“Grafting-from” and “Grafting-to” Poly(N-isopropyl acrylamide) Functionalization of Glass for DNA Biosensors with Improved Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Design of the System
3.2. “Grafting-from”: Synthetic Strategy Development in Solution and Surface Functionalization
3.2.1. Photoinduced Radical Polymerization
3.2.2. Post-Polymerization Modifications
3.2.3. Surface Functionalization
3.3. “Grafting-to”: Polymer Synthesis and Surface Functionalization
Polymer Synthesis and Surface Functionalization
3.4. Surface Properties of Functionalized Surfaces
3.4.1. DNA Hybridization Density
3.4.2. Thermoresponsive Behavior
3.4.3. Antifouling Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babaei, A.; Pouremamali, A.; Rafiee, N.; Sohrabi, H.; Mokhtarzadeh, A.; de la Guardia, M. Genosensors as an Alternative Diagnostic Sensing Approaches for Specific Detection of Virus Species: A Review of Common Techniques and Outcomes. TrAC Trends Anal. Chem. 2022, 155, 116686. [Google Scholar] [CrossRef] [PubMed]
- Teles, F.R.R.; Fonseca, L.P. Trends in DNA Biosensors. Talanta 2008, 77, 606–623. [Google Scholar] [CrossRef]
- Nimse, S.B.; Song, K.; Sonawane, M.D.; Sayyed, D.R.; Kim, T. Immobilization Techniques for Microarray: Challenges and Applications. Sensors 2014, 14, 22208–22229. [Google Scholar] [CrossRef]
- Shchepinov, M.S.; Case-Green, S.C.; Southern, E.M. Steric Factors Influencing Hybridisation of Nucleic Acids To Oligonucleotide Arrays. Nucleic Acids Res. 1997, 25, 1155–1161. [Google Scholar] [CrossRef]
- Peeters, S.; Stakenborg, T.; Reekmans, G.; Laureyn, W.; Lagae, L.; Van Aerschot, A.; Van Ranst, M. Impact of Spacers on the Hybridization Efficiency of Mixed Self-Assembled DNA/Alkanethiol Films. Bios. Bioelectron. 2008, 24, 72–77. [Google Scholar] [CrossRef]
- Lee, H.-E.; Kang, Y.O.; Choi, S.-H. Electrochemical-DNA Biosensor Development Based on a Modified Carbon Electrode with Gold Nanoparticles for Influenza A (H1N1) Detection: Effect of Spacer. Int. J. Electrochem. Sci. 2014, 9, 6793–6808. [Google Scholar] [CrossRef]
- Robin, P.; Mayoraz, L.; Skigin, P.; Mensi, M.; Gerber-Lemaire, S. Tailoring the Hybridization Density of DNA Biosensors through Tunable Surface Functionalization. Helvetica Chim. Acta 2024, 107, e202300150. [Google Scholar] [CrossRef]
- Bilgic, T.; Klok, H.-A. Surface-Initiated Controlled Radical Polymerization Enhanced DNA Biosensing. Eur. Polym. J. 2015, 62, 281–293. [Google Scholar] [CrossRef]
- Robin, P.; Gerber-Lemaire, S. Design and Preparation of Sensing Surfaces for Capacitive Biodetection. Biosensors 2023, 13, 17. [Google Scholar] [CrossRef]
- D’Agata, R.; Bellassai, N.; Jungbluth, V.; Spoto, G. Recent Advances in Antifouling Materials for Surface Plasmon Resonance Biosensing in Clinical Diagnostics and Food Safety. Polymers 2021, 13, 1929. [Google Scholar] [CrossRef]
- Russo, M.J.; Han, M.; Desroches, P.E.; Manasa, C.S.; Dennaoui, J.; Quigley, A.F.; Kapsa, R.M.I.; Moulton, S.E.; Guijt, R.M.; Greene, G.W.; et al. Antifouling Strategies for Electrochemical Biosensing: Mechanisms and Performance toward Point of Care Based Diagnostic Applications. ACS Sensors 2021, 6, 1482–1507. [Google Scholar] [CrossRef] [PubMed]
