Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (108)

Search Parameters:
Keywords = thermo-hydraulic model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5665 KiB  
Article
Numerical Investigation on Heat Transfer of Supercritical CO2 in Minichannel with Fins Integrated in Sidewalls
by Lei Chai
Processes 2025, 13(8), 2630; https://doi.org/10.3390/pr13082630 - 20 Aug 2025
Viewed by 144
Abstract
Gas coolers play a critical role in CO2 refrigeration and heat pump systems, where their thermohydraulic characteristics substantially influence the overall system performance. To improve the heat transfer performance of gas coolers, minichannels with aligned or offset fins integrated in the channel [...] Read more.
Gas coolers play a critical role in CO2 refrigeration and heat pump systems, where their thermohydraulic characteristics substantially influence the overall system performance. To improve the heat transfer performance of gas coolers, minichannels with aligned or offset fins integrated in the channel sidewalls are proposed to enlarge the heat transfer surface and intensify the flow turbulence. Unlike conventional refrigerants, supercritical CO2 exhibits significant variations in thermophysical properties with temperature changes, which results in distinct heat transfer behavior. Three-dimensional numerical models are therefore purposely developed by employing the Shear Stress Transport k-ω turbulent model and including the entrance region effect, NIST real-gas thermophysical properties and buoyancy effect. A constant heat flux boundary is employed on the four-side channel walls to ensure that the temperature of CO2 flowing in the channel exactly decreases from 373.15 K to 308.15 K. The results show that the fins integrated in the channel sidewalls can significantly improve the heat transfer performance, and the heat transfer coefficient significantly increases with increasing mass flux. Compared to the reference smooth channel, the heat transfer performance is enhanced by a factor of 1.85–2.15 with aligned fins and 1.44–1.61 with offset fins. Full article
Show Figures

Figure 1

17 pages, 4515 KiB  
Article
Recent Technological Upgrades to the SHYPROM IoT-Based System for Monitoring Soil Water Status
by Alessandro Comegna, Shawkat Basel Mostafa Hassan and Antonio Coppola
Sensors 2025, 25(16), 4934; https://doi.org/10.3390/s25164934 - 9 Aug 2025
Viewed by 258
Abstract
Effective water resource management plays a crucial role in achieving sustainability in agriculture, hydrology, and environmental protection, particularly under growing water scarcity and climate-related challenges. Soil moisture (θ), matric potential (h), and hydraulic conductivity (K) are critical parameters influencing [...] Read more.
Effective water resource management plays a crucial role in achieving sustainability in agriculture, hydrology, and environmental protection, particularly under growing water scarcity and climate-related challenges. Soil moisture (θ), matric potential (h), and hydraulic conductivity (K) are critical parameters influencing water availability for crops and regulating hydrological, environmental, and ecological processes. To address the need for accurate, real-time soil monitoring in both laboratory and open-field conditions, we proposed an innovative IoT-based monitoring system called SHYPROM (Soil HYdraulic PROperties Meter), designed for the simultaneous estimation of parameters θ, h, and K at different soil depths. The system integrates capacitive soil moisture and matric potential sensors with wireless communication modules and a cloud-based data processing platform, providing continuous, high-resolution measurements. SHYPROM is intended for use in both environmental and agricultural contexts, where it can support precision irrigation management, optimize water resource allocation, and contribute to hydrological and environmental monitoring. This study presents recent technological upgrades to the proposed monitoring system. To improve the accuracy and robustness of θ estimates, the capacitive module was enhanced with an integrated oscillator circuit operating at 60 MHz, an upgrade from the previous version, which operated at 600 kHz. The new system was tested (i.e., calibrated and validated) through a series of laboratory experiments on soils with varying textures, demonstrating its improved ability to capture dynamic soil moisture changes with greater accuracy compared to the earlier SHYPROM version. During calibration and validation tests, soil water content data were collected across a θ range from 0 to 0.40 cm3/cm3. These measurements were compared to reference θ values obtained using the thermo-gravimetric method. The results show that the proposed monitoring system can be used to obtain predictions of θ values with acceptable accuracy (R2 values range between 0.91 and 0.96). To further validate the performance of the upgraded SHYPROM system, evaporation experiments were also conducted, and the θ(h) and K(θ) relationships were determined among soils. Retention and conductivity data were fitted using the van Genuchten and van Genuchten–Mualem models, respectively, confirming that the device accurately captures the temporal evolution of soil water status (R2 values range from 0.97 to 0.99). Full article
Show Figures

