Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = thermo-responsive polymer coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3565 KiB  
Article
Controlled PolyDMAEMA Functionalization of Titanium Surfaces via Graft-To and Graft-From Strategies
by Chiara Frezza, Susanna Romano, Daniele Rocco, Giancarlo Masci, Giovanni Sotgiu, Monica Orsini and Serena De Santis
Micromachines 2025, 16(8), 899; https://doi.org/10.3390/mi16080899 (registering DOI) - 31 Jul 2025
Viewed by 156
Abstract
Titanium is widely recognized as an interesting material for electrodes due to its excellent corrosion resistance, mechanical strength, and biocompatibility. However, further functionalization is often necessary to impart advanced interfacial properties, such as selective ion transport or stimuli responsiveness. In this context, the [...] Read more.
Titanium is widely recognized as an interesting material for electrodes due to its excellent corrosion resistance, mechanical strength, and biocompatibility. However, further functionalization is often necessary to impart advanced interfacial properties, such as selective ion transport or stimuli responsiveness. In this context, the integration of smart polymers, such as poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA)—noted for its dual pH- and thermo-responsive behavior—has emerged as a promising approach to tailor surface properties for next-generation devices. This work compares two covalent immobilization strategies for PDMAEMA on titanium: the “graft-to” method, involving the attachment of pre-synthesized polymer chains, and the “graft-from” method, based on surface-initiated polymerization. The resulting materials were characterized with size exclusion chromatography (SEC) for molecular weight, Fourier-transform infrared spectroscopy (FTIR) for chemical structure, scanning electron microscopy (SEM) for surface morphology, and contact angle measurements for wettability. Electrochemical impedance spectroscopy and polarization studies were used to assess electrochemical performance. Both strategies yielded uniform and stable coatings, with the mode of grafting influencing both surface morphology and functional stability. These findings provide valuable insights into the development of adaptive, stimuli-responsive titanium-based interfaces in advanced electrochemical systems. Full article
Show Figures

Figure 1

13 pages, 3561 KiB  
Article
Preparing Surface-Functionalized Polymer Films with Hierarchically Ordered Structure by a Combination of Nanoimprinting and Controlled Graft Polymerization
by Masahiko Minoda, Daichi Shimizu, Tatsuya Nohara and Jin Motoyanagi
Surfaces 2025, 8(3), 48; https://doi.org/10.3390/surfaces8030048 - 11 Jul 2025
Viewed by 289
Abstract
It is widely recognized that fine surface structures found in nature contribute to surface functionality, and studies on the design of functional materials based on biomimetics have been actively conducted. In this study, polymer thin films with hierarchically ordered surface structure were prepared [...] Read more.
It is widely recognized that fine surface structures found in nature contribute to surface functionality, and studies on the design of functional materials based on biomimetics have been actively conducted. In this study, polymer thin films with hierarchically ordered surface structure were prepared by combining both nanoimprinting using anodically oxidized porous alumina (AAO) as a template and surface-initiated atom transfer radical polymerization (SI-ATRP). To prepare such polymer films, we designed a new copolymer (poly{[2-(4-methyl-2-oxo-2H-chromen-7-yloxy)ethyl methacrylate]-co-[2-(2-bromo-2-methylpropionyloxy)ethyl methacrylate]}; poly(MCMA-co-HEMABr)) with coumarin moieties and α-haloester moieties in the pendants. The MCMA repeating units function to fix the pillar structure by photodimerization, and the HEMABr ones act as the polymerization initiation sites for SI-ATRP on the pillar surfaces. Surface structures consisting of vertically oriented multiple pillars were fabricated on the spin-coated poly(MCMA-co-HEMABr) thin films by nanoimprinting using an AAO template. Then, the coumarin moieties inside each pillar were crosslinked by UV light irradiation to fix the pillar structure. SEM observation confirmed that the internally crosslinked pillar structures were maintained even when immersed in organic solvents such as 1,2-dichloroethane and anisole, which are employed as solvents under SI-ATRP conditions. Finally, poly(2,2,2-trifluoroethyl methacrylate) and poly(N-isopropylacrylamide) chains were grafted onto the thin film by SI-ATRP, respectively, to prepare the hierarchically ordered surface structure. Furthermore, in this study, the surface properties as well as the thermoresponsive hydrophilic/hydrophobic switching of the obtained polymer films were investigated. The surface morphology and chemistry of the films with and without pillar structures were compared, especially the interfacial properties expressed as wettability. Grafting poly(TFEMA) increased the static contact angle for both flat and pillar films, and the con-tact angle of the pillar film surface increased from 104° for the flat film sample to 112°, suggesting the contribution of the pillar structure. Meanwhile, the pillar film surface grafted with poly(NIPAM) brought about a significant change in wettability when changing the temperature between 22 °C and 38 °C. Full article
(This article belongs to the Special Issue Surface Science: Polymer Thin Films, Coatings and Adhesives)
Show Figures

