Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (500)

Search Parameters:
Keywords = thermal safety characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2474 KB  
Article
Simulation-Based Analysis of the Heating Behavior of Failed Bypass Diodes in Photovoltaic-Module Strings
by Ibuki Kitamura, Ikuo Nanno, Norio Ishikura, Masayuki Fujii, Shinichiro Oke and Toshiyuki Hamada
Energies 2026, 19(2), 472; https://doi.org/10.3390/en19020472 (registering DOI) - 17 Jan 2026
Abstract
With the expansion of photovoltaic (PV) systems, failures of bypass diodes (BPDs) embedded in PV modules can degrade the power-generation performance and pose safety risks. When a BPD fails, current circulates within the module, leading to overheating and eventual burnout of the failed [...] Read more.
With the expansion of photovoltaic (PV) systems, failures of bypass diodes (BPDs) embedded in PV modules can degrade the power-generation performance and pose safety risks. When a BPD fails, current circulates within the module, leading to overheating and eventual burnout of the failed BPD. The heating characteristics of a BPD depend on its fault resistance, and although many modules are connected in series in actual PV systems, the heating risk at the module-string level has not been sufficiently evaluated to date. In this study, a numerical simulation model is constructed to reproduce the operation of PV modules and module strings containing failed BPDs, and its validity is verified through experiments. The validated numerical simulation results quantitatively illustrate how series-connected PV modules modify the fault-resistance dependence of BPD heating under maximum power-point operation. The results show that, under maximum power-point operation, the fault resistance at which BPD heating becomes critical shifts depending on the number of series-connected modules examined, while the magnitude of the maximum heating decreases as the string length increases. The heat generated in a BPD at the maximum power point decreases as the number of series-connected modules increases for the representative string configurations analyzed. However, under open-circuit conditions due to power-conditioner abnormalities, the power dissipated in the failed BPD increases significantly, posing a very high risk of burnout. Considering that lightning strikes are one of the major causes of BPD failure, adopting diodes with higher voltage and current ratings and improving the thermal design of junction boxes are effective measures to reduce BPD failures. The simulation model constructed in this study, which was experimentally validated for short PV strings, can reproduce the electrical characteristics and heating behaviors of PV modules and strings with BPD failures with accuracy sufficient for comparative and parametric trend analysis, and serves as a practical tool for system-level safety assessment, design considerations, and maintenance planning within the representative configurations analyzed. Full article
Show Figures

Figure 1

14 pages, 2317 KB  
Article
Shrimp-Derived Chitosan for the Formulation of Active Films with Mexican Propolis: Physicochemical and Functional Evaluation of the Biomaterial
by Alejandra Delgado-Lozano, Pedro Alberto Ledesma-Prado, César Leyva-Porras, Lydia Paulina Loya-Hernández, César Iván Romo-Sáenz, Carlos Arzate-Quintana, Manuel Román-Aguirre, María Alejandra Favila-Pérez, Alva Rocío Castillo-González and Celia María Quiñonez-Flores
Coatings 2026, 16(1), 124; https://doi.org/10.3390/coatings16010124 (registering DOI) - 17 Jan 2026
Abstract
The development of functional biomaterials based on natural polymers has gained increasing relevance due to the growing demand for sustainable and bioactive alternatives for biomedical and technological applications. In this study, chitosan was obtained from shrimp exoskeletons and used to formulate active films [...] Read more.
The development of functional biomaterials based on natural polymers has gained increasing relevance due to the growing demand for sustainable and bioactive alternatives for biomedical and technological applications. In this study, chitosan was obtained from shrimp exoskeletons and used to formulate active films enriched with Mexican propolis, aiming to evaluate the influence of the extract on the physicochemical and functional properties of the resulting biomaterial. Propolis was incorporated into the chitosan film-forming solution at a final concentration of 1.0% (v/v). The propolis employed met the requirements of the Mexican Official Standard NOM-003-SAG/GAN-2017 regarding flavonoid content, total phenolic compounds, and antimicrobial activity; additionally, it was evaluated through antioxidant activity, hemolysis, and acute toxicity (LD50) assays to provide a broader biological and safety assessment. The extracted chitosan exhibited a degree of deacetylation of 74% and characteristic FTIR spectral features comparable to those of commercial chitosan, confirming the quality of the obtained polymer. Chitosan–propolis films exhibited antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans, whereas pure chitosan films showed no inhibitory effect. Thermal analyses (TGA/DSC) revealed a slight reduction in thermal stability due to the incorporation of thermolabile polyphenolic compounds, along with increased thermal complexity of the system. SEM observations demonstrated reduced microbial adhesion and marked morphological damage in microorganisms exposed to the functionalized films. Overall, the incorporation of Mexican propolis enabled the development of a hybrid biomaterial with enhanced antimicrobial performance and potential application in wound dressings and bioactive coatings. Full article
(This article belongs to the Special Issue Coatings with Natural Products)
Show Figures

