Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (175)

Search Parameters:
Keywords = thermistors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 6882 KB  
Communication
Prediction of Nocturnal Foaling Using Ventral Tail Base Surface Temperature Recorded by a Wearable Device Attached to the Mare’s Tail
by Takahiro Aoki, Guilherme Violin, Tsumugi Jikihara, Makoto Shibata, Shogo Higaki, Tomomi Ozawa, Eri Furukawa and Koji Yoshioka
Animals 2026, 16(2), 199; https://doi.org/10.3390/ani16020199 - 9 Jan 2026
Viewed by 268
Abstract
It is known that a mare’s body temperature drops before parturition, but no research has yet applied this thermal change to the prediction of foaling. In this study, the ventral tail base surface temperature (VTB-ST) was recorded by a tail-attached device equipped with [...] Read more.
It is known that a mare’s body temperature drops before parturition, but no research has yet applied this thermal change to the prediction of foaling. In this study, the ventral tail base surface temperature (VTB-ST) was recorded by a tail-attached device equipped with a thermistor in pregnant mares kept in an outdoor paddock all day. The objective of the present study was to make an algorithm for predicting nocturnal foaling (18:00 to 6:00) and to verify the accuracy of the algorithm. Prediction of nocturnal foaling was performed at 15:00 every day. The foaling prediction model was validated using 147 days of data recorded from 22 mares. The sensitivity of the foaling prediction model proposed in this study was 68.2 to 81.8% and the precision was 51.4 to 62.5%. To our knowledge, the present study is the first one to establish an algorithm for predicting nocturnal foaling at a specific time interval using VTB-ST. Further study will be necessary to improve the foaling prediction model, as the accuracy of the algorithm proposed in this study was considered to be insufficient for practical use in stud farms. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

19 pages, 5378 KB  
Article
Deep Reinforcement Learning for Temperature Control of a Two-Way SMA-Actuated Tendon-Driven Gripper
by Phuoc Thien Do, Quang Ngoc Le, Hyeongmo Park, Hyunho Kim, Seungbo Shim, Kihan Park and Yeongjin Kim
Actuators 2026, 15(1), 37; https://doi.org/10.3390/act15010037 - 6 Jan 2026
Viewed by 340
Abstract
Shape Memory Alloy (SMA) actuators offer strong potential for compact, lightweight, silent, and compliant robotic grippers; however, their practical deployment is limited by the challenge of controlling nonlinear and hysteretic thermal dynamics. This paper presents a complete Sim-to-Real control framework for precise temperature [...] Read more.
Shape Memory Alloy (SMA) actuators offer strong potential for compact, lightweight, silent, and compliant robotic grippers; however, their practical deployment is limited by the challenge of controlling nonlinear and hysteretic thermal dynamics. This paper presents a complete Sim-to-Real control framework for precise temperature regulation of a tendon-driven SMA gripper using Deep Reinforcement Learning (DRL). A novel 12-action discrete control space is introduced, comprising 11 heating levels (0–100% PWM) and one active cooling action, enabling effective management of thermal inertia and environmental disturbances. The DRL agent is trained entirely in a calibrated thermo-mechanical simulation and deployed directly on physical hardware without real-world fine-tuning. Experimental results demonstrate accurate temperature tracking over a wide operating range (35–70 °C), achieving a mean steady-state error of approximately 0.26 °C below 50 °C and 0.41 °C at higher temperatures. Non-contact thermal imaging further confirms spatial temperature uniformity and the reliability of thermistor-based feedback. Finally, grasping experiments validate the practical effectiveness of the proposed controller, enabling reliable manipulation of delicate objects without crushing or slippage. These results demonstrate that the proposed DRL-based Sim-to-Real framework provides a robust and practical solution for high-precision SMA temperature control in soft robotic systems. Full article
(This article belongs to the Special Issue Actuation and Sensing of Intelligent Soft Robots)
Show Figures

