Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = thermal runaway (TR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 21337 KiB  
Article
Full-Scale Experimental Analysis of the Behavior of Electric Vehicle Fires and the Effectiveness of Extinguishing Methods
by Ana Olona and Luis Castejon
Fire 2025, 8(8), 301; https://doi.org/10.3390/fire8080301 - 29 Jul 2025
Viewed by 452
Abstract
The emergence of electric vehicles (EVs) has brought specific risks, including the possibility of fires or explosions resulting from mechanical, thermal, or electrical failures, which can lead to thermal runaway (TR). There is a great lack of knowledge about how to act safely [...] Read more.
The emergence of electric vehicles (EVs) has brought specific risks, including the possibility of fires or explosions resulting from mechanical, thermal, or electrical failures, which can lead to thermal runaway (TR). There is a great lack of knowledge about how to act safely in this type of fire. This study carried out two full-scale fire experiments on electric vehicles to investigate response strategies to electric vehicle fires caused by thermal runaway. Centro Zaragoza provided technical advice for these tests, so that they could be carried out safely, controlling the risks. This advice has allowed Centro Zaragoza to analyze different response strategies to the fires in electric vehicles caused by thermal runaway. On the other hand, the propagation patterns of thermal runaway fires in electric vehicles were investigated. The early-phase effectiveness of fire blankets and other extinguishing measures was tested, and the temperature distributions inside the vehicle and the type of fire generated were measured. The results showed that fire blankets successfully extinguished flames by cutting off the oxygen supply. These findings contribute to the development of effective strategies for responding to electric vehicle fires, enabling the establishment of good practice for fire suppression in electric vehicles and their batteries. Full article
Show Figures

Figure 1

19 pages, 5269 KiB  
Article
Three-Dimensional Ordered Porous SnO2 Nanostructures Derived from Polystyrene Sphere Templates for Ethyl Methyl Carbonate Detection in Battery Safety Applications
by Peijiang Cao, Linlong Qu, Fang Jia, Yuxiang Zeng, Deliang Zhu, Chunfeng Wang, Shun Han, Ming Fang, Xinke Liu, Wenjun Liu and Sachin T. Navale
Nanomaterials 2025, 15(15), 1150; https://doi.org/10.3390/nano15151150 - 25 Jul 2025
Viewed by 322
Abstract
As lithium-ion batteries (LIBs) gain widespread use, detecting electrolyte–vapor emissions during early thermal runaway (TR) remains critical to ensuring battery safety; yet, it remains understudied. Gas sensors integrating oxide nanostructures offer a promising solution as they possess high sensitivity and fast response, enabling [...] Read more.
As lithium-ion batteries (LIBs) gain widespread use, detecting electrolyte–vapor emissions during early thermal runaway (TR) remains critical to ensuring battery safety; yet, it remains understudied. Gas sensors integrating oxide nanostructures offer a promising solution as they possess high sensitivity and fast response, enabling rapid detection of various gas-phase indicators of battery failure. Utilizing this approach, 3D ordered tin oxide (SnO2) nanostructures were synthesized using polystyrene sphere (PS) templates of varied diameters (200–1500 nm) and precursor concentrations (0.2–0.6 mol/L) to detect key electrolyte–vapors, especially ethyl methyl carbonate (EMC), released in the early stages of TR. The 3D ordered SnO2 nanostructures with ring- and nanonet-like morphologies, formed after PS template removal, were characterized, and the effects of template size and precursor concentration on their structure and sensing performance were investigated. Among various nanostructures of SnO2, nanonets achieved by a 1000 nm PS template and 0.4 mol/L precursor showed higher mesoporosity (~28 nm) and optimal EMC detection. At 210 °C, it detected 10 ppm EMC with a response of ~7.95 and response/recovery times of 14/17 s, achieving a 500 ppb detection limit alongside excellent reproducibility/stability. This study demonstrates that precise structural control of SnO2 nanostructures using templates enables sensitive EMC detection, providing an effective sensor-based strategy to enhance LIB safety. Full article
(This article belongs to the Special Issue Trends and Prospects in Gas-Sensitive Nanomaterials)
Show Figures