Graphical abstract

17 pages, 1703 KB  
Article
β-Cyclodextrin Inclusion Complexes of Cinnamomum camphora Essential Oil: A Comparative Study on Encapsulation Strategies, Physicochemical Stability, and Cytotoxic Profile
by José Adão Carvalho Nascimento Júnior, Anamaria Mendonça Santos, Ana Maria Santos Oliveira, Cláudio Carvalho Santana Júnior, Saravanan Shanmugam, Antonella Osses Toledo, Natalia Juica, Mikele Cândida Sousa de Sant’Anna, Adriano Antunes de Souza Araújo, Luis Constandil, Jeffri S. Retamal and Mairim Russo Serafini
Pharmaceutics 2026, 18(1), 117; https://doi.org/10.3390/pharmaceutics18010117 - 16 Jan 2026
Abstract
Background/Objectives: Essential oils (EOs) from plants of the genus Cinnamomum have been widely used based on their antimicrobial, antioxidant, and anti-inflammatory properties. However, their elevated volatility and limited aqueous solubility restrict their use in pharmaceutical and food formulations. Cyclodextrins (CDs) have emerged [...] Read more.
Background/Objectives: Essential oils (EOs) from plants of the genus Cinnamomum have been widely used based on their antimicrobial, antioxidant, and anti-inflammatory properties. However, their elevated volatility and limited aqueous solubility restrict their use in pharmaceutical and food formulations. Cyclodextrins (CDs) have emerged as a promising strategy to overcome these limitations through the formation of inclusion complexes. Methods: In this study, inclusion complexes of essential oil from C. camphora L. (EOCNM) with β-cyclodextrin (β-CD) were developed using physical mixing (PM), ultrasonic treatment (US), and freeze-drying (FD). The inclusion complexes were physicochemically characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TG/DTG), X-ray diffraction (XRD), and scanning electron microscopy (SEM) to evaluate their physicochemical interactions and complexation efficiency. Results: Our results demonstrated successful complex formation, with the FD and US methods showing greater amorphization and stronger inclusion characteristics compared to the PM method. Thermal analysis confirmed improved physicochemical stability of the essential oil when complexed with β-CD. Furthermore, the cytotoxicity assay of the complexes was assessed using the MTT assay and J774 macrophage cells. The complexes exhibited low cytotoxicity, indicating their potential biocompatibility for biomedical and food applications. Conclusions: Overall, β-CD encapsulation effectively enhanced the physicochemical stability and safety profile of C. camphora essential oil, providing a promising strategy for its controlled delivery and protection against degradation. Full article
(This article belongs to the Special Issue Advanced Drug Delivery Systems for Natural Products)
Show Figures

