. The experimental results show that the sensor can provide high sensitivity, fast response, wide detection range, and miniaturized design, which are suitable for hydrogen detection in complex environments. In addition, its dual-channel operational method further improves detection accuracy and environmental adaptability. This work provides technical support for safe hydrogen detection, which is suitable for hydrogen production, storage, industrial safety and environmental monitoring. Full article
(This article belongs to the Special Issue Nanostructured Materials in Gas Sensing Applications)
Show Figures

Graphical abstract

9 pages, 3760 KB  
Article
Color Development Mechanism of Urea–Urethane Developers for High-Performance Thermo-Sensitive Paper
by Saori Gontani, Sakiko Takeshima, Shinya Matsumoto and Kazuo Kabashima
Colorants 2025, 4(1), 9; https://doi.org/10.3390/colorants4010009 - 4 Mar 2025
Viewed by 1191
Abstract
A series of compounds with both urea and urethane moieties have been developed as color developers for high-performance thermo-sensitive paper. The compounds have lower environmental loads than conventional phenolic developers. They were also found to greatly improve the speed of the printed images. [...] Read more.
A series of compounds with both urea and urethane moieties have been developed as color developers for high-performance thermo-sensitive paper. The compounds have lower environmental loads than conventional phenolic developers. They were also found to greatly improve the speed of the printed images. In this study, we studied the coloring mechanism of the compounds when used as developers for a fluoran dye, and we investigated the stability of the colored solid state. The urea–urethane compounds were found to form black amorphous solids with the fluoran dye. Infrared (IR) measurements of the black solids, based on six urea–urethane derivatives, revealed that the colored dye has a ring-opened structure in a carboxylic acid form and that the urea group works as a proton donor for the ring-opening reaction. The stability of the black amorphous solids was also evaluated using thermal analysis and molecular orbital calculations in addition to IR data. The results indicate that the number of urea–urethane units and the planarity of the urea moiety are important parameters for the stability of the colored solid state. Full article
(This article belongs to the Special Issue Feature Papers in Colorant Chemistry)
Show Figures

Graphical abstract

14 pages, 1963 KB  
Article
Decoupling of Mechanical and Thermal Signals in OFDR Measurements with Integrated Fibres Based on Fibre Core Doping
by Clemens Dittmar, Caroline Girmen, Markus Gastens, Niels König, Thorsten Siedenburg, Michael Wlochal, Robert H. Schmitt and Stefan Schael
Sensors 2025, 25(4), 1187; https://doi.org/10.3390/s25041187 - 15 Feb 2025
Cited by 1 | Viewed by 1076
Abstract
In this paper, a new measurement principle for decoupling mechanical and thermal signals in an OFDR measurement with integrated optical fibres is investigated. Previous methods for decoupling require additional measuring equipment or knowledge about the substrate properties. This new method is based solely [...] Read more.
In this paper, a new measurement principle for decoupling mechanical and thermal signals in an OFDR measurement with integrated optical fibres is investigated. Previous methods for decoupling require additional measuring equipment or knowledge about the substrate properties. This new method is based solely on simultaneous measurements of two fibres with different temperature sensitivities resulting from different core doping processes. By exposing both fibres to the same thermal and mechanical load, the signal could be differentiated through the signal variations caused by the thermo-optical effect. The two fibres used in the tests have a sufficient response difference in the cryogenic temperature range. Therefore, the method is suitable for various applications, such as high-temperature superconductors as well as cryogenic and space applications. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