Graphical abstract

16 pages, 4340 KiB  
Article
“Grafting-from” and “Grafting-to” Poly(N-isopropyl acrylamide) Functionalization of Glass for DNA Biosensors with Improved Properties
by Pauline Skigin, Perrine Robin, Alireza Kavand, Mounir Mensi and Sandrine Gerber-Lemaire
Polymers 2024, 16(20), 2873; https://doi.org/10.3390/polym16202873 - 11 Oct 2024
Cited by 1 | Viewed by 1401
Abstract
Surface-based biosensors have proven to be of particular interest in the monitoring of human pathogens by means of their distinct nucleic acid sequences. Genosensors rely on targeted gene/DNA probe hybridization at the surface of a physical transducer and have been exploited for their [...] Read more.
Surface-based biosensors have proven to be of particular interest in the monitoring of human pathogens by means of their distinct nucleic acid sequences. Genosensors rely on targeted gene/DNA probe hybridization at the surface of a physical transducer and have been exploited for their high specificity and physicochemical stability. Unfortunately, these sensing materials still face limitations impeding their use in current diagnostic techniques. Most of their shortcomings arise from their suboptimal surface properties, including low hybridization density, inadequate probe orientation, and biofouling. Herein, we describe and compare two functionalization methodologies to immobilize DNA probes on a glass substrate via a thermoresponsive polymer in order to produce genosensors with improved properties. The first methodology relies on the use of a silanization step, followed by PET-RAFT of NIPAM monomers on the coated surface, while the second relies on vinyl sulfone modifications of the substrate, to which the pre-synthetized PNIPAM was grafted to. The functionalized substrates were fully characterized by means of X-ray photoelectron spectroscopy for their surface atomic content, fluorescence assay for their DNA hybridization density, and water contact angle measurements for their thermoresponsive behavior. The antifouling properties were evaluated by fluorescence microscopy. Both immobilization methodologies hold the potential to be applied to the engineering of DNA biosensors with a variety of polymers and other metal oxide surfaces. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

30 pages, 3770 KiB  
Review
Recent Advances in Polymer Nanocomposites: Unveiling the Frontier of Shape Memory and Self-Healing Properties—A Comprehensive Review
by Huma Jamil, Muhammad Faizan, Muhammad Adeel, Teofil Jesionowski, Grzegorz Boczkaj and Aldona Balčiūnaitė
Molecules 2024, 29(6), 1267; https://doi.org/10.3390/molecules29061267 - 13 Mar 2024
Cited by 36 | Viewed by 8659
Abstract
Shape memory and self-healing polymer nanocomposites have attracted considerable attention due to their modifiable properties and promising applications. The incorporation of nanomaterials (polypyrrole, carboxyl methyl cellulose, carbon nanotubes, titania nanotubes, graphene, graphene oxide, mesoporous silica) into these polymers has significantly enhanced their performance, [...] Read more.
Shape memory and self-healing polymer nanocomposites have attracted considerable attention due to their modifiable properties and promising applications. The incorporation of nanomaterials (polypyrrole, carboxyl methyl cellulose, carbon nanotubes, titania nanotubes, graphene, graphene oxide, mesoporous silica) into these polymers has significantly enhanced their performance, opening up new avenues for diverse applications. The self-healing capability in polymer nanocomposites depends on several factors, including heat, quadruple hydrogen bonding, π–π stacking, Diels–Alder reactions, and metal–ligand coordination, which collectively govern the interactions within the composite materials. Among possible interactions, only quadruple hydrogen bonding between composite constituents has been shown to be effective in facilitating self-healing at approximately room temperature. Conversely, thermo-responsive self-healing and shape memory polymer nanocomposites require elevated temperatures to initiate the healing and recovery processes. Thermo-responsive (TRSMPs), light-actuated, magnetically actuated, and Electrically actuated Shape Memory Polymer Nanocomposite are discussed. This paper provides a comprehensive overview of the different types of interactions involved in SMP and SHP nanocomposites and examines their behavior at both room temperature and elevated temperature conditions, along with their biomedical applications. Among many applications of SMPs, special attention has been given to biomedical (drug delivery, orthodontics, tissue engineering, orthopedics, endovascular surgery), aerospace (hinges, space deployable structures, morphing aircrafts), textile (breathable fabrics, reinforced fabrics, self-healing electromagnetic interference shielding fabrics), sensor, electrical (triboelectric nanogenerators, information energy storage devices), electronic, paint and self-healing coating, and construction material (polymer cement composites) applications. Full article
Show Figures