Graphical abstract

18 pages, 2109 KB  
Article
Considering the Effects of Temperature on FRP–Steel Hybrid Sucker-Rod String Design
by Xin Lu, Zhisheng Xing, Xingyuan Liang, Zhuangzhuang Zhang, Guoqing Han, Peidong Mai and Shuping Chang
Processes 2026, 14(2), 305; https://doi.org/10.3390/pr14020305 - 15 Jan 2026
Viewed by 37
Abstract
With the continuous increase in well depth and the gradual depletion of formation energy, the pump-setting depths in rod-pumped wells have increased significantly, leading to higher suspension loads at the pumping unit. The application of glass fiber-reinforced plastic (FRP) sucker rods can effectively [...] Read more.
With the continuous increase in well depth and the gradual depletion of formation energy, the pump-setting depths in rod-pumped wells have increased significantly, leading to higher suspension loads at the pumping unit. The application of glass fiber-reinforced plastic (FRP) sucker rods can effectively reduce suspension loads due to their low density and high tensile strength. However, the mechanical performance of FRP rods is highly sensitive to temperature, which poses challenges for their application in deep and high-temperature wells. In FRP–steel hybrid sucker-rod string design, the influence of temperature—particularly on FRP rods—must therefore be carefully considered to prevent failures such as rod parting or coupling separation. This study systematically investigates the effects of temperature on the mechanical properties of FRP sucker rods, including elastic modulus, flexural shear strength, and tensile strength. Based on the operating characteristics of sucker-rod pumping systems and established design criteria, a temperature-aware design methodology for FRP–steel hybrid rod strings is developed and implemented in dedicated design software. The proposed approach enables rational determination of the FRP–steel partition depth under thermal constraints while satisfying mechanical safety requirements. A field case study is conducted to validate the design results, demonstrating that the software provides reliable and practical guidance for hybrid rod-string design in deep wells. Full article
Show Figures

Figure 1

24 pages, 6799 KB  
Review
Review on Gas Production Patterns, Flammability, and Detection Methods of Hydrogen-Containing Flammable Gases During Thermal Runaway Process in Lithium-Ion Batteries
by Chenglong Wei, Yuwu Cai, Jingjing Xu, Xinyi Zhao, Qiang Liao, Yuming Chen, Yong Cao and Bin Li
Energies 2026, 19(2), 398; https://doi.org/10.3390/en19020398 - 14 Jan 2026
Viewed by 98
Abstract
As the core technology of the new energy revolution, lithium-ion batteries have broad development prospects and significant strategic importance. With continuous improvements in energy density, enhanced safety, and breakthroughs in fast-charging technology, lithium-ion batteries will play a more substantial role in fields such [...] Read more.
As the core technology of the new energy revolution, lithium-ion batteries have broad development prospects and significant strategic importance. With continuous improvements in energy density, enhanced safety, and breakthroughs in fast-charging technology, lithium-ion batteries will play a more substantial role in fields such as new energy vehicles and energy storage. Nevertheless, the development of the lithium-ion battery industry still faces safety issues related to thermal runaway risks. The intense exothermic reactions during thermal runaway can release flammable gases, potentially leading to uncontrolled combustion or explosions, thereby posing major safety threats. This paper reviews the analysis of gas composition and patterns during lithium-ion battery thermal runaway under different conditions, as well as research on gas explosion characteristics. It introduces advanced methods for gas detection and suppression during thermal runaway and summarizes studies on the chemical kinetic mechanisms and predictive models of gas generation during thermal runaway. These studies provide a scientific basis for improving the reliability of renewable energy storage systems and formulating and refining battery safety standards. Full article
(This article belongs to the Special Issue Advances in Green Hydrogen Energy Production)
Show Figures