Figure 1

22 pages, 1906 KiB  
Article
Explainable and Optuna-Optimized Machine Learning for Battery Thermal Runaway Prediction Under Class Imbalance Conditions
by Abir El Abed, Ghalia Nassreddine, Obada Al-Khatib, Mohamad Nassereddine and Ali Hellany
Thermo 2025, 5(3), 23; https://doi.org/10.3390/thermo5030023 - 15 Jul 2025
Viewed by 391
Abstract
Modern energy storage systems for both power and transportation are highly related to lithium-ion batteries (LIBs). However, their safety depends on a potentially hazardous failure mode known as thermal runaway (TR). Predicting and classifying TR causes can widely enhance the safety of power [...] Read more.
Modern energy storage systems for both power and transportation are highly related to lithium-ion batteries (LIBs). However, their safety depends on a potentially hazardous failure mode known as thermal runaway (TR). Predicting and classifying TR causes can widely enhance the safety of power and transportation systems. This paper presents an advanced machine learning method for forecasting and classifying the causes of TR. A generative model for synthetic data generation was used to handle class imbalance in the dataset. Hyperparameter optimization was conducted using Optuna for four classifiers: Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), tabular network (TabNet), and Extreme Gradient Boosting (XGBoost). A three-fold cross-validation approach was used to guarantee a robust evaluation. An open-source database of LIB failure events is used for model training and testing. The XGBoost model outperforms the other models across all TR categories by achieving 100% accuracy and a high recall (1.00). Model results were interpreted using SHapley Additive exPlanations analysis to investigate the most significant factors in TR predictors. The findings show that important TR indicators include energy adjusted for heat and weight loss, heater power, average cell temperature upon activation, and heater duration. These findings guide the design of safer battery systems and preventive monitoring systems for real applications. They can help experts develop more efficient battery management systems, thereby improving the performance and longevity of battery-operated devices. By enhancing the predictive knowledge of temperature-driven failure mechanisms in LIBs, the study directly advances thermal analysis and energy storage safety domains. Full article
Show Figures

Figure 1

15 pages, 3688 KiB  
Article
External Barrier and Internal Attack: Synergistic Effect of Microcapsule Fire Extinguishing Agent and Fine Water Mist on Suppressing Lithium-Ion Battery Fire
by Xiangjian Wang, Zhanwen He, Jianjun Gao, Yibo Guo, Haijun Zhang and Mingchao Wang
Materials 2025, 18(13), 3082; https://doi.org/10.3390/ma18133082 - 29 Jun 2025
Viewed by 402
Abstract
When lithium-ion batteries experience thermal runaway, a large amount of heat rapidly accumulates inside, causing the internal pressure to rise sharply. Once the pressure exceeds the battery’s safety valve design capacity, the valve activates and releases flammable gas. If ignited in a high-temperature [...] Read more.
When lithium-ion batteries experience thermal runaway, a large amount of heat rapidly accumulates inside, causing the internal pressure to rise sharply. Once the pressure exceeds the battery’s safety valve design capacity, the valve activates and releases flammable gas. If ignited in a high-temperature environment, the escaping gas can cause a jet fire containing high-temperature substances. Effectively controlling the internal temperature of the jet fire, especially rapidly cooling the core area of the flame during the jet process, is important to prevent the spread of lithium-ion battery fires. Therefore, this work proposes a strategy of a synergistic effect using microcapsule fire extinguishing agents and fine water mist to achieve an external barrier and an internal attack. The microcapsule fire extinguishing agents are prepared by using melamine–urea–formaldehyde resin as the shell and 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane (C5H3F9O) and 1,1,2,2,3,3,4-heptafluorocyclopentane (C5H3F7) as the composite core. During the process of lithium-ion battery thermal runaway, the microcapsule fire extinguishing agents can enter the inner area of the jet fire under the protection of the fine water mist. The microcapsule shell ruptures at 100 °C, releasing the highly effective composite fire suppressant core inside the jet fire. The fine water mist significantly blocks the transfer of thermal radiation, inhibiting the spread of the fire. Compared to the suppression with fine water mist only, the time required to reduce the battery temperature from the peak value to a low temperature is reduced by 66 s and the peak temperature of the high-temperature substances above the battery is reduced by 228.2 °C. The propagation of the thermal runaway is suppressed, and no thermal runaway of other batteries around the faulty unit will occur. This synergistic suppression strategy of fine water mist and microcapsule fire extinguishing agent (FWM@M) effectively reduces the adverse effects of jet fires on the propagation of thermal runaway (TR) of lithium-ion batteries, providing a new solution for efficiently extinguishing lithium-ion battery fires. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