Graphical abstract

33 pages, 5442 KiB  
Review
Temperature-Responsive Polymer Brush Coatings for Advanced Biomedical Applications
by Svyatoslav Nastyshyn, Yuriy Stetsyshyn, Joanna Raczkowska, Yuriy Nastishin, Yuriy Melnyk, Yuriy Panchenko and Andrzej Budkowski
Polymers 2022, 14(19), 4245; https://doi.org/10.3390/polym14194245 - 10 Oct 2022
Cited by 49 | Viewed by 5737
Abstract
Modern biomedical technologies predict the application of materials and devices that not only can comply effectively with specific requirements, but also enable remote control of their functions. One of the most prospective materials for these advanced biomedical applications are materials based on temperature-responsive [...] Read more.
Modern biomedical technologies predict the application of materials and devices that not only can comply effectively with specific requirements, but also enable remote control of their functions. One of the most prospective materials for these advanced biomedical applications are materials based on temperature-responsive polymer brush coatings (TRPBCs). In this review, methods for the fabrication and characterization of TRPBCs are summarized, and possibilities for their application, as well as the advantages and disadvantages of the TRPBCs, are presented in detail. Special attention is paid to the mechanisms of thermo-responsibility of the TRPBCs. Applications of TRPBCs for temperature-switchable bacteria killing, temperature-controlled protein adsorption, cell culture, and temperature-controlled adhesion/detachment of cells and tissues are considered. The specific criteria required for the desired biomedical applications of TRPBCs are presented and discussed. Full article
(This article belongs to the Special Issue Polymer Brushes: Synthesis, Properties and Structure)
Show Figures

Figure 1

16 pages, 2916 KiB  
Article
pH- and Thermo-Responsive Water-Soluble Smart Polyion Complex (PIC) Vesicle with Polyampholyte Shells
by Thu Thao Pham, Tien Duc Pham and Shin-ichi Yusa
Polymers 2022, 14(9), 1659; https://doi.org/10.3390/polym14091659 - 20 Apr 2022
Cited by 9 | Viewed by 3241
Abstract
A diblock copolymer (P(VBTAC/NaSS)17-b-PAPTAC50; P(VS)17A50) composed of amphoteric random copolymer, poly(vinylbenzyl trimethylammonium chloride-co-sodium p-styrensunfonate) (P(VBTAC/NaSS); P(VS)) and cationic poly(3-(acrylamidopropyl) trimethylammonium chloride) (PAPTAC; A) block, and poly(acrylic acid) (PAAc49) [...] Read more.
A diblock copolymer (P(VBTAC/NaSS)17-b-PAPTAC50; P(VS)17A50) composed of amphoteric random copolymer, poly(vinylbenzyl trimethylammonium chloride-co-sodium p-styrensunfonate) (P(VBTAC/NaSS); P(VS)) and cationic poly(3-(acrylamidopropyl) trimethylammonium chloride) (PAPTAC; A) block, and poly(acrylic acid) (PAAc49) were prepared via a reversible addition−fragmentation chain transfer radical polymerization. Scrips V, S, and A represent VBTAC, NaSS, and PAPTAC blocks, respectively. Water-soluble polyion complex (PIC) vesicles were formed by mixing P(VS)17A50 and PAAc49 in water under basic conditions through electrostatic interactions between the cationic PAPTAC block and PAAc49 with the deprotonated pendant carboxylate anions. The PIC vesicle collapsed under an acidic medium because the pendant carboxylate anions in PAAc49 were protonated to delete the anionic charges. The PIC vesicle comprises an ionic PAPTAC/PAAc membrane coated with amphoteric random copolymer P(VS)17 shells. The PIC vesicle showed upper critical solution temperature (UCST) behavior in aqueous solutions because of the P(VS)17 shells. The pH- and thermo-responsive behavior of the PIC vesicle were studied using 1H NMR, static and dynamic light scattering, and percent transmittance measurements. When the ratio of the oppositely charged polymers in PAPTAC/PAAc was equal, the size and light scattering intensity of the PIC vesicle reached maximum values. The hydrophilic guest molecules can be encapsulated into the PIC vesicle at the base medium and released under acidic conditions. It is expected that the PIC vesicles will be applied as a smart drug delivery system. Full article
(This article belongs to the Collection Design and Synthesis of Polymers)
Show Figures