Figure 1

24 pages, 4587 KB  
Article
A Comprehensive Physicochemical Analysis Focusing on the Characterization and Stability of Valsartan Silver Nano-Conjugates
by Abdul Qadir, Khwaja Suleman Hasan, Khair Bux, Khwaja Ali Hasan, Aamir Jalil, Asad Khan Tanoli, Khwaja Akbar Hasan, Shahida Naz, Muhammad Kashif, Nuzhat Fatima Zaidi, Ayesha Khan, Zeeshan Vohra, Herwig Ralf and Shama Qaiser
Int. J. Mol. Sci. 2026, 27(2), 582; https://doi.org/10.3390/ijms27020582 - 6 Jan 2026
Viewed by 430
Abstract
Valsartan (Val)—a lipophilic non-peptide angiotensin II type 1 receptor antagonist—is highly effective against hypertension and displaying limited solubility in water (3.08 μg/mL), thereby resulting in low oral bioavailability (23%). The limited water solubility of antihypertensive drugs can pose a challenge, particularly for rapid [...] Read more.
Valsartan (Val)—a lipophilic non-peptide angiotensin II type 1 receptor antagonist—is highly effective against hypertension and displaying limited solubility in water (3.08 μg/mL), thereby resulting in low oral bioavailability (23%). The limited water solubility of antihypertensive drugs can pose a challenge, particularly for rapid and precise administration. Herein, we synthesize and characterize valsartan-containing silver nanoparticles (Val-AgNPs) using Mangifera indica leaf extracts. The physicochemical, structural, thermal, and pharmacological properties of these nano-conjugates were established through various analytical and structural tools. The spectral shifts in both UV-visible and FTIR analyses indicate a successful interaction between the valsartan molecule and the silver nanoparticles. The resulting nano-conjugates are spherical and within the size range of 30–60 nm as revealed in scanning electron-EDS and atomic force micrographs. The log-normal distribution of valsartan-loaded nanoparticles, with a size range of 30 to 60 nm and a mode of 54 nm, indicates a narrow, monodisperse, and highly uniform particle size distribution. This is a favorable characteristic for drug delivery systems, as it leads to enhanced bioavailability and a consistent performance. Dynamic Light Scattering (DLS) analysis of the Val-AgNPs indicates a polydisperse sample with a tendency toward aggregation, resulting in larger effective sizes in the suspension compared to individual nanoparticles. The accompanying decrease in zeta potential (to −19.5 mV) and conductivity further supports the idea that the surface chemistry and stability of the nanoparticles changed after conjugation. Differential scanning calorimetry (DSC) demonstrated the melting onset of the valsartan component at 113.99 °C. The size-dependent densification of the silver nanoparticles at 286.24 °C correspond to a size range of 40–60 nm, showing a significant melting point depression compared to bulk silver due to nanoscale effects. The shift in Rf for pure valsartan to Val-AgNPs suggests that the interaction with the AgNPs alters the compound’s overall polarity and/or its interaction with the stationary phase, complimented in HPTLC and HPLC analysis. The stability and offloading behavior of Val-AgNPs was observed at pH 6–10 and in 40% and 80% MeOH. In addition, Val-AgNPs did not reveal hemolysis or significant alterations in blood cell indices, confirming the safety of the nano-conjugates for biological application. In conclusion, these findings provide a comprehensive characterization of Val-AgNPs, highlighting their potential for improved drug delivery applications. Full article
Show Figures

Figure 1

18 pages, 4997 KB  
Article
Towards Enhanced Battery Thermal Safety: A Lightweight and Mechanically Robust Aerogel with Superior Insulation
by Yin Chen, Ruinan Sheng and Mingyi Chen
Gels 2026, 12(1), 54; https://doi.org/10.3390/gels12010054 - 5 Jan 2026
Viewed by 262
Abstract
With the continuous increase in energy density of lithium-ion batteries, thermal safety has become a critical constraint on their further development. To address the limitations of mechanical brittleness and high-temperature infrared transparency in SiO2 aerogels for thermal safety applications in lithium-ion batteries, [...] Read more.
With the continuous increase in energy density of lithium-ion batteries, thermal safety has become a critical constraint on their further development. To address the limitations of mechanical brittleness and high-temperature infrared transparency in SiO2 aerogels for thermal safety applications in lithium-ion batteries, this study developed a novel nanofiber aerogel composite by incorporating chitosan and MXene into a SiO2 aerogel matrix. This material retains the characteristics of being ultra-lightweight and highly elastic while significantly enhancing mechanical strength and high-temperature insulation performance. It exhibits a thermal conductivity of 0.034 W/m K at room temperature and 0.053 W/m K at 400 °C, alongside a compressive strength of 1.172 MPa. In battery thermal runaway propagation tests, the aerogel successfully prevented propagation in serially connected and electrically isolated systems, and delayed thermal runaway propagation by 35 s in a parallel system, demonstrating excellent thermal runaway suppression capability. This work provides an effective material solution for the practical application of high-performance thermal insulation aerogels in battery safety protection and offers inspiration for developing new insulating ceramic aerogels. Full article
Show Figures