Graphical abstract

24 pages, 9236 KiB  
Article
Evaluating the Thermohydraulic Performance of Microchannel Gas Coolers: A Machine Learning Approach
by Shehryar Ishaque, Naveed Ullah, Sanghun Choi and Man-Hoe Kim
Energies 2025, 18(12), 3007; https://doi.org/10.3390/en18123007 - 6 Jun 2025
Viewed by 404
Abstract
In this study, a numerical model of a microchannel gas cooler was developed using a segment-by-segment approach for thermohydraulic performance evaluation. State-of-the-art heat transfer and pressure drop correlations were used to determine the air and refrigerant side heat transfer coefficients and friction factors. [...] Read more.
In this study, a numerical model of a microchannel gas cooler was developed using a segment-by-segment approach for thermohydraulic performance evaluation. State-of-the-art heat transfer and pressure drop correlations were used to determine the air and refrigerant side heat transfer coefficients and friction factors. The developed model was validated against a wide range of experimental data and was found to accurately predict the gas cooler capacity (Q) and pressure drop (ΔP) within an acceptable margin of error. Furthermore, advanced machine learning algorithms such as extreme gradient boosting (XGB), random forest (RF), support vector regression (SVR), k-nearest neighbors (KNNs), and artificial neural networks (ANNs) were employed to analyze their predictive capability. Over 11,000 data points from the numerical model were used, with 80% of the data for training and 20% for testing. The evaluation metrics, such as the coefficient of determination (R2, 0.99841–0.99836) and mean squared error values (0.09918–0.10639), demonstrated high predictive efficacy and accuracy, with only slight variations among the models. All models accurately predict the Q, with the XGB and ANN models showing superior performance in ΔP prediction. Notably, the ANN model emerges as the most accurate method for refrigerant and air outlet temperatures predictions. These findings highlight the potential of machine learning as a robust tool for optimizing thermal system performance and guiding the design of energy-efficient heat exchange technologies. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

26 pages, 9623 KiB  
Review
Non-Uniformities in Heat Exchangers: A Two-Decade Review of Causes, Effects, and Mitigation Strategies
by Shehryar Ishaque, Naveed Ullah, Qazi Shahzad Ali, Naveed Ullah, Sanghun Choi and Man-Hoe Kim
Energies 2025, 18(11), 2751; https://doi.org/10.3390/en18112751 - 26 May 2025
Cited by 1 | Viewed by 785
Abstract
While extensive research has focused on improving the efficiency and performance of heat exchangers (HXs), identifying the underlying causes of performance degradation remains equally important. Flow and temperature non-uniformities are among the most critical factors affecting performance, often reducing thermo-hydraulic efficiency by approximately [...] Read more.
While extensive research has focused on improving the efficiency and performance of heat exchangers (HXs), identifying the underlying causes of performance degradation remains equally important. Flow and temperature non-uniformities are among the most critical factors affecting performance, often reducing thermo-hydraulic efficiency by approximately 5–10%. These non-uniformities commonly manifest as thermal inconsistencies, airflow maldistribution, and uneven refrigerant distribution. Researchers have observed a notable performance degradation—up to 27%—due to flow maldistribution. Therefore, a clear understanding of their causes and effects is essential for developing effective mitigation strategies to enhance system performance. Despite the notable progress in this area, few studies have systematically classified the dominant non-uniformities associated with specific HX types. This article presents a two-decade review of the causes, impacts, and mitigation approaches related to non-uniformities across different HX configurations. The primary objective is to identify the most critical form of non-uniformity affecting performance in each category. This review specifically examines plate heat exchangers (PHXs), finned and tube heat exchangers (FTHXs), microchannel heat exchangers (MCHXs), and printed circuit heat exchangers (PCHXs). It also discusses mathematical models designed to account for non-uniformities in HXs. This article concludes by identifying key research gaps and outlining future directions to support the development of more reliable and energy-efficient HXs. Full article
Show Figures