Figure 1

15 pages, 4606 KB  
Article
A Study on the Evaluation of Ultrasonic Propagation Properties and Nonlinearity According to Temperature Changes of Aluminium Alloys for Each Aluminium Alloy by Temperature
by Junpil Park and Jaesun Lee
Sensors 2025, 25(24), 7494; https://doi.org/10.3390/s25247494 - 9 Dec 2025
Viewed by 428
Abstract
Aluminium alloys are widely used across various industrial sectors due to their suitability for enhancing structural safety and reducing weight, thereby improving operational efficiency. This study investigates the feasibility of using ultrasonic techniques as an alternative to thermistors for temperature monitoring in electric [...] Read more.
Aluminium alloys are widely used across various industrial sectors due to their suitability for enhancing structural safety and reducing weight, thereby improving operational efficiency. This study investigates the feasibility of using ultrasonic techniques as an alternative to thermistors for temperature monitoring in electric vehicle motors and batteries. The extent to which ultrasonic maximum amplitude and propagation velocity are temperature-dependent was examined, and the material nonlinearity was analyzed. Step-wedge specimens of Al3003, Al6061, and Al6063—commonly used in electric vehicle components—were fabricated with thicknesses of 4, 6, 8, 10, and 12 mm to examine thickness-dependent behavior. Although the three alloys differ in composition and mechanical properties, their ultrasonic propagation characteristics were found to be highly similar. As temperature increased, ultrasonic attenuation increased while propagation velocity decreased. For intact specimens, nonlinearity increased with temperature. However, the variation remained constant beyond a certain temperature range. In contrast, tensile-fatigued specimens showed increased nonlinearity with fatigue cycles, and the variation decreased at elevated temperatures, producing a more pronounced nonlinear response. These findings suggest that ultrasonic techniques may provide a cost-effective solution for temperature measurement and defect diagnosis, potentially replacing high-cost thermistors currently used in electric vehicles. Full article
(This article belongs to the Special Issue Acoustic Sensing for Condition Monitoring)
Show Figures

Figure 1

15 pages, 4162 KB  
Article
Development of a Heating Block as an Aid for the DNA-Based Biosensing of Plant Pathogens
by Bertrand Michael L. Diola, Adrian A. Borja, Paolo Rommel P. Sanchez, Marynold V. Purificacion and Ralph Kristoffer B. Gallegos
Inventions 2025, 10(6), 94; https://doi.org/10.3390/inventions10060094 - 26 Oct 2025
Viewed by 1040
Abstract
Deoxyribonucleic acid (DNA)-based biosensors are rapid, cost-effective, and portable devices for monitoring crop pathogens. However, their on-field operations rely on a laboratory-bound heating block, which controls temperature during sample preparation. This study aimed to develop a field-deployable heating block to assist in the [...] Read more.
Deoxyribonucleic acid (DNA)-based biosensors are rapid, cost-effective, and portable devices for monitoring crop pathogens. However, their on-field operations rely on a laboratory-bound heating block, which controls temperature during sample preparation. This study aimed to develop a field-deployable heating block to assist in the DNA hybridization protocol of DNA-based biosensors. It should maintain 95 °C, 55 °C, and 20 °C for 5, 10, and 5 min, respectively. It had aluminum bars, positive thermal coefficient ceramic heaters, a Peltier thermoelectric module, and DS18B20 thermistors, serving twelve 0.2 mL polymerase chain reaction (PCR) tubes. An Arduino microcontroller employing a proportional–integral–derivative (PID) algorithm with a solid-state relay was utilized. Machine performance for distilled water-filled PCR tubes showed a maximum 10 °C thermal variation. The machine maintained (96.00±0.97) °C, (55.15±2.17) °C, and (17.75±0.71) °C with root mean square errors (RMSEs) of 1.40 °C, 2.18 °C, and 2.36 °C, respectively. The average thermal rates were (0.16±0.11) °C/s, (0.29±0.11) °C/s, and (0.14±0.07) °C/s from ambient to 95 °C, 95 °C to 55 °C, and 55 °C to 20 °C, respectively. Overall, the low standard deviations and RMSEs demonstrate thermostable results and robust temperature control. Full article
Show Figures