Figure 1

15 pages, 4834 KiB  
Article
Chemistry-Induced Effects on Cell Behavior upon Plasma Treatment of pNIPAAM
by Veronica Satulu, Valentina Dinca, Mihaela Bacalum, Cosmin Mustaciosu, Bogdana Mitu and Gheorghe Dinescu
Polymers 2022, 14(6), 1081; https://doi.org/10.3390/polym14061081 - 8 Mar 2022
Cited by 6 | Viewed by 2615
Abstract
In the field of bioengineering, depending on the required application, the attachment of various biological entities to the biomaterial is either favored or needs to be prevented. Therefore, different surfaces modification strategies were developed in combination with the characteristics of the materials. The [...] Read more.
In the field of bioengineering, depending on the required application, the attachment of various biological entities to the biomaterial is either favored or needs to be prevented. Therefore, different surfaces modification strategies were developed in combination with the characteristics of the materials. The present contribution reports on the use of the specific surface property of a thermoresponsive polymer poly(N-isopropylacrylamide) pNIPAAM obtained by spin coating in combination with plasma treatment for tuning cell behavior on treated polymeric surfaces. Topographical information for the plasma-treated pNIPAAM coatings obtained by Atomic Force Microscopy (AFM) measurements evidenced a more compact surface for Ar treatment due to combined etching and redeposition, while for oxygen, a clear increase of pores diameter is noticed. The chemical surface composition as determined by X-ray Photoelectron Spectroscopy showed the specific modifications induced by plasma treatment, namely strong oxidation for oxygen plasma treatment illustrated by eight times increase of O-C=O contribution and respectively an increase of C-N/O=C-N bonds in the case of ammonia plasma treatment. Structural information provided by FTIR spectroscopy reveals a significant increase of the carboxylic group upon argon and mostly oxygen plasma treatment and the increase in width and intensity of the amide-related groups for the ammonia plasma treatment. The biological investigations evidenced that L929 fibroblast cells viability is increased by 25% upon plasma treatment, while the cell attachment is up to 2.8 times higher for the oxygen plasma-treated surface compared to the initial spin-coated pNIPAAM. Moreover, the cell detachment process proved to be up to 2–3 times faster for the oxygen and argon plasma-treated surfaces and up to 1.5 times faster for the ammonia-treated surface. These results show the versatility of plasma treatment for inducing beneficial chemical modifications of pNIPAAM surfaces that allows the tuning of cellular response for improving the attachment-detachment process in view of tissue engineering. Full article
(This article belongs to the Special Issue Plasma Processing of Polymers)
Show Figures