- Forinová, M.; Pilipenco, A.; Lynn, N.S.; Obořilová, R.; Šimečková, H.; Vrabcová, M.; Spasovová, M.; Jack, R.; Horák, P.; Houska, M.; et al. A Reusable QCM Biosensor with Stable Antifouling Nano-Coating for on-Site Reagent-Free Rapid Detection of E. Coli O157:H7 in Food Products. Food Control 2024, 165, 110695. [Google Scholar] [CrossRef]
- Yaghoubi, Z.; Basiri-Parsa, J. Modification of Ultrafiltration Membrane by Thermo-Responsive Bentonite-Poly(N-Isopropylacrylamide) Nanocomposite to Improve Its Antifouling Properties. J. Water Process. Eng. 2020, 34, 101067. [Google Scholar] [CrossRef]
- Li, D.; Niu, X.; Yang, S.; Chen, Y.; Ran, F. Thermo-Responsive Polysulfone Membranes with Good Anti-Fouling Property Modified by Grafting Random Copolymers via Surface-Initiated eATRP. Sep. Purif. Technol. 2018, 206, 166–176. [Google Scholar] [CrossRef]
- Banerjee, S.L.; Saha, P.; Ganguly, R.; Bhattacharya, K.; Kalita, U.; Pich, A.; Singha, N.K. A Dual Thermoresponsive and Antifouling Zwitterionic Microgel with pH Triggered Fluorescent “on-off” Core. J. Colloid Interface Sci. 2021, 589, 110–126. [Google Scholar] [CrossRef]
- Doberenz, F.; Zeng, K.; Willems, C.; Zhang, K.; Groth, T. Thermoresponsive Polymers and Their Biomedical Application in Tissue Engineering–a Review. J. Mater. Chem. B 2020, 8, 607–628. [Google Scholar] [CrossRef]
- Wang, F.; Cong, H.; Xing, J.; Wang, S.; Shen, Y.; Yu, B. Novel Antifouling Polymer with Self-Cleaning Efficiency as Surface Coating for Protein Analysis by Electrophoresis. Talanta 2021, 221, 121493. [Google Scholar] [CrossRef] [PubMed]
- Keskin, D.; Tromp, L.; Mergel, O.; Zu, G.; Warszawik, E.; van der Mei, H.C.; van Rijn, P. Highly Efficient Antimicrobial and Antifouling Surface Coatings with Triclosan-Loaded Nanogels. ACS Appl. Mater. Interfaces 2020, 12, 57721–57731. [Google Scholar] [CrossRef]
- Tymetska, S.; Shymborska, Y.; Stetsyshyn, Y.; Budkowski, A.; Bernasik, A.; Awsiuk, K.; Donchak, V.; Raczkowska, J. Thermoresponsive Smart Copolymer Coatings Based on P(NIPAM-Co-HEMA) and P(OEGMA-Co-HEMA) Brushes for Regenerative Medicine. ACS Biomater. Sci. Eng. 2023, 9, 6256–6272. [Google Scholar] [CrossRef]
- Gillet, R.; Sakai, H.; Nabae, Y.; Hayakawa, T.; Kakimoto, M. Synthesis of Hyperbranched-Linear Poly(N-Isopropylacrylamide) Polymers with a Poly(Siloxysilane) Hyperbranched Macroinitiator, and Their Application to Cell Culture on Glass Substrates. Polym. J. 2016, 48, 1007–1012. [Google Scholar] [CrossRef]
- Kumar, S.; Ito, T.; Yanagihara, Y.; Oaki, Y.; Nishimura, T.; Kato, T. Crystallization of Unidirectionally Oriented Fibrous Calcium Carbonate on Thermo-Responsive Polymer Brush Matrices. CrystEngComm 2010, 12, 2021–2024. [Google Scholar] [CrossRef]
- Feng, C.; Ding, H.; Ren, C.; Ma, Y. Designing New Strategy for Controlling DNA Orientation in Biosensors. Sci. Rep. 2015, 5, 14415. [Google Scholar] [CrossRef]
- Liu, Y.-Z.; Chen, M.-S.; Cheng, C.-C.; Chen, S.-H.; Chen, J.-K. Fabrication of Device with Poly(N-Isopropylacrylamide)-b-ssDNA Copolymer Brush for Resistivity Study. J. Nanobiotechnol. 2017, 15, 68. [Google Scholar] [CrossRef]
- RAFT: Choosing the Right Agent to Achieve Controlled Polymerization. Available online: https://www.sigmaaldrich.com/CH/en/technical-documents/technical-article/materials-science-and-engineering/polymer-synthesis/raft-polymerization (accessed on 26 January 2024).