19 pages, 5615 KB  
Article
An Approach to Reduce Tuning Sensitivity in the PIC-Based Optoelectronic Oscillator by Controlling the Phase Shift in Its Feedback Loop
by Vladislav Ivanov, Ivan Stepanov, Grigory Voronkov, Ruslan Kutluyarov and Elizaveta Grakhova
Micromachines 2025, 16(1), 32; https://doi.org/10.3390/mi16010032 - 28 Dec 2024
Cited by 1 | Viewed by 1810
Abstract
Radio photonic technologies have emerged as a promising solution for addressing microwave frequency synthesis challenges in current and future communication and sensing systems. One particularly effective approach is the optoelectronic oscillator (OEO), a simple and cost-effective electro-optical system. The OEO can generate microwave [...] Read more.
Radio photonic technologies have emerged as a promising solution for addressing microwave frequency synthesis challenges in current and future communication and sensing systems. One particularly effective approach is the optoelectronic oscillator (OEO), a simple and cost-effective electro-optical system. The OEO can generate microwave signals with low phase noise and high oscillation frequencies, often outperforming traditional electrical methods. However, a notable disadvantage of the OEO compared to conventional signal generation methods is its significant frequency tuning step. This paper presents a novel approach for continuously controlling the output frequency of an optoelectronic oscillator (OEO) based on integrated photonics. This is achieved by tuning an integrated optical delay line within a feedback loop. The analytical model developed in this study calculates the OEO’s output frequency while accounting for nonlinear errors, enabling the consideration of various control schemes. Specifically, this study examines delay lines based on the Mach–Zehnder interferometer and microring resonators, which can be controlled by either the thermo-optic or electro-optic effect. To evaluate the model, we conducted numerical simulations using Ansys Lumerical software. The OEO that utilized an MRR-based electro-optical delay line demonstrated a tuning sensitivity of 174.5 MHz/V. The calculated frequency tuning sensitivity was as low as 6.98 kHz when utilizing the precision digital-to-analog converter with a minimum output voltage step of 40 μV. The proposed approach to controlling the frequency of the OEO can be implemented using discrete optical components; however, this approach restricts the minimum frequency tuning sensitivity. It provides an additional degree of freedom for frequency tuning within the OEO’s operating range, which is ultimately limited by the amplitude-frequency characteristic of the notch filter. Thus, the proposed approach opens up new opportunities for increasing the accuracy and flexibility in generating microwave signals, which can be significant for various communications and radio engineering applications. Full article
(This article belongs to the Special Issue Silicon Photonics–CMOS Integration and Device Applications)
Show Figures

Figure 1

29 pages, 7614 KB  
Review
Advancements in Non-Thermal Processing Technologies for Enhancing Safety and Quality of Infant and Baby Food Products: A Review
by Nasim Pasdar, Parisa Mostashari, Ralf Greiner, Anissa Khelfa, Ali Rashidinejad, Hadi Eshpari, Jim M. Vale, Seyed Mohammad Taghi Gharibzahedi and Shahin Roohinejad
Foods 2024, 13(17), 2659; https://doi.org/10.3390/foods13172659 - 23 Aug 2024
Cited by 12 | Viewed by 6761
Abstract
Breast milk is the main source of nutrition during early life, but both infant formulas (Ifs; up to 12 months) and baby foods (BFs; up to 3 years) are also important for providing essential nutrients. The infant food industry rigorously controls for potential [...] Read more.
Breast milk is the main source of nutrition during early life, but both infant formulas (Ifs; up to 12 months) and baby foods (BFs; up to 3 years) are also important for providing essential nutrients. The infant food industry rigorously controls for potential physical, biological, and chemical hazards. Although thermal treatments are commonly used to ensure food safety in IFs and BFs, they can negatively affect sensory qualities, reduce thermosensitive nutrients, and lead to chemical contaminant formation. To address these challenges, non-thermal processing technologies such as high-pressure processing, pulsed electric fields, radio frequency, and ultrasound offer efficient pathogen destruction similar to traditional thermal methods, while reducing the production of key process-induced toxicants such as furan and 5-hydroxymethyl-2-furfural (HMF). These alternative thermal processes aim to overcome the drawbacks of traditional methods while retaining their advantages. This review paper highlights the growing global demand for healthy, sustainable foods, driving food manufacturers to adopt innovative and efficient processing techniques for both IFs and BFs. Based on various studies reviewed for this work, the application of these novel technologies appears to reduce thermal processing intensity, resulting in products with enhanced sensory properties, comparable shelf life, and improved visual appeal compared to conventionally processed products. Full article
(This article belongs to the Special Issue Feature Review on Food Nutrition)
Show Figures

Figure 1

Back to TopTop