Graphical abstract

20 pages, 4495 KiB  
Article
Superparamagnetic Iron Oxide Nanoparticles Decorated Mesoporous Silica Nanosystem for Combined Antibiofilm Therapy
by Elena Álvarez, Manuel Estévez, Alvaro Gallo-Cordova, Blanca González, Rafael R. Castillo, María del Puerto Morales, Montserrat Colilla, Isabel Izquierdo-Barba and María Vallet-Regí
Pharmaceutics 2022, 14(1), 163; https://doi.org/10.3390/pharmaceutics14010163 - 11 Jan 2022
Cited by 28 | Viewed by 4019
Abstract
A crucial challenge to face in the treatment of biofilm-associated infection is the ability of bacteria to develop resistance to traditional antimicrobial therapies based on the administration of antibiotics alone. This study aims to apply magnetic hyperthermia together with controlled antibiotic delivery from [...] Read more.
A crucial challenge to face in the treatment of biofilm-associated infection is the ability of bacteria to develop resistance to traditional antimicrobial therapies based on the administration of antibiotics alone. This study aims to apply magnetic hyperthermia together with controlled antibiotic delivery from a unique magnetic-responsive nanocarrier for a combination therapy against biofilm. The design of the nanosystem is based on antibiotic-loaded mesoporous silica nanoparticles (MSNs) externally functionalized with a thermo-responsive polymer capping layer, and decorated in the outermost surface with superparamagnetic iron oxide nanoparticles (SPIONs). The SPIONs are able to generate heat upon application of an alternating magnetic field (AMF), reaching the temperature needed to induce a change in the polymer conformation from linear to globular, therefore triggering pore uncapping and the antibiotic cargo release. The microbiological assays indicated that exposure of E. coli biofilms to 200 µg/mL of the nanosystem and the application of an AMF (202 kHz, 30 mT) decreased the number of viable bacteria by 4 log10 units compared with the control. The results of the present study show that combined hyperthermia and antibiotic treatment is a promising approach for the effective management of biofilm-associated infections. Full article
Show Figures

Graphical abstract

14 pages, 4262 KiB  
Article
Synthesis and Characterization of Temperature-Responsive N-Cyanomethylacrylamide-Containing Diblock Copolymer Assemblies in Water
by Nicolas Audureau, Fanny Coumes, Clémence Veith, Clément Guibert, Jean-Michel Guigner, François Stoffelbach and Jutta Rieger
Polymers 2021, 13(24), 4424; https://doi.org/10.3390/polym13244424 - 16 Dec 2021
Cited by 8 | Viewed by 3062
Abstract
We have previously demonstrated that poly(N-cyanomethylacrylamide) (PCMAm) exhibits a typical upper-critical solution temperature (UCST)-type transition, as long as the molar mass of the polymer is limited, which was made possible through the use of reversible addition-fragmentation chain transfer (RAFT) radical polymerization. [...] Read more.
We have previously demonstrated that poly(N-cyanomethylacrylamide) (PCMAm) exhibits a typical upper-critical solution temperature (UCST)-type transition, as long as the molar mass of the polymer is limited, which was made possible through the use of reversible addition-fragmentation chain transfer (RAFT) radical polymerization. In this research article, we use for the first time N-cyanomethylacrylamide (CMAm) in a typical aqueous dispersion polymerization conducted in the presence of poly(N,N-dimethylacrylamide) (PDMAm) macroRAFT agents. After assessing that well-defined PDMAm-b-PCMAm diblock copolymers were formed through this aqueous synthesis pathway, we characterized in depth the colloidal stability, morphology and temperature-responsiveness of the dispersions, notably using cryo-transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and turbidimetry. The combined analyses revealed that stable nanometric spheres, worms and vesicles could be prepared when the PDMAm block was sufficiently long. Concerning the thermoresponsiveness, only diblocks with a PCMAm block of a low degree of polymerization (DPn,PCMAm < 100) exhibited a UCST-type dissolution upon heating at low concentration. In contrast, for higher DPn,PCMAm, the diblock copolymer nano-objects did not disassemble. At sufficiently high temperatures, they rather exhibited a temperature-induced secondary aggregation of primary particles. In summary, we demonstrated that various morphologies of nano-objects could be obtained via a typical polymerization-induced self-assembly (PISA) process using PCMAm as the hydrophobic block. We believe that the development of this aqueous synthesis pathway of novel PCMAm-based thermoresponsive polymers will pave the way towards various applications, notably as thermoresponsive coatings and in the biomedical field. Full article
(This article belongs to the Special Issue Polymerization-Induced Self-Assembly (PISA))
Show Figures