- Asenath Smith, E.; Chen, W. How To Prevent the Loss of Surface Functionality Derived from Aminosilanes. Langmuir 2008, 24, 12405–12409. [Google Scholar] [CrossRef]
- Kavand, A.; Robin, P.; Mayoraz, L.; Mensi, M.; Gerber-Lemaire, S. Achieving High Hybridization Density at DNA Biosensor Surfaces Using Branched Spacer and Click Chemistry. RSC Adv. 2023, 13, 34003–34011. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, J.-M.; Kim, J.-A.; Kim, J.-H. Immobilization of Amine-Modified Oligonucleotides on Bifunctional Polymer Brushes Synthesized by Surface-Initiated Polymerization. Bull. Korean Chem. Soc. 2012, 33, 2043–2046. [Google Scholar] [CrossRef]
- Allegrezza, M.L.; Konkolewicz, D. PET-RAFT Polymerization: Mechanistic Perspectives for Future Materials. ACS Macro Lett. 2021, 10, 433–446. [Google Scholar] [CrossRef]
- Rong, L.-H.; Caldona, E.B.; Advincula, R.C. PET-RAFT Polymerization under Flow Chemistry and Surface-Initiated Reactions. Polym. Int. 2023, 72, 145–157. [Google Scholar] [CrossRef]
- Cheng, F.; Wang, H.; He, W.; Sun, B.; Zhao, J.; Qu, J.; Wang, Q. New Strategy for Functionalization of Silica Materials via Catalytic Oxa-Michael Reaction of Surface Silanol Groups with Vinyl Sulfones. ACS Sustain. Chem. Eng. 2019, 7, 9112–9120. [Google Scholar] [CrossRef]
- Patton, D.L.; Mullings, M.; Fulghum, T.; Advincula, R.C. A Facile Synthesis Route to Thiol-Functionalized α,ω-Telechelic Polymers via Reversible Addition Fragmentation Chain Transfer Polymerization. Macromolecules 2005, 38, 8597–8602. [Google Scholar] [CrossRef]
- Ohno, K.; Ma, Y.; Huang, Y.; Mori, C.; Yahata, Y.; Tsujii, Y.; Maschmeyer, T.; Moraes, J.; Perrier, S. Surface-Initiated Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization from Fine Particles Functionalized with Trithiocarbonates. Macromolecules 2011, 44, 8944–8953. [Google Scholar] [CrossRef]
- Bagheri, A.; Arandiyan, H.; Adnan, N.N.M.; Boyer, C.; Lim, M. Controlled Direct Growth of Polymer Shell on Upconversion Nanoparticle Surface via Visible Light Regulated Polymerization. Macromolecules 2017, 50, 7137–7147. [Google Scholar] [CrossRef]
- Robin, P.; Barnabei, L.; Marocco, S.; Pagnoncelli, J.; Nicolis, D.; Tarantelli, C.; Tavilla, A.C.; Robortella, R.; Cascione, L.; Mayoraz, L.; et al. A DNA Biosensors-Based Microfluidic Platform for Attomolar Real-Time Detection of Unamplified SARS-CoV-2 Virus. Biosens. Bioelectron. X 2023, 13, 100302. [Google Scholar] [CrossRef]
- Schlapak, R.; Pammer, P.; Armitage, D.; Zhu, R.; Hinterdorfer, P.; Vaupel, M.; Frühwirth, T.; Howorka, S. Glass Surfaces Grafted with High-Density Poly(Ethylene Glycol) as Substrates for DNA Oligonucleotide Microarrays. Langmuir 2006, 22, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Conzone, S.D.; Pantano, C.G. Glass slides to DNA microarrays. Mater. Today 2004, 7, 20–26. [Google Scholar] [CrossRef]
- Qi, Y.; Li, K.; Zhao, C.; Ma, Y.; Yang, W. Preparation of a Poly (PEGDA-Co-GMA) Thin Hydrogel Matrix for Oligonucleotide Microarray Applications. J. Chem. Technol. Biotechnol. 2021, 96, 1902–1908. [Google Scholar] [CrossRef]