Figure 1

35 pages, 20183 KiB  
Article
Thermal and Thermo-Hydraulic Performance of a Semi-Circular Solar Air Collector Utilizing an Innovative Configuration of Metal Foams
by Basim A. R. Al-Bakri, Ali M. Rasham and Ali O. Al-Sulttani
Energies 2025, 18(10), 2501; https://doi.org/10.3390/en18102501 - 13 May 2025
Cited by 1 | Viewed by 356
Abstract
The enhancement of the thermal and thermo-hydraulic performance of a semi-circular solar air collector (SCSAC) is numerically investigated using porous semi-circular obstacles made of metal foam with and without longitudinal porous Y-shaped fins. Two 10 and 40 PPI porous material samples are examined. [...] Read more.
The enhancement of the thermal and thermo-hydraulic performance of a semi-circular solar air collector (SCSAC) is numerically investigated using porous semi-circular obstacles made of metal foam with and without longitudinal porous Y-shaped fins. Two 10 and 40 PPI porous material samples are examined. Three-dimensional models are built to simulate the performance of SCSAC: model (I) with clear air passage; model (II) with only metal foam obstacles, and model (III) with metal foam obstacles as well as porous Y-fins. COMSOL Multiphysics software version 6.2 based on finite element methodology is employed. A conjugate heat transfer with a (k-ε) turbulence model is selected to simulate both heat transfer and fluid flow across the entire computational domain. However, only the local thermal non-equilibrium (LTNE) model of heat transfer is applied in the porous regions. The findings demonstrated that adding metal foam as the novel proposed configuration particularity of model (III) may enhance the thermal efficiency by about 30%, and the outlet air temperature may rise to 7% compared to other models. Also, the performance evaluation factor of this model is greater than one in all cases. Additionally, the thermal enhancement is accomplished by occupying only 5% of the air passage volume, thereby including an associated pressure drop of minimal magnitude. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

14 pages, 2837 KiB  
Article
Modeling the Temperature and Pressure Variations of Supercritical Carbon Dioxide in Coiled Tubing
by Zhixing Luan and Peng Wang
Processes 2025, 13(4), 1230; https://doi.org/10.3390/pr13041230 - 18 Apr 2025
Viewed by 403
Abstract
The use of supercritical carbon dioxide (SC-CO2) coiled tubing drilling technology for developing heavy oil and other special reservoirs offers significant advantages, including non-pollution of oil layers, prevention of clay swelling, avoidance of reservoir damage, compact footprint, and enhanced oil recovery, [...] Read more.
The use of supercritical carbon dioxide (SC-CO2) coiled tubing drilling technology for developing heavy oil and other special reservoirs offers significant advantages, including non-pollution of oil layers, prevention of clay swelling, avoidance of reservoir damage, compact footprint, and enhanced oil recovery, making it a highly promising innovative drilling technology. The thermo-hydraulic coupling characteristics of SC-CO2 in helical coiled tubes are critical to the design of SC-CO2 coiled tubing drilling systems. However, existing models often neglect thermal conduction, variable thermophysical properties, and friction-compression coupling effects, leading to significant deviations in the prediction of temperature and pressure variations. Considering heat transmission and fluid dynamics, a coiled tube heat-transfer model which considers varying properties of both pressure and temperature has been developed based on an optimized convective heat-transfer coefficient. Then, the physical parameters of the carbon dioxide in the helical coiled tubing were researched. Results indicated that the temperature change of carbon dioxide in helical coiled tubing was small due to the low temperature difference between the carbon dioxide and the air as well as the existence of an air interlayer and low natural convective heat-transfer efficiency. The drop in pressure of the carbon dioxide increased with increasing coiled tubing length, and the pressure was half that of the conventional drilling fluid in the same condition due to its low viscosity. The density of carbon dioxide in the helical coiled tubing changed from 1078 kg/m3 to 1047 kg/m3 with increasing coiled tubing length under the conditions stated herein, and the carbon dioxide remained liquid throughout the whole process. Full article
Show Figures