Graphical abstract

21 pages, 3277 KiB  
Article
Temperature-Responsive Magnetic Nanoparticles for Bioanalysis of Lysozyme in Urine Samples
by Marwa A. Ahmed, Júlia Erdőssy and Viola Horvath
Nanomaterials 2021, 11(11), 3015; https://doi.org/10.3390/nano11113015 - 10 Nov 2021
Cited by 3 | Viewed by 2063
Abstract
Highly selective multifunctional magnetic nanoparticles containing a thermoresponsive polymer shell were developed and used in the sample pretreatment of urine for the assessment of lysozymuria in leukemia patients. Crosslinked poly(N-isopropylacrylamide-co-acrylic acid-co-N-tert-butylacrylamide) was grown onto silica-coated magnetic nanoparticles by reversible addition fragmentation chain transfer [...] Read more.
Highly selective multifunctional magnetic nanoparticles containing a thermoresponsive polymer shell were developed and used in the sample pretreatment of urine for the assessment of lysozymuria in leukemia patients. Crosslinked poly(N-isopropylacrylamide-co-acrylic acid-co-N-tert-butylacrylamide) was grown onto silica-coated magnetic nanoparticles by reversible addition fragmentation chain transfer (RAFT) polymerization. The lysozyme binding property of the nanoparticles was investigated as a function of time, protein concentration, pH, ionic strength and temperature and their selectivity was assessed against other proteins. High-abundant proteins, like human serum albumin and γ-globulins did not interfere with the binding of lysozyme even at elevated concentrations characteristic of proteinuria. A sample cleanup procedure for urine samples has been developed utilizing the thermocontrollable protein binding ability of the nanoparticles. Method validation was carried out according to current bioanalytical method validation guidelines. The method was highly selective, and the calibration was linear in the 25 to 1000 µg/mL concentration range, relevant in the diagnosis of monocytic and myelomonocytic leukemia. Intra- and inter-day precision values ranged from 2.24 to 8.20% and 1.08 to 5.04%, respectively. Intra-day accuracies were between 89.9 and 117.6%, while inter-day accuracies were in the 88.8 to 111.0% range. The average recovery was 94.1 ± 8.1%. Analysis of unknown urine samples in comparison with a well-established reference method revealed very good correlation between the results, indicating that the new nanoparticle-based method has high potential in the diagnosis of lysozymuria. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

23 pages, 7002 KiB  
Article
Cruciate Ligament Cell Sheets Can Be Rapidly Produced on Thermoresponsive poly(glycidyl ether) Coating and Successfully Used for Colonization of Embroidered Scaffolds
by Ingrid Zahn, Daniel David Stöbener, Marie Weinhart, Clemens Gögele, Annette Breier, Judith Hahn, Michaela Schröpfer, Michael Meyer and Gundula Schulze-Tanzil
Cells 2021, 10(4), 877; https://doi.org/10.3390/cells10040877 - 12 Apr 2021
Cited by 7 | Viewed by 3001
Abstract
Anterior cruciate ligament (ACL) cell sheets combined with biomechanically competent scaffolds might facilitate ACL tissue engineering. Since thermoresponsive polymers allow a rapid enzyme-free detachment of cell sheets, we evaluated the applicability of a thermoresponsive poly(glycidyl ether) (PGE) coating for cruciate ligamentocyte sheet formation [...] Read more.
Anterior cruciate ligament (ACL) cell sheets combined with biomechanically competent scaffolds might facilitate ACL tissue engineering. Since thermoresponsive polymers allow a rapid enzyme-free detachment of cell sheets, we evaluated the applicability of a thermoresponsive poly(glycidyl ether) (PGE) coating for cruciate ligamentocyte sheet formation and its influence on ligamentocyte phenotype during sheet-mediated colonization of embroidered scaffolds. Ligamentocytes were seeded on surfaces either coated with PGE or without coating. Detached ligamentocyte sheets were cultured separately or wrapped around an embroidered scaffold made of polylactide acid (PLA) and poly(lactic-co-ε-caprolactone) (P(LA-CL)) threads functionalized by gas-phase fluorination and with collagen foam. Ligamentocyte viability, protein and gene expression were determined in sheets detached from surfaces with or without PGE coating, scaffolds seeded with sheets from PGE-coated plates and the respective monolayers. Stable and vital ligamentocyte sheets could be produced within 24 h with both surfaces, but more rapidly with PGE coating. PGE did not affect ligamentocyte phenotype. Scaffolds could be colonized with sheets associated with high cell survival, stable gene expression of ligament-related type I collagen, decorin, tenascin C and Mohawk after 14 d and extracellular matrix (ECM) deposition. PGE coating facilitates ligamentocyte sheet formation, and sheets colonizing the scaffolds displayed a ligament-related phenotype. Full article
Show Figures