Figure 1

18 pages, 3419 KB  
Article
A Phosphorus–Nitrogen Synergistic Flame Retardant for Enhanced Fire Safety of Polybutadiene
by Hongwu Zhang, Huafeng Wei, Heng Yue and Mingdong Yu
Polymers 2026, 18(1), 127; https://doi.org/10.3390/polym18010127 - 31 Dec 2025
Viewed by 387
Abstract
Polybutadiene has excellent mechanical properties and flexibility. It is widely used in elastomers and industrial fields. However, it has the characteristic of high flammability. The low LOI and rapid heat release upon ignition pose significant fire hazards. This results in a significant fire [...] Read more.
Polybutadiene has excellent mechanical properties and flexibility. It is widely used in elastomers and industrial fields. However, it has the characteristic of high flammability. The low LOI and rapid heat release upon ignition pose significant fire hazards. This results in a significant fire safety risk during service. Therefore, its application in some key fields has been restricted. In this study, polybutadiene with high-performance flame-retardant properties was developed by adding phosphorus–nitrogen synergistic flame retardants to address this challenge. This flame retardant mainly enhances its flame retardancy through the synergistic gas-phase and condensed-phase mechanisms. Dense and continuous carbon layers could be promoted by flame retardants during combustion. It provides an effective thermal barrier and oxygen barrier. In addition, phosphorus-containing volatiles can function by suppressing flame propagation via radical quenching in the gas phase. The modified polybutadiene reached UL-94 V-1 grade at the optimal load of 1.0 wt%. Meanwhile, its LOI increased to 27%. The cone calorimeter test further confirms a high reduction in peak heat release rate (pHRR). This work provides a feasible strategy for developing advanced polybutadiene materials. It can effectively enhance its fire safety. At the same time, it maintains a balance between flame retardancy and the overall material performance. Full article
(This article belongs to the Special Issue Flame-Retardant Polymer Composites, 3rd Edition)
Show Figures

Graphical abstract

16 pages, 2069 KB  
Article
Suppression Mechanism of Early-Age Autogenous Shrinkage Cracking in Low Water-to-Binder Ratio Cement-Based Materials Incorporating Ground Granulated Blast-Furnace Slag and Silica Fume
by Shuangxi Li, Guanglang You, Gang Yu, Chunmeng Jiang, Xinguang Xia and Dongzheng Yu
Materials 2026, 19(1), 131; https://doi.org/10.3390/ma19010131 - 30 Dec 2025
Viewed by 282
Abstract
In hydraulic structures such as water control projects, spillway tunnels, and overflow dams that are subjected to high-velocity flow erosion, Concrete is required to exhibit high resistance to abrasion and cracking. While low water-to-binder ratio concrete can meet strength requirements, its inherent high [...] Read more.
In hydraulic structures such as water control projects, spillway tunnels, and overflow dams that are subjected to high-velocity flow erosion, Concrete is required to exhibit high resistance to abrasion and cracking. While low water-to-binder ratio concrete can meet strength requirements, its inherent high shrinkage propensity often leads to cracking, seriously compromising long-term safety and durability under severe operating conditions. To address this engineering challenge, this study focuses on optimizing concrete performance through the synergistic combination of slag (GGBS) and silica fume (SF). This study systematically investigated the effects of incorporating GGBS (20–24%) and SF (6–10%) in a low water-to-binder ratio system with a fixed 70% cement content on key concrete properties. The evaluation was conducted through comprehensive tests including compressive strength, drying shrinkage, autogenous shrinkage, and hydration heat analysis. The results demonstrate that the blended system successfully achieves a synergistic improvement in both “high strength” and “low cracking risk.” Specifically, the incorporation of silica fume significantly enhances the compressive strength at all ages, providing a solid mechanical foundation for resisting high-velocity flow erosion. More importantly, compared to the pure cement system, the blended system not only delays the onset but also reduces the rate of early-age shrinkage, and lowers its ultimate autogenous shrinkage value. This characteristic is crucial for controlling the combined effects of thermal and shrinkage stresses from the source and preventing early-age cracking. Simultaneously, hydration heat analysis reveals that the blended system retards the heat release process, which helps mitigate the risk of thermal cracking. This study elucidates the regulatory mechanism of the GGBS-SF combination and provides a critical mix design basis and theoretical support for producing high-strength, high-abrasion-resistant, and low-shrinkage concrete in high-velocity flow environments, offering direct practical implications for engineering applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