Figure 1

18 pages, 5633 KiB  
Article
Analysis of Enhanced Geothermal System Reservoir Parameters and Fractures on Heat Recovery Efficiency Based on a Single-Phase Conduction Model
by Yuting Luo, Juyan Wei, Meilong Fu, Li Fang and Xudong Li
Processes 2025, 13(4), 1135; https://doi.org/10.3390/pr13041135 - 9 Apr 2025
Viewed by 570
Abstract
Geothermal energy has the advantages of being green, stable, abundant, and renewable. The thermal energy extraction efficiency of an enhanced geothermal system (EGS) is significantly regulated by Thermo–Hydraulic (TH) processes. To accurately evaluate the long-term heat recovery performance of an EGS, the dynamic [...] Read more.
Geothermal energy has the advantages of being green, stable, abundant, and renewable. The thermal energy extraction efficiency of an enhanced geothermal system (EGS) is significantly regulated by Thermo–Hydraulic (TH) processes. To accurately evaluate the long-term heat recovery performance of an EGS, the dynamic influence mechanisms under multi-field TH coupling effects must be considered comprehensively. Therefore, in this study, based on the local thermal equilibrium theory, a temperature–seepage coupling model is established using the COMSOL software. The influences of reservoir parameters and fractures on the geothermal energy mining effect are studied, and the distribution law of temperature and pressure in the thermal reservoir is analyzed. The research results provide a reference for EGS reservoir reconstruction and heat recovery efficiency optimization. It is shown that the temperature difference near the injection–production well in the early stage of development leads to the slow recovery of thermal reservoir pressure. When the matrix permeability is greater than 455 mD, the temperature of the production fluid drops too quickly, and the development life of the thermal reservoir is short. The matrix porosity has little effect on the development of thermal reservoirs. When the porosity increases from 0.05 to 0.3, after 40 years of production, the mass flow rate of the produced fluid increases by 3.08%, the temperature of the produced fluid increases by 2.14%, and the heat recovery rate increases by 7.04%. The number of fractures has a significant influence on the development of thermal reservoirs. When the number of fractures increases from 0 to 3, the mass flow rate of production fluid increases by 55.9%, the thermal breakthrough is rapid, and the development life of the thermal reservoir is shortened. Notably, the unreasonable use of cracks will hinder the outward spread of the injected fluid. Full article
(This article belongs to the Special Issue Advances in Oil and Gas Reservoir Modeling and Simulation)
Show Figures

Figure 1

9 pages, 1429 KiB  
Proceeding Paper
Specific Aspects of Modelling Heat and Mass Transfer During Condensed Phase Precipitation on Heat Exchanger Walls
by Illia Petukhov, Oleksii Lysytsia, Taras Mykhailenko and Artem Kovalov
Eng. Proc. 2025, 90(1), 84; https://doi.org/10.3390/engproc2025090084 - 27 Mar 2025
Viewed by 243
Abstract
When the vapour–gas mixture flow heats the cold walls of a heat exchanger, condensed phase (solid and liquid) precipitation can occur on their surfaces. This study aims to improve a model of thermohydraulic processes in a heat exchanger during condensed phase precipitation on [...] Read more.
When the vapour–gas mixture flow heats the cold walls of a heat exchanger, condensed phase (solid and liquid) precipitation can occur on their surfaces. This study aims to improve a model of thermohydraulic processes in a heat exchanger during condensed phase precipitation on its cold surfaces. The process is considered to occur when a multi-component solid-phase layer and a liquid film are simultaneously formed on the wall. Heat is transferred to the interface surface through radiation and convection and due to the phase transition of diffusing components. The mass flow to the interphase surface is determined for each diffusing component. The developed model allows for the calculation of heat transfer parameters in both steady-state and transient conditions, taking into account the formation of a multi-component condensed phase on cold walls. Full article
Show Figures