Figure 1

22 pages, 3906 KB  
Article
Design of a Modularized IoT Multi-Functional Sensing System and Data Pipeline for Digital Twin-Oriented Real-Time Aircraft Structural Health Monitoring
by Shengkai Guo, Andrew West, Jan Papuga, Stephanos Theodossiades and Jingjing Jiang
Sensors 2025, 25(21), 6531; https://doi.org/10.3390/s25216531 - 23 Oct 2025
Viewed by 1103
Abstract
A modular, multi-functional (encompassing data acquisition, management, preprocessing, and transmission) sensing (MMFS) system based upon the Internet of Things (IoT) paradigm is discussed in this paper with the goal of continuous real-time, multi-sensor and multi-location monitoring of aircraft (including drones) structural performances during [...] Read more.
A modular, multi-functional (encompassing data acquisition, management, preprocessing, and transmission) sensing (MMFS) system based upon the Internet of Things (IoT) paradigm is discussed in this paper with the goal of continuous real-time, multi-sensor and multi-location monitoring of aircraft (including drones) structural performances during flight. According to industrial and system requirements, a microcontroller and four sensors (strain, acceleration, vibration, and temperature) were selected and integrated into the system. To enable the determination of potential in-flight failures and estimates of the remaining useful service life of the aircraft, resistance strain gauge networks, piezoelectric sensors for capturing structural vibrations and impact, accelerometers, and thermistors have been integrated into the MMFS system. Real flight tests with Evektor’s Cobra VUT100i and SportStar RTC aircraft have been undertaken to demonstrate the features of recorded data and provide requirements for the MMFS functional design. Real flight test data were analysed, indicating that a sampling rate of 1000 Hz is necessary to balance representation of relevant features within the data and potential loss of quality in fatigue life estimation. The design and evaluation of the performance of a prototype (evaluated via representative stress/strain experiments using an Instron Hydraulic 250 kN machine within laboratories) are detailed in this paper. Full article
Show Figures

Figure 1

12 pages, 3612 KB  
Article
A Broad-Temperature-Range Wavelength Tracking System Employing a Thermistor Monitoring Circuit and a Tunable Optical Filter
by Ju Wang, Manyun Liu, Hao Luo, Xuemin Su, Chuang Ma and Jinlong Yu
Photonics 2025, 12(10), 1038; https://doi.org/10.3390/photonics12101038 - 21 Oct 2025
Viewed by 423
Abstract
A broad-temperature-range wavelength tracking system employing a thermistor monitoring circuit and a tunable optical filter is proposed and experimentally demonstrated. In this scheme, a thermistor monitoring circuit is utilized to acquire the real-time resistance values of a distributed feedback laser diode (DFB-LD). When [...] Read more.
A broad-temperature-range wavelength tracking system employing a thermistor monitoring circuit and a tunable optical filter is proposed and experimentally demonstrated. In this scheme, a thermistor monitoring circuit is utilized to acquire the real-time resistance values of a distributed feedback laser diode (DFB-LD). When the mapping relationship curve among thermistor resistance, temperature, and center wavelength of the DFB-LD is established, the drive voltage of the narrowband tunable optical filter is dynamically adjusted to regulate its filter window. Therefore, wavelength tracking is achieved by matching the filter window and the center wavelength of the DFB-LD. The experimental results show that the proposed system can achieve adaptive wavelength tracking within the operation band of 1539.4 nm to 1548.6 nm across a temperature range from −40 °C to 60 °C. The wavelength detection resolution and the minimum step of wavelength control are better than 0.79 pm and 0.1 nm, respectively. By exploiting the conversion characteristics between the thermistor and the center wavelength of the DFB-LD, this approach transforms laser wavelength detection into a low-cost, real-time electrical measurement, significantly enhancing transmission stability and reliability of laser sources in complex thermal environments. Full article
(This article belongs to the Special Issue Microwave Photonics: Advances and Applications)
Show Figures