28 pages, 7058 KB  
Article
Demagnetization Fault Diagnosis Based on Coupled Multi-Physics Characteristics of Aviation Permanent Magnet Synchronous Motor
by Zhangang Yang, Xiaozhong Zhang and Yanan Zhang
Aerospace 2026, 13(1), 39; https://doi.org/10.3390/aerospace13010039 - 30 Dec 2025
Viewed by 178
Abstract
Aviation permanent magnet synchronous motors (PMSMs) operate with high power density under high-altitude conditions, where the thermal sensitivity of permanent magnet materials and reduced air density make them prone to demagnetization faults. Even small performance degradation can therefore pose a risk to operational [...] Read more.
Aviation permanent magnet synchronous motors (PMSMs) operate with high power density under high-altitude conditions, where the thermal sensitivity of permanent magnet materials and reduced air density make them prone to demagnetization faults. Even small performance degradation can therefore pose a risk to operational safety, and reliable demagnetization diagnosis is required. This paper analyzes the operating characteristics of an aviation interior PMSM under demagnetization faults and develops a dedicated diagnostic approach. A coupled electromagnetic–thermal finite element model is established to evaluate no-load and rated performance, compute losses under rated conditions, and obtain temperature distributions; the electromagnetic model is further corroborated using an RT-LAB semi-physical real-time simulation of the motor body. Altitude-dependent ambient air properties corresponding to 5000 m are then incorporated to assess the magneto–thermal field distribution and reveal the impact of high-altitude operation on temperature rise and demagnetization risk. Based on the thermal analysis, overall demagnetization faults are classified into several temperature-based levels, and representative local demagnetization cases are constructed; for each fault case, time-domain torque and phase-voltage signals and their frequency-domain components are extracted to form a fault dataset. Building on these features, an intelligent diagnostic method integrating a deep belief network (DBN) and an extreme learning machine (ELM) optimized by an enhanced fireworks algorithm (EnFWA) is proposed. Comparative results show that the proposed DBN–ELM–EnFWA framework achieves a favorable trade-off between diagnostic accuracy and training time compared with several benchmark deep learning models, providing a practical and effective tool for demagnetization fault diagnosis in aviation interior PMSMs. Full article
(This article belongs to the Special Issue Aircraft Electric Power System II: Motor Drive Design and Control)
Show Figures

Figure 1

19 pages, 7095 KB  
Review
Experimental Research Progress on Gas–Liquid Flow and Heat Transfer Characteristics in Micro Pulsating Heat Pipes
by Jun Chen, Hao Tian, Wanli Xu, Huangdong Guo, Chao Wang, Jincheng Gu and Yichao Cao
Micromachines 2026, 17(1), 37; https://doi.org/10.3390/mi17010037 - 29 Dec 2025
Viewed by 353
Abstract
As the power density of microelectronic devices and components continues to increase, thermal management has become a critical bottleneck limiting their performance and reliability. With its advantages of effective heat dissipation, no need for external power, and good safety, the micro pulsating heat [...] Read more.
As the power density of microelectronic devices and components continues to increase, thermal management has become a critical bottleneck limiting their performance and reliability. With its advantages of effective heat dissipation, no need for external power, and good safety, the micro pulsating heat pipe (MPHP) exhibits unique application advantages and enormous development potential when compared to other cutting-edge thermal management solutions, such as embedded microchannel cooling technology, which has complicated manufacturing processes and is prone to leakage, or thermoelectric material cooling technology, which is limited by material efficiency and self-heating. However, a pulsating heat pipe (PHP) is vulnerable to the combined impacts of several elements (scale effects, wall effects, and interfacial effects) at the micro-scale, which can lead to highly variable heat transfer characteristics and complex two-phase flow behavior. There are still few thorough experimental reviews on this subject, despite the fact that many researchers have concentrated on the MPHP and carried out in-depth experimental investigations on their flow and heat transmission mechanisms. In order to provide strong theoretical support for optimizing the design of the MPHP cooling devices, this paper reviews previous experimental research on the MPHP with the goal of thoroughly clarifying the mechanisms of gas–liquid two-phase flow and heat/mass transfer within them. The definition of MPHP is first explained, along with its internal energy transmission principles and structural features. The motion states of gas–liquid two-phase working fluids in the MPHP from previous experimental investigations are then thoroughly examined, highlighting their distinctive flow patterns and evolution mechanisms. Lastly, the variations in thermal performance between different kinds of MPHPs are examined, along with the factors that affect them. Full article
Show Figures