Figure 1

47 pages, 5744 KiB  
Review
Enhancing District Heating System Efficiency: A Review of Return Temperature Reduction Strategies
by Hakan İbrahim Tol and Habtamu Bayera Madessa
Appl. Sci. 2025, 15(6), 2982; https://doi.org/10.3390/app15062982 - 10 Mar 2025
Cited by 1 | Viewed by 1744
Abstract
This review paper provides a comprehensive examination of current strategies and technical considerations for reducing return temperatures in district heating (DH) systems, aiming to enhance the utilization of available thermal energy. Return temperature, a parameter indirectly influenced by various system-level factors, cannot be [...] Read more.
This review paper provides a comprehensive examination of current strategies and technical considerations for reducing return temperatures in district heating (DH) systems, aiming to enhance the utilization of available thermal energy. Return temperature, a parameter indirectly influenced by various system-level factors, cannot be adjusted directly but requires careful management throughout the design, commissioning, operation, and control phases. This paper explores several key factors affecting return temperature, including DH network, heat storage, and control strategies as well as the return temperature effect on the heat source. This paper also considers the influence of non-technical aspects, such as pricing strategies and maintenance practices, on system performance. The discussion extends to the complex interplay between low return temperatures and temperature differences, and between operational temperature schemes and economic considerations. Concluding remarks emphasize the importance of adopting a holistic approach that integrates technical, operational, and economic factors to improve DH system efficiency. This review highlights the need for comprehensive system-level optimization, effective management of system components, and consideration of unique heat production characteristics. By addressing these aspects, this study provides a framework for advancing DH system performance through optimized return temperature management. Full article
(This article belongs to the Collection Smart Buildings)
Show Figures

Figure 1

26 pages, 8525 KiB  
Article
Response of Thermo-Hydro-Mechanical Fields to Pile Material in Pile–Soil System Under Freezing Based on Numerical Analysis
by Dongxue Hao, Yexian Shi, Rong Chen, Zhao Lu, Yue Ji, Zhonghua Lv and Liguo Liu
Buildings 2025, 15(4), 534; https://doi.org/10.3390/buildings15040534 - 9 Feb 2025
Cited by 1 | Viewed by 963
Abstract
In engineering practice, various types of pile foundations are commonly employed to mitigate the impact of differential frost heave on structures in cold regions. However, the studies on how pile material properties influence the thermo-hydro-mechanical coupling fields during the freezing of the pile–soil [...] Read more.
In engineering practice, various types of pile foundations are commonly employed to mitigate the impact of differential frost heave on structures in cold regions. However, the studies on how pile material properties influence the thermo-hydro-mechanical coupling fields during the freezing of the pile–soil system remain limited. To address this, a finite element model was developed to simulate the response of the pile–soil system under unidirectional freezing conditions. The numerical model in simulating ground temperature field and frost heave was first verified by comparison with experimental results. Then, the simulations for piles made of different materials, specifically steel and concrete piles at field scale, were conducted to obtain real-time temperature, moisture, and displacement fields during the freezing process. The results demonstrate that pile–soil systems of the two materials exhibit clearly different freezing patterns. The thermal conductivity of concrete, being similar to that of the surrounding soil, results in a unidirectional freezing pattern of soil around concrete piles, with the frost depth line parallel to the frost heave surface, forming a “一-shaped” freezing zone. In contrast, the high thermal conductivity of steel piles significantly accelerates the freezing rate and increases the frost depth in the surrounding soil, leading to both vertical and horizontal bidirectional freezing around the piles, creating an “inverted L-shaped” freezing zone. This bidirectional freezing generates greater tangential frost heave forces, pile frost jacking, and soil displacement around piles compared to concrete piles under identical freezing conditions. The numerical simulation also identifies the critical hydraulic conductivity at which moisture migration in the frozen soil layer ceases and describes the variation of relative ice content with temperature. These findings offer valuable insights into considering soil frost heave and pile displacement when using steel for foundation construction in cold regions, providing guidance for anti-frost heave measures in such environments. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

34 pages, 14728 KiB  
Article
Physics-Based Modelling of Plate-Fin Heat Exchangers
by Mattia Grespan, Adriano Leonforte, Luigi Calò, Marco Cavazzuti and Diego Angeli
Energies 2025, 18(3), 495; https://doi.org/10.3390/en18030495 - 22 Jan 2025
Cited by 1 | Viewed by 918
Abstract
Aluminium plate-fin heat exchangers are widely used in automotive, aerospace, and other industrial applications. Extensive research has been conducted on these coolers, yet accurate predictive tools for their thermo-hydraulic performance are still lacking, due to the wide variety of geometric parameters and working [...] Read more.
Aluminium plate-fin heat exchangers are widely used in automotive, aerospace, and other industrial applications. Extensive research has been conducted on these coolers, yet accurate predictive tools for their thermo-hydraulic performance are still lacking, due to the wide variety of geometric parameters and working fluids involved. This work proposes an original approach based purely on physical principles and established models, combining detailed numerical models for the extended surfaces and manifolds, with global models aimed at accurately evaluating overall head losses and heat transfer rates in plate-fin heat exchangers. Extended surfaces are studied by means of computational models of unitary fin modules under fully developed flow conditions. Entrance effects are analysed through dedicated numerical models. Numerical results on extended surfaces are extended to whole heat exchangers by global models for heat transfer and head losses, based on the εNTU method and the Darcy–Weisbach equation, respectively. The proposed approach is presented and validated through the analysis of a case study comprising several heat exchangers featuring different geometries and working fluids. Numerically derived heat transfer rates and head losses are compared with experimental data showing maximum deviations of ±20% for most of the tested configurations, highlighting the strength of the proposed modelling methodology. Full article
Show Figures