Figure 1

12 pages, 7227 KB  
Article
High-Resolution Interferometric Temperature Sensor Based on Two DFB Fiber Lasers with High-Temperature Monitoring Potential
by Mikhail I. Skvortsov, Kseniya V. Kolosova, Alexander V. Dostovalov, Evgeniy V. Golikov, Alexander A. Vlasov, Sofia R. Abdullina, Andrey A. Rybaltovsky, Denis S. Lipatov, Aleksey S. Lobanov, Mikhail E. Likhachev, Olga N. Egorova and Sergey A. Babin
Photonics 2025, 12(10), 1019; https://doi.org/10.3390/photonics12101019 - 15 Oct 2025
Viewed by 536
Abstract
A high-resolution temperature sensor using the beat frequency measurement between the modes of two DFB fiber lasers is presented. The laser cavities are formed by the femtosecond inscription technique in a highly Er/Yb co-doped phosphosilicate fiber with low optical losses and compact design. [...] Read more.
A high-resolution temperature sensor using the beat frequency measurement between the modes of two DFB fiber lasers is presented. The laser cavities are formed by the femtosecond inscription technique in a highly Er/Yb co-doped phosphosilicate fiber with low optical losses and compact design. The experimental results show a sensitivity of 1 GHz/°C, leading to a temperature resolution of 0.02 °C restricted by the thermistor used in the experiment. The maximum possible resolution determined by the laser linewidth is estimated as 2 × 10−6 °C. The operation of such a sensor at high temperatures (≈750 °C) with the possibility of further temperature increase is demonstrated. The combination of high resolution and broad temperature range makes the sensor attractive for various applications, especially in high-temperature monitoring. Full article
(This article belongs to the Special Issue Recent Advances in Fiber Laser Technology)
Show Figures

Figure 1

19 pages, 4201 KB  
Article
Implementation of an SS-Compensated LC-Thermistor Topology for Passive Wireless Temperature Sensing
by Seyit Ahmet Sis and Yeliz Dikerler Kozar
Sensors 2025, 25(20), 6316; https://doi.org/10.3390/s25206316 - 13 Oct 2025
Cited by 1 | Viewed by 693
Abstract
This paper presents a passive wireless temperature sensor based on an SS-compensated LC-thermistor topology. The system consists of two magnetically coupled LC tanks—each composed of a coil and a series capacitor—forming a series–series (SS) compensation network. The secondary side includes a negative temperature [...] Read more.
This paper presents a passive wireless temperature sensor based on an SS-compensated LC-thermistor topology. The system consists of two magnetically coupled LC tanks—each composed of a coil and a series capacitor—forming a series–series (SS) compensation network. The secondary side includes a negative temperature coefficient (NTC) thermistor connected in series with its coil and capacitor, acting as a temperature-dependent load. Magnetically coupled resonant systems exhibit different coupling regimes: weak, critical, and strong. When operating in the strongly coupled regime, the original resonance splits into two distinct frequencies—a phenomenon known as bifurcation. At these split resonance frequencies, the load impedance on the secondary side is reflected as pure resistance at the primary side. In the SS topology, this reflected resistance is equal to the thermistor resistance, enabling precise wireless sensing. The advantage of the SS-compensated configuration lies in its ability to map changes in the thermistor’s resistance directly to the input impedance seen by the reader circuit. As a result, the sensor can wirelessly monitor temperature variations by simply tracking the input impedance at split resonance points. We experimentally validate this property on a benchtop prototype using a one-port VNA measurement, demonstrating that the input resistance at both split frequencies closely matches the expected thermistor resistance, with the observed agreement influenced by the parasitic effects of RF components within the tested temperature range. We also demonstrate that using the average readout provides first-order immunity to small capacitor drift, yielding stable readings. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

19 pages, 3165 KB  
Article
A Sensor for Multi-Point Temperature Monitoring in Underground Power Cables
by Pedro Navarrete-Rajadel, Pedro Llovera-Segovia, Vicente Fuster-Roig and Alfredo Quijano-López
Sensors 2025, 25(17), 5490; https://doi.org/10.3390/s25175490 - 3 Sep 2025
Viewed by 1771
Abstract
Underground electrical conductors, both medium-and high-voltage, play a crucial role in energy infrastructure. However, they present a maintenance challenge due to their difficult access. Unlike overhead installations, these cables remain hidden, making it harder to obtain key parameters, such as their temperature or [...] Read more.
Underground electrical conductors, both medium-and high-voltage, play a crucial role in energy infrastructure. However, they present a maintenance challenge due to their difficult access. Unlike overhead installations, these cables remain hidden, making it harder to obtain key parameters, such as their temperature or structural condition, in a simple manner. Current temperature measurement methods, including fiber-optic-based systems (DTS and LTS), involve high costs that limit their feasibility in medium-voltage networks, where more economically accessible alternatives are required. This study introduces an alternative system for monitoring the temperature of underground cables using NTC thermistors. Its design allows for reducing the number of connection conductors for sensors to just four regardless of the number of measurement points. The implemented measurement technique is based on the sequential activation of sensors and the integration of the recorded current to achieve an accurate thermal assessment. The tests conducted validate that this proposal represents an efficient, cost-effective, and highly scalable solution for implementation in electrical distribution networks. Full article
Show Figures