Figure 1

18 pages, 2938 KB  
Article
Sustainable Insulation Panels Made of Tree Bark Fibers: Thermal and Fire Performance
by Volha Mialeshka, Grzegorz Kowaluk and Zoltán Pásztory
Forests 2026, 17(1), 26; https://doi.org/10.3390/f17010026 - 25 Dec 2025
Viewed by 379
Abstract
The growing demand for sustainable solutions stimulates the building sector to develop environmentally friendly building materials. However, innovative natural-based options used in residential buildings must also comply with safety standards. This study examines the thermal and fire performance of insulation boards produced from [...] Read more.
The growing demand for sustainable solutions stimulates the building sector to develop environmentally friendly building materials. However, innovative natural-based options used in residential buildings must also comply with safety standards. This study examines the thermal and fire performance of insulation boards produced from tree bark fibers of two hardwood species, Tilia spp. (Lime) and Robinia pseudoacacia (Black Locust). The samples were fabricated using a wet process without adhesives and fire retardants, achieving thermal conductivity coefficient values of 0.055–0.057 W/m·K at densities ranging from 218 to 231 kg/m3. Density profiling revealed a characteristic vertical gradient associated with wet processing, while wettability measurements indicated hydrophobic surface behavior. Fire tests showed species-dependent behavior: Black Locust panels exhibited smaller damaged zones and lower maximum temperatures, whereas Lime panels showed deeper thermal degradation. No board ignition was observed, and smoke release remained moderate and consistent. Overall, these findings highlight the potential of bark-based insulation boards as sustainable alternatives in building applications. However, further optimization with larger sample sets and the integration of natural flame retardants is recommended to improve performance and safety. Full article
Show Figures

Figure 1

21 pages, 6694 KB  
Article
Study on Time-Dependent Load Characteristics of CO2 Fracturing Tubing Considering Multi-Field Coupling Effects
by Wenlan Wei, Yuqiang Li, Jiarui Cheng, Xinyang Guo, Xueer Fan, Pengju Bai and Kaixing Zhang
Processes 2026, 14(1), 70; https://doi.org/10.3390/pr14010070 - 24 Dec 2025
Viewed by 263
Abstract
The complex changes in fluid phase behavior during the CO2 fracturing process result in significantly different temperature-pressure coupling characteristics compared to hydraulic fracturing. The complex temperature-pressure changes make it difficult to obtain a rapid and effective evaluation between fracturing parameters and string [...] Read more.
The complex changes in fluid phase behavior during the CO2 fracturing process result in significantly different temperature-pressure coupling characteristics compared to hydraulic fracturing. The complex temperature-pressure changes make it difficult to obtain a rapid and effective evaluation between fracturing parameters and string safety. To solve this problem, considering the flow and heat transfer of CO2 and the change of phase state, and then considering the deformation of string load under the constraint of packer, this study established the thermal fluid mechanical coupling analysis model of CO2 fracturing process, realized the dynamic analysis of string load in the whole process of fracturing, systematically revealed the evolution law of string stress in the process of fracturing, and provided theoretical basis and technical support for the optimization of CO2 fracturing process parameters and the safety design of string. The research results show that with the fracturing process, the temperature, pressure, and flow rate distribution of the medium in the wellbore have significant nonlinear characteristics, and the string load increases slowly at first and then increases rapidly. The reduction of CO2 fracturing temperature or the increase of pressure will significantly increase the string load. The findings provide direct theoretical and technical support for optimizing CO2 fracturing parameters and ensuring tubing safety in engineering practice. Full article
Show Figures