Figure 1

40 pages, 4759 KiB  
Article
Grid-Coupled Geothermal and Decentralised Heat Supply Systems in a Holistic Open-Source Simulation Model for 5GDHC Networks
by Constantin Völzel and Stefan Lechner
Sustainability 2024, 16(23), 10503; https://doi.org/10.3390/su162310503 - 29 Nov 2024
Cited by 1 | Viewed by 1359
Abstract
In order to reach climate protection goals at national or international levels, new forms of combined heating and cooling networks with ultra-low network temperatures (5GDHC) are viable alternatives to conventional heating networks. This paper presents a simulation library for 5GDHC networks as sustainable [...] Read more.
In order to reach climate protection goals at national or international levels, new forms of combined heating and cooling networks with ultra-low network temperatures (5GDHC) are viable alternatives to conventional heating networks. This paper presents a simulation library for 5GDHC networks as sustainable shared energy systems, developed in the object-oriented simulation framework OpenModelica. It comprises sub-models for residential buildings acting as prosumers in the network, with additional roof-mounted thermal systems, dynamic thermo-hydraulic representations of distribution pipes and storage, time-series-based sources for heating and cooling, and weather conditions adjustable to user-specified locations. A detailed insight into an in-house development of a sub-model for horizontal ground heat collectors is given. This sub-model is directly coupled with thermo-hydraulic network simulations. The simulation results of energy balances and energetic efficiencies for an example district are described. Findings from this study show that decentralised roof-mounted solar thermal systems coupled to the network can contribute 21% to the total source heat provided in the network while annual thermal gains from the distribution pipes add up to more than 18% within the described settings. The presented simulation library can support conceptual and advanced planning phases for renewable heating and cooling supply structures based on environmental sources. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

18 pages, 3820 KiB  
Article
Numerical Thermo-Hydraulic Simulation of Infiltration and Evaporation of Small-Scale Replica of Typical Dike Covers
by Elisa Ponzoni, Rafaela Cardoso and Cristina Jommi
Appl. Sci. 2024, 14(22), 10170; https://doi.org/10.3390/app142210170 - 6 Nov 2024
Viewed by 878
Abstract
Measurements taken on a historical dike in the Netherlands over one year showed that interaction with the atmosphere led to oscillation of the piezometric surface of about 0.7 m. The observation raised concerns about the long-term performance of similar dikes and promoted a [...] Read more.
Measurements taken on a historical dike in the Netherlands over one year showed that interaction with the atmosphere led to oscillation of the piezometric surface of about 0.7 m. The observation raised concerns about the long-term performance of similar dikes and promoted a deeper investigation of the response of the cover layer to increasing climatic stresses. An experimental and numerical study was undertaken, which included an investigation in the laboratory of the unsaturated behavior of a scaled replica of the field cover. A sample extracted from the top clayey layer in the dike was subjected to eight drying and wetting cycles in a HYPROP™ device. Data recorded during the test provide an indication of the delayed response with depth during evaporation and infiltration. The measurements taken during this continuous dynamic process were simulated by means of a finite element discretization of the time-dependent coupled thermohydraulic response. The results of the numerical simulations are affected by the way in which the environmental loads are translated into numerical boundary conditions. Here, it was chosen to model drying considering only the transport of water vapor after equilibrium with the room atmosphere, while water in the liquid phase was added upon wetting. The simulation was able to reproduce the water mass balance exchange observed during four complete drying–wetting cycles, although the simulated drying rate was faster than the observed one. The numerical curves describing suction, the amount of vapor and temperature are identical, confirming that vapor generation and its equilibrium is control the hydraulic response of the material. Vapor generation and diffusion depend on temperature; therefore, correct characterization of the thermal properties of the soil is of paramount importance when dealing with evaporation and related non-steady equilibrium states. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