- Cheng, F.; Ma, X.; Feng, Q.; Wang, H.; Yin, M.; He, W. Preparation and Characterization of DNA Array Slides via Surface Michael Addition. Biointerphases 2019, 14, 061003. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Wang, Y.; Zhao, C.; Ma, Y.; Yang, W. Highly Transparent Cyclic Olefin Copolymer Film with a Nanotextured Surface Prepared by One-Step Photografting for High-Density DNA Immobilization. ACS Appl. Mater. Interfaces 2019, 11, 28690–28698. [Google Scholar] [CrossRef]
- Miyahara, K.; Sakai, R.; Hara, M.; Maruyama, T. A Cu-Free Clickable Surface with Controllable Surface Density. Colloid Polym. Sci. 2019, 297, 927–931. [Google Scholar] [CrossRef]
- Parviz, M.; Darwish, N.; Alam, M.T.; Parker, S.G.; Ciampi, S.; Gooding, J.J. Investigation of the Antifouling Properties of Phenyl Phosphorylcholine-Based Modified Gold Surfaces. Electroanalysis 2014, 26, 1471–1480. [Google Scholar] [CrossRef]
- Jeyachandran, Y.L.; Mielczarski, E.; Rai, B.; Mielczarski, J.A. Quantitative and Qualitative Evaluation of Adsorption/Desorption of Bovine Serum Albumin on Hydrophilic and Hydrophobic Surfaces. Langmuir 2009, 25, 11614–11620. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Fromel, M.; Ranaweera, D.; Rocha, S.; Boyer, C.; Pester, C.W. SI-PET-RAFT: Surface-Initiated Photoinduced Electron Transfer-Reversible Addition–Fragmentation Chain Transfer Polymerization. ACS Macro Lett. 2019, 8, 374–380. [Google Scholar] [CrossRef] [PubMed]
Surface | C 1s % | N 1s % | P 2p % | Si 2p % | C/Si | N/Si | N/C |
---|---|---|---|---|---|---|---|
Borosilicate | 22.35 | 0.60 | 0.00 | 77.04 | 0.29 | 0.01 | 0.03 |
S-Sil-CTA | 25.22 | 0.82 | 0.00 | 73.96 | 0.34 | 0.01 | 0.03 |
S-Sil-PNIPAM-CTA | 34.86 | 3.40 | 0.00 | 61.75 | 0.56 | 0.05 | 0.10 |
S-Sil-PNIPAM-SH | 34.58 | 1.65 | 0.00 | 63.77 | 0.54 | 0.03 | 0.05 |
S-Sil-PNIPAM-COOH | 33.34 | 2.56 | 0.01 | 64.10 | 0.52 | 0.04 | 0.08 |
S-Sil-PNIPAM-DNA | 33.99 | 5.52 | 0.45 | 60.03 | 0.57 | 0.09 | 0.16 |
Surface | C 1s % | N 1s % | P 2p % | S 2p % | Si 2p % | C/Si | N/Si | N/C |
---|---|---|---|---|---|---|---|---|
Borosilicate | 22.35 | 0.60 | 0.00 | 0.00 | 77.04 | 0.29 | 0.01 | 0.03 |
S-Sulf | 51.00 | 3.10 | 0.08 | 2.27 | 43.55 | 1.17 | 0.07 | 0.06 |
S-Sulf-PNIPAM-COOH | 38.96 | 3.99 | 0.10 | 0.51 | 56.44 | 0.69 | 0.07 | 0.10 |
S-Sulf-PNIPAM-DNA | 39.59 | 8.34 | 0.68 | 0.45 | 50.93 | 0.78 | 0.16 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skigin, P.; Robin, P.; Kavand, A.; Mensi, M.; Gerber-Lemaire, S. “Grafting-from” and “Grafting-to” Poly(N-isopropyl acrylamide) Functionalization of Glass for DNA Biosensors with Improved Properties. Polymers 2024, 16, 2873. https://doi.org/10.3390/polym16202873
Skigin P, Robin P, Kavand A, Mensi M, Gerber-Lemaire S. “Grafting-from” and “Grafting-to” Poly(N-isopropyl acrylamide) Functionalization of Glass for DNA Biosensors with Improved Properties. Polymers. 2024; 16(20):2873. https://doi.org/10.3390/polym16202873
Chicago/Turabian StyleSkigin, Pauline, Perrine Robin, Alireza Kavand, Mounir Mensi, and Sandrine Gerber-Lemaire. 2024. "“Grafting-from” and “Grafting-to” Poly(N-isopropyl acrylamide) Functionalization of Glass for DNA Biosensors with Improved Properties" Polymers 16, no. 20: 2873. https://doi.org/10.3390/polym16202873
APA StyleSkigin, P., Robin, P., Kavand, A., Mensi, M., & Gerber-Lemaire, S. (2024). “Grafting-from” and “Grafting-to” Poly(N-isopropyl acrylamide) Functionalization of Glass for DNA Biosensors with Improved Properties. Polymers, 16(20), 2873. https://doi.org/10.3390/polym16202873