Figure 1

20 pages, 6891 KB  
Article
Extraction and Evolution Analysis of Partial Discharge Characteristic Parameters in Moisture-Affected and Aged Oil–Paper Insulation
by Ruiming Wang, Fubao Jin, Shangang Ma, Debao Wang and Caixiong Fan
Appl. Sci. 2026, 16(1), 151; https://doi.org/10.3390/app16010151 - 23 Dec 2025
Viewed by 260
Abstract
Oil–paper insulation in oil-immersed transformers undergoes a concealed degradation process that is difficult to detect during operation. To understand its discharge behavior, this study examines partial discharge characteristics under controlled moisture absorption and thermal aging. Experiments on S-PD (Surface Partial Discharge) and N-PD [...] Read more.
Oil–paper insulation in oil-immersed transformers undergoes a concealed degradation process that is difficult to detect during operation. To understand its discharge behavior, this study examines partial discharge characteristics under controlled moisture absorption and thermal aging. Experiments on S-PD (Surface Partial Discharge) and N-PD (Needle Partial Discharge) were carried out, and partial discharge patterns, discharge frequency, and breakdown voltage were collected to analyze discharge evolution. The results show that partial discharge develops through three stages: initiation, development, and pre-breakdown. In the initiation stage, pulses are sparse with low amplitudes and appear near the voltage peak. During development, both amplitude and discharge frequency increase, and the phase range expands. As breakdown approaches, pulse amplitude rises sharply, the phase distribution covers almost the full cycle, and conductive channels begin to form. Skewness, Peak Degree, and Maximum Steepness were extracted from statistical discharge maps to compare moisture-affected and aged samples. The findings provide experimental support for developing state-evolution-based failure warning models and diagnostic criteria, contributing to improved operational safety of oil–paper insulation systems. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

14 pages, 3108 KB  
Article
Analysis of the Relationship Between Discharge Cutoff Voltage and Thermal Behavior in Different Lithium-Ion Cell Types
by Szabolcs Kocsis Szürke, Gellért Ádám Gladics and Illés Lőrincz
Appl. Sci. 2026, 16(1), 79; https://doi.org/10.3390/app16010079 - 21 Dec 2025
Viewed by 425
Abstract
Optimizing the operating temperature of lithium-ion batteries is critical for safe, reliable, and efficient cell operation. Manufacturers’ recommendations vary in this area, which is primarily determined by the cells’ chemical composition and internal structural characteristics. Most manufacturers define the maximum charging voltage level [...] Read more.
Optimizing the operating temperature of lithium-ion batteries is critical for safe, reliable, and efficient cell operation. Manufacturers’ recommendations vary in this area, which is primarily determined by the cells’ chemical composition and internal structural characteristics. Most manufacturers define the maximum charging voltage level as the same or close to the same value, but there are significant differences in the lower threshold voltage. Lithium-ion cells exhibit increased internal resistance at lower state-of-charge levels, resulting in elevated heat generation during operation, with intensity proportional to the depth of discharge. However, using a too low voltage threshold causes a significant loss of usable capacity, which reduces the cell’s energy utilization. The present research aims to define and analyze the optimal value of the lower voltage threshold more precisely, considering both thermal development and usable capacity aspects. A further objective is to determine an optimal energy safety margin level that provides a suitable compromise for longer-term storage. Different 18650 and 21700 standard lithium-ion cell types were tested using various load profiles. The results show that the two cell formats have different electro-thermal behaviors. The 21700 cells show a clear increase in thermal efficiency at around 3.1 V. In contrast, the 18650 cells have a heating pattern that depends heavily on the load. This requires selecting a cutoff that adapts to the discharge rate to prevent excessive thermal stress. These findings indicate that a fixed lower threshold voltage for all cells is not ideal. Instead, we need cutoff strategies that are specific to each cell and can change dynamically. The TER-based evaluation introduced in this work provides a practical framework for defining these adaptive limits. It may improve control in battery management systems in real-world applications. Full article
(This article belongs to the Special Issue Sustainable Mobility and Transportation (SMTS 2025))
Show Figures

Figure 1

Back to TopTop