17 pages, 4203 KiB  
Article
A Comparative Analysis of Machine Learning Techniques for Predicting the Performance of Microchannel Gas Coolers in CO2 Automotive Air-Conditioning Systems
by Shehryar Ishaque, Naveed Ullah and Man-Hoe Kim
Energies 2024, 17(20), 5086; https://doi.org/10.3390/en17205086 - 13 Oct 2024
Cited by 1 | Viewed by 1488
Abstract
The automotive industry is increasingly focused on developing more energy-efficient and eco-friendly air-conditioning systems. In this context, CO2 microchannel gas coolers (MCGCs) have emerged as promising alternatives due to their low global warming potential (GWP) and environmental benefits. This paper explores the [...] Read more.
The automotive industry is increasingly focused on developing more energy-efficient and eco-friendly air-conditioning systems. In this context, CO2 microchannel gas coolers (MCGCs) have emerged as promising alternatives due to their low global warming potential (GWP) and environmental benefits. This paper explores the application of machine learning (ML) algorithms to predict the thermohydraulic performance of MCGCs in automotive air-conditioning systems. Using data generated from an experimentally validated numerical model, this study compares various ML techniques, including both linear and nonlinear regression models, to forecast key performance metrics such as refrigerant outlet temperature, pressure drop, and heat transfer rate. Spearman’s correlation was employed to develop performance maps, whereas the R2 and MSE metrics were used to evaluate the models’ predictive accuracy. The linear models gave around 70% forecasting accuracy for pressure drop across the gas cooler and 97% accuracy for refrigerant outlet temperature, whereas the nonlinear models achieved more accurate predictions, with an accuracy ranging from 71% to 99%. This implies that nonlinear regression generally performs better than linear regression models in assessing the overall thermohydraulic performance of microchannel gas coolers. This research brings forth new ideas on how ML methods can be applied to enhance efficiency and effectiveness in gas coolers, contributing to the development of more eco-friendly automotive air-conditioning systems. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

22 pages, 7958 KiB  
Article
THC Modelling of Bentonite Barrier of Geological Repository in Granite and Its Impact on Long-Term Safety
by Asta Narkuniene, Dalia Grigaliuniene and Gintautas Poskas
Appl. Sci. 2024, 14(17), 7851; https://doi.org/10.3390/app14177851 - 4 Sep 2024
Cited by 2 | Viewed by 3191
Abstract
As in any other industry, nuclear energy results in the accumulation of some waste, which needs to be managed safely and responsibly due to its radiotoxicity. In the case of highly radioactive waste, geological disposal in stable rock is considered a broadly accepted [...] Read more.
As in any other industry, nuclear energy results in the accumulation of some waste, which needs to be managed safely and responsibly due to its radiotoxicity. In the case of highly radioactive waste, geological disposal in stable rock is considered a broadly accepted solution. For the evaluation of the long-term safety of a geological repository, the assessment of radionuclide transport needs to be carried out. Radionuclide transport through engineered and natural barriers of the repository will highly depend on the barriers’ transport-related properties, which will be determined by coupled thermal, hydraulic, chemical, mechanical, biological, and radiation processes taking place in those barriers. In this study, the thermo-hydro-chemical (THC) state of bentonite was analysed considering CO2 gas diffusion and temperature-dependent solubility in water. Reactive transport modelling of bentonite under non-isothermal conditions was performed with the COMSOL Multiphysics software (v6.0), coupled with the geochemical solver Phreeqc via the iCP interface. The modelling demonstrated that the consideration of chemical processes in bentonite had no significant influence on non-reactive Cl transport; however, it would be important for other radionuclides whose sorption in porous media depends on the porewater pH. Based on the modelling results, changes in the bentonite mineralogical composition and, subsequently, porosity depend on the partial CO2 pressure at the bentonite–granite boundary. In the case of low CO2 partial pressure at the bentonite–granite interface, the calcite dissolution led to a slight porosity increase, while higher CO2 partial pressure led to decreased porosity near the interface. Full article
Show Figures

Figure 1

Back to TopTop