Figure 1

12 pages, 1211 KB  
Article
Dynamic Thermal Voltage Adaptation for LED Branches in Automotive Applications
by Jose R. Martínez-Pérez, Miguel A. Carvajal, Juan J. Santaella, Pablo Escobedo, Nuria López-Ruiz and Antonio Martínez-Olmos
Sensors 2025, 25(17), 5392; https://doi.org/10.3390/s25175392 - 1 Sep 2025
Viewed by 789
Abstract
This paper presents a novel technique for thermally compensating the power output of a DC-DC converter that supplies automotive lighting/signaling systems with multiple LED branches. The method ensures stable bias voltage for the current drivers controlling each branch, maintaining consistent power consumption across [...] Read more.
This paper presents a novel technique for thermally compensating the power output of a DC-DC converter that supplies automotive lighting/signaling systems with multiple LED branches. The method ensures stable bias voltage for the current drivers controlling each branch, maintaining consistent power consumption across a wide temperature range. This issue has been minimally addressed in existing literature, providing few solutions which are too complex for industrial production. The approach proposed is simple and involves incorporating a temperature-sensitive thermistor into the DC-DC converter’s control loop, enabling the output voltage to adjust with ambient temperature. Different control loop configurations are explored, demonstrating that a simple resistor-thermistor network can approximate the desired voltage response under diverse thermal conditions. The power dissipated in the current drivers is kept within a controlled range, improving system efficiency and reducing heat loss. Additionally, it minimizes the need for additional current drivers, lowering the cost of these systems, improving battery life of the DC-DC converter, and decreasing CO2 emissions. For the case studies analyzed, an optimized configuration with appropriate resistor values and thermistor models achieves a 75% relative reduction in power dissipation by the current driver and a 50% improvement in the relative efficiency of the LED branch system. Full article
Show Figures

Figure 1

46 pages, 7349 KB  
Review
Convergence of Thermistor Materials and Focal Plane Arrays in Uncooled Microbolometers: Trends and Perspectives
by Bo Wang, Xuewei Zhao, Tianyu Dong, Ben Li, Fan Zhang, Jiale Su, Yuhui Ren, Xiangliang Duan, Hongxiao Lin, Yuanhao Miao and Henry H. Radamson
Nanomaterials 2025, 15(17), 1316; https://doi.org/10.3390/nano15171316 - 27 Aug 2025
Cited by 1 | Viewed by 2189
Abstract
Uncooled microbolometers play a pivotal role in infrared detection owing to their compactness, low power consumption, and cost-effectiveness. This review comprehensively summarizes recent progress in thermistor materials and focal plane arrays (FPAs), highlighting improvements in sensitivity and integration. Vanadium oxide (VOx) [...] Read more.
Uncooled microbolometers play a pivotal role in infrared detection owing to their compactness, low power consumption, and cost-effectiveness. This review comprehensively summarizes recent progress in thermistor materials and focal plane arrays (FPAs), highlighting improvements in sensitivity and integration. Vanadium oxide (VOx) remains predominant, with Al-doped films via atomic layer deposition (ALD) achieving a temperature coefficient of resistance (TCR) of −4.2%/K and significant 1/f noise reduction when combined with single-walled carbon nanotubes (SWCNTs). Silicon-based materials, such as phosphorus-doped hydrogenated amorphous silicon (α-Si:H), exhibit a TCR exceeding −5%/K, while titanium oxide (TiOx) attains TCR values up to −7.2%/K through ALD and annealing. Emerging materials including GeSn alloys and semiconducting SWCNT networks show promise, with SWCNTs achieving a TCR of −6.5%/K and noise equivalent power (NEP) as low as 1.2 mW/√Hz. Advances in FPA technology feature pixel pitches reduced to 6 μm enabled by vertical nanotube thermal isolation, alongside the 3D heterogeneous integration of single-crystalline Si-based materials with readout circuits, yielding improved fill factors and responsivity. State-of-the-art VOx-based FPAs demonstrate noise equivalent temperature differences (NETD) below 30 mK and specific detectivity (D*) near 2 × 1010 cm⋅Hz 1/2/W. Future advancements will leverage materials-driven innovation (e.g., GeSn/SWCNT composites) and process optimization (e.g., plasma-enhanced ALD) to enable ultra-high-resolution imaging in both civil and military applications. This review underscores the central role of material innovation and system optimization in propelling microbolometer technology toward ultra-high resolution, high sensitivity, high reliability, and broad applicability. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