Graphical abstract

16 pages, 4507 KiB  
Article
Thermoresponsive and Conductive Chitosan-Polyurethane Biocompatible Thin Films with Potential Coating Application
by Junpeng Xu, Chih-Yu Fu, Yu-Liang Tsai, Chui-Wei Wong and Shan-hui Hsu
Polymers 2021, 13(3), 326; https://doi.org/10.3390/polym13030326 - 20 Jan 2021
Cited by 18 | Viewed by 4104
Abstract
Conductive thin films have great potential for application in the biomedical field. Herein, we designed thermoresponsive and conductive thin films with hydrophilicity, strain sensing, and biocompatibility. The crosslinked dense thin films were synthesized and prepared through a Schiff base reaction and ionic interaction [...] Read more.
Conductive thin films have great potential for application in the biomedical field. Herein, we designed thermoresponsive and conductive thin films with hydrophilicity, strain sensing, and biocompatibility. The crosslinked dense thin films were synthesized and prepared through a Schiff base reaction and ionic interaction from dialdehyde polyurethane, N-carboxyethyl chitosan, and double-bonded chitosan grafted polypyrrole. The thin films were air-dried under room temperature. These thin films showed hydrophilicity and conductivity (above 2.50 mS/cm) as well as responsiveness to the deformation. The tensile break strength (9.72 MPa to 15.07 MPa) and tensile elongation (5.76% to 12.77%) of conductive thin films were enhanced by heating them from 25 °C to 50 °C. In addition, neural stem cells cultured on the conductive thin films showed cell clustering, proliferation, and differentiation. The application of the materials as a conductive surface coating was verified by different coating strategies. The conductive thin films are potential candidates for surface modification and biocompatible polymer coating. Full article
(This article belongs to the Special Issue Functional and Conductive Polymer Thin Films II)
Show Figures

Graphical abstract

12 pages, 3254 KiB  
Article
Role of Copper Oxide on Epoxy Coatings with New Intumescent Polymer-Based Fire Retardant
by Riyazuddin, Samrin Bano, Fohad Mabood Husain, Jamal Akhter Siddique, Khadijah H. Alharbi, Rais Ahmad Khan and Ali Alsalme
Molecules 2020, 25(24), 5978; https://doi.org/10.3390/molecules25245978 - 17 Dec 2020
Cited by 11 | Viewed by 2976
Abstract
Epoxy resins (EP) have been used as a thermos-setting material in the field of coating, casting, bonding agent, and laminating. However, a major drawback associated with its use is the lack of good flaming properties, and it is responsible for heavy smoke along [...] Read more.
Epoxy resins (EP) have been used as a thermos-setting material in the field of coating, casting, bonding agent, and laminating. However, a major drawback associated with its use is the lack of good flaming properties, and it is responsible for heavy smoke along with hazardous gases considerably limiting its uses in various fields. In this study, N-ethanolamine triazine-piperizine, a melamine polymer (ETPMP), was established as a new charring-foaming agent and was successfully synthesized with ethanolamine, piperizine, cyanuric chloride, and melamine as precursor molecules via the nucleophilic substitution reaction method. Elemental analysis and Fourier transform infrared (FTIR) spectroscopy analysis were applied to approve the synthesis of ETPMP and confirmation of its structure and characterization. The epoxy coating of intumescent flame retardant (IFR) was equipped by introducing ETPMP, ammonium polyphosphate (APP), and copper oxide (CuO) in multiple composition ratios. CuO was loaded at various amounts into the IFR-coating system as a synergistic agent. The synergistic action of CuO on IFR coatings was scientifically examined by using different analytical tests such as vertical burning test (UL-94V), limited oxygen index (LOI), thermal gravimetric analysis (TGA), cone calorimeter, and scanning electron microscope (SEM). The results showed that small changes in the amount of CuO expressively amplified the LOI results and enhanced the V-0 ratings in the UL-94V test. The TGA data clearly demonstrate that the inclusion of CuO can transform the thermal deprivation behavior of coatings with a growing char slag proportion with elevated temperatures. Information from cone calorimeter data affirmed that CuO can decrease the burning factors by total heat release (THR) together with peak heat release rate (PHRR). The SEM images indicated that CuO can enrich the power and compression of the intumescent char that restricts the movement of heat and oxygen. Our results demonstrate a positive influence of CuO on the epoxy-headed intumescent flame retardant coatings. Full article
(This article belongs to the Special Issue Recent Advances in Flame-Retardant Polymers and Composites)
Show Figures