24 pages, 4967 KB  
Article
Thermal Field Reconstruction on Microcontrollers: A Physics-Informed Digital Twin Using Laplace Equation and Real-Time Sensor Data
by Victor H. Benitez, Jesus Pacheco and Agustín Brau
Sensors 2025, 25(16), 5130; https://doi.org/10.3390/s25165130 - 19 Aug 2025
Viewed by 1948
Abstract
This paper presents a physics-informed digital twin designed for real-time thermal monitoring and visualization of a metallic plate. The system comprises a physical layer consisting of an aluminum plate equipped with thermistors to capture boundary conditions, a computational layer that implements the steady-state [...] Read more.
This paper presents a physics-informed digital twin designed for real-time thermal monitoring and visualization of a metallic plate. The system comprises a physical layer consisting of an aluminum plate equipped with thermistors to capture boundary conditions, a computational layer that implements the steady-state Laplace equation using the finite difference method, and an embedded execution framework deployed on a microcontroller that utilizes Direct Memory Access-driven ADC for efficient concurrent acquisition. The computed thermal field is transmitted through a serial interface and displayed in real time using a Python-based visualization interface. The Steinhart–Hart model was used to experimentally characterize the sensors, ensuring accuracy in the boundary condition acquisition. While the current formulation is restricted to steady-state conditions, it enables accurate spatial reconstructions with acceptable error margins and demonstrates operational concurrency with the physical system. The compact and modular architecture allows adaptation to other physical domains governed by elliptic PDEs, making it suitable for educational applications, diagnostic prototyping, and embedded edge deployments. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

16 pages, 8246 KB  
Article
Design and Analysis of Thermistors in Low Temperature Cofired Ceramics
by Camilla Kärnfelt and Maïna Sinou
Ceramics 2025, 8(3), 103; https://doi.org/10.3390/ceramics8030103 - 7 Aug 2025
Viewed by 638
Abstract
In this work we investigate the integration possibility of a thermistor paste from ESL (ElectroScience Laboratory, now Vibrantz) to see if it is adapted for Vibrantz Low Temperature Cofired Ceramics (LTCC) L8 and A6M-E materials. An alumina-based sample is used as a reference [...] Read more.
In this work we investigate the integration possibility of a thermistor paste from ESL (ElectroScience Laboratory, now Vibrantz) to see if it is adapted for Vibrantz Low Temperature Cofired Ceramics (LTCC) L8 and A6M-E materials. An alumina-based sample is used as a reference circuit throughout this study. Square, two-squares-in-parallel and two-squares-in-series thermistors are tested, placed internally and externally. Resistive values are measured in a range from 25 °C to 300 °C. The variation in the resistive values among similar thermistors is significant, with a maximum standard deviation of 67%. However, in all cases, there is a positive linear relationship between resistance and temperature. The Temperature Coefficient of Resistance (TCR) value is calculated before and after annealing. In general, the L8 and Al2O3 samples exhibit higher TCR values than the A6M-E sample. Additionally, when placed internally, the TCR value decreases approximately 30% for both tested LTCC materials. An Energy-Dispersive X-ray Spectroscopy (EDX) material analysis has also been conducted on the samples, revealing that the main chemical components are oxide, silicon, calcium, and ruthenium but also some barium and titanium, which indicates SiO2, TiO2, BaTiO3 and RuO2 oxides in the thermistor paste. The possibility to implement thermistors internally and externally on Vibrantz LTCC without delamination problems is endorsed by this study. Full article
Show Figures