Figure 1

12 pages, 2802 KiB  
Article
Self-Cleaning Cotton Obtained after Grafting Thermoresponsive Poly(N-vinylcaprolactam) through Surface-Initiated Atom Transfer Radical Polymerization
by Bhaskarchand Gautam and Hsiao-hua Yu
Polymers 2020, 12(12), 2920; https://doi.org/10.3390/polym12122920 - 5 Dec 2020
Cited by 14 | Viewed by 4378
Abstract
Although the performance of smart textiles would be enhanced if they could display self-cleaning ability toward various kinds of contamination, the procedures that have been used previously to impart the self-cleaning potential to these functional fabrics (solvent casting, dip coating, spin coating, surface [...] Read more.
Although the performance of smart textiles would be enhanced if they could display self-cleaning ability toward various kinds of contamination, the procedures that have been used previously to impart the self-cleaning potential to these functional fabrics (solvent casting, dip coating, spin coating, surface crosslinking) have typically been expensive and/or limited by uncontrollable polymer thicknesses and morphologies. In this paper, we demonstrate the use of atomic transfer radical polymerization for the surface-initiated grafting of poly(N-vinylcaprolactam), a thermoresponsive polymer, onto cotton. We confirmed the thermoresponsiveness and reusability of the resulting fabric through water contact angle measurements and various surface characterization techniques (scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy). Finally, we validated the self-cleaning performance of the fabric by washing away an immobilized fluorescent protein in deionized water under thermal stimulus. Fluorescence micrographs revealed that, after the fifth wash cycle, the fabric surface had undergone efficient self-cleaning of the stain, making it an effective self-cleaning material. This approach appears to have potential for application in the fields of smart textiles, responsive substrates, and functional fabrics. Full article
(This article belongs to the Special Issue Advances in Smart Textile)
Show Figures

Graphical abstract

15 pages, 1995 KiB  
Article
Thermoresponsive Catechol Based-Polyelectrolyte Complex Coatings for Controlled Release of Bortezomib
by Berthold Reis, David Vehlow, Tarik Rust, Dirk Kuckling and Martin Müller
Int. J. Mol. Sci. 2019, 20(23), 6081; https://doi.org/10.3390/ijms20236081 - 2 Dec 2019
Cited by 7 | Viewed by 3942
Abstract
To overcome the high relapse rate of multiple myeloma (MM), a drug delivery coating for functionalization of bone substitution materials (BSM) is reported based on adhesive, catechol-containing and stimuli-responsive polyelectrolyte complexes (PECs). This system is designed to deliver the MM drug bortezomib (BZM) [...] Read more.
To overcome the high relapse rate of multiple myeloma (MM), a drug delivery coating for functionalization of bone substitution materials (BSM) is reported based on adhesive, catechol-containing and stimuli-responsive polyelectrolyte complexes (PECs). This system is designed to deliver the MM drug bortezomib (BZM) directly to the anatomical site of action. To establish a gradual BZM release, the naturally occurring caffeic acid (CA) is coupled oxidatively to form poly(caffeic acid) (PCA), which is used as a polyanion for complexation. The catechol functionalities within the PCA are particularly suitable to form esters with the boronic acid group of the BZM, which are then cleaved in the body fluid to administer the drug. To achieve a more thorough control of the release, the thermoresponsive poly(N-isoproplyacrylamide-co-dimethylaminoethylmethacrylate) (P(NIPAM-co-DMAEMA)) was used as a polycation. Using turbidity measurements, it was proven that the lower critical solution temperature (LCST) character of this polymer was transferred to the PECs. Further special temperature dependent attenuated total reflection infrared spectroscopy (ATR-FTIR) showed that coatings formed by PEC immobilization exhibit a similar thermoresponsive performance. By loading the coatings with BZM and studying the release in a model system, via UV/Vis it was observed, that both aims, the retardation and the stimuli control of the release, were achieved. Full article
(This article belongs to the Special Issue Wet Adhesion: New Chemistries, Models and Translation to Materials)
Show Figures

Graphical abstract

Back to TopTop