Graphical abstract

22 pages, 7169 KB  
Article
Thermodielectric Properties of Polyurethane Composites with Aluminium Nitride and Wurtzite Boron Nitride Microfillers: Analysis Below and near Percolation Threshold
by Alexey Gunya, Jozef Kúdelčík, Štefan Hardoň and Marián Janek
Sensors 2025, 25(13), 4055; https://doi.org/10.3390/s25134055 - 29 Jun 2025
Viewed by 910
Abstract
This study explores microcomposites’ thermodielectric properties—thermal conductivity (keff) and dielectric permittivity (εr)—across filler concentrations from 1 wt% (φ0.0035) to 60 wt% (φ0.45) spanning the pre- (φ<0.16 [...] Read more.
This study explores microcomposites’ thermodielectric properties—thermal conductivity (keff) and dielectric permittivity (εr)—across filler concentrations from 1 wt% (φ0.0035) to 60 wt% (φ0.45) spanning the pre- (φ<0.16) and within-percolation threshold (0.16φ0.29). Thermal measurements were conducted using a newly designed, cost-effective thermal measurement setup. The setup utilised a transient heat pulse methodology with a heater and NTC thermistors, with a precision better than ±0.01m1·K1. Dielectric properties were measured using a three-electrode system over a broad frequency and temperature range. The measurements demonstrate an effective thermal conductivity keff of 0.72 W·m1·K1 for AlN at φ=0.36 and 0.65 W·m1·K1 for wBN already at φ=0.12. Although theoretical models suggest that, considering interfacial Kapitza resistance, it can yield a keff corresponding to approximately 1–3% of the conductivity of pure material filler, the experimental measurements indicate a maximum of around 0.5%. Dielectric measurements show that in comparison to pure polyurethane, the presence of 60% AlN or 40% wBN at 60 °C decreased the loss tangent by 20 times in the condition of a quasistatic electric field. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

14 pages, 1661 KB  
Article
Investigating the Reliability and Dynamic Response of Fully 3D-Printed Thermistors
by Umur Cicek, Darren Southee and Andrew Johnson
Appl. Sci. 2025, 15(12), 6822; https://doi.org/10.3390/app15126822 - 17 Jun 2025
Cited by 3 | Viewed by 1079
Abstract
This paper investigates the measurement capability, dynamic response, and mechanical reliability of all 3D-printed multi-material thermistors. The thermistor design consisted of three main components: a polycarbonate (PC) substrate, a silver (Ag) electrode pair, and a poly(3,4-ethylenedioxythophene):poly(4-styrenesulfonate) (PEDOT:PSS) thermosensitive layer. The thermistors were fabricated [...] Read more.
This paper investigates the measurement capability, dynamic response, and mechanical reliability of all 3D-printed multi-material thermistors. The thermistor design consisted of three main components: a polycarbonate (PC) substrate, a silver (Ag) electrode pair, and a poly(3,4-ethylenedioxythophene):poly(4-styrenesulfonate) (PEDOT:PSS) thermosensitive layer. The thermistors were fabricated using two manufacturing techniques: fused deposition modeling (FDM) for the substrate and micro-dispensing for the Ag and PEDOT:PSS films. Two designs with different sensing areas, D1 (90 mm2) and D2 (54 mm2), were fabricated. As the indicator of measurement capability, the highest thermal indexes were recorded as 905.64 and 813.03 K for D1 and D2 thermistors, respectively. Thermistors exhibited comparable dynamic performance, with normalized resistance variations ranging from 0.96 to 1 for temperature changes between 25 and 45 °C. The sensing area influenced both measurement capability and dynamic performance, where larger sensing areas enhanced measurement capability but extended the time required to complete dynamic cycles, around 400 s for D1 versus 350 s for D2. Adhesion tests revealed a strong bonding between the PEDOT:PSS and Ag layer with less than 5% material removal. However, the adhesion of the PEDOT:PSS to the PC substrate was weak, with over 65% material removal. Morphological analysis indicated that the poor adhesion was caused by suboptimal surface properties of the 3D-printed substrate, even resulting in gaps between these two surfaces. This study demonstrates that our all 3D-printed multi-material thermistors can match reported measurement performance with an acceptable dynamic performance while highlighting the need to improve 3D-printed substrate surface properties to enhance the performance of such multi-material structures. Full article
Show Figures

Figure 1

Back to TopTop