15 pages, 2281 KiB  
Article
Research on Safety Isolation Schemes for Lithium-Ion Battery Containers in Mixed-Storage Yards of Class 9 Dangerous Goods Containers
by Yuan Gao, Jian Deng and Chunlei Zeng
Fire 2025, 8(7), 249; https://doi.org/10.3390/fire8070249 - 27 Jun 2025
Viewed by 332
Abstract
In recent years, the storage of lithium-ion battery (LIB) containers in general cargo container yards has become an urgent operational requirement for port container terminals. To effectively control the impact range of thermal runaway (TR) incidents in LIB containers and reduce potential economic [...] Read more.
In recent years, the storage of lithium-ion battery (LIB) containers in general cargo container yards has become an urgent operational requirement for port container terminals. To effectively control the impact range of thermal runaway (TR) incidents in LIB containers and reduce potential economic losses, it is imperative to establish appropriate isolation protocols. This study develops a mathematical–physical model of heat transfer following LIB container TR, incorporating (1) the national regulation limiting stacking height to three layers, (2) the exothermic characteristics of LIB TR, and (3) the fundamental heat transfer theory. Through detailed numerical simulations based on actual engineering scenarios, our analysis demonstrates that when (1) The TR temperature of conventional LIBs remains below 700 °C, (2) the thermal conductivity of goods in adjacent ordinary cargo containers does not exceed 10 W/(m·K). An effective isolation configuration can be achieved by (1) arranging no fewer than four ordinary cargo containers longitudinally and (2) placing no fewer than two ordinary cargo containers transversally. The methodology and conclusions presented in this study provide practical guidance for industrial applications and demonstrate significant engineering value. Full article
Show Figures

Figure 1

27 pages, 7013 KiB  
Article
Detailed Characterization of Thermal Runaway Particle Emissions from a Prismatic NMC622 Lithium-Ion Battery
by Felix Elsner, Peter Gerhards, Gaël Berrier, Rémi Vincent, Sébastien Dubourg and Stefan Pischinger
Batteries 2025, 11(6), 225; https://doi.org/10.3390/batteries11060225 - 9 Jun 2025
Viewed by 858
Abstract
Particles ejected during thermal runaway (TR) of lithium-ion batteries carry a significant fraction of the total TR energy and can cause danger to other components in the battery system. The associated safety hazards should be addressed in the battery pack development process, which [...] Read more.
Particles ejected during thermal runaway (TR) of lithium-ion batteries carry a significant fraction of the total TR energy and can cause danger to other components in the battery system. The associated safety hazards should be addressed in the battery pack development process, which requires a deep understanding of TR particle characteristics. In this study, these characteristics are determined by applying several measurement techniques. Among them, dynamic image analysis and large particle image processing are applied to battery abuse particles for the first time, allowing their size and shape to be quantified in detail. Particles are collected from three overheating tests on a prismatic 51 Ah NMC622 cell under vacuum conditions in an autoclave environment. Battery abuse particles cover a wide size range, from micrometers to millimeters, with the largest particle reaching 51.4 mm. They are non-spherical, whereby sphericity, symmetry, and aspect ratio decrease for larger particles. Re-solidified copper droplets and intact separator pieces indicate particle temperatures of ~200–1100 °C at the time of cell ejection. Particles are partially combustible, with an exothermic onset at ~500 °C associated with graphite oxidation. Reactivity is non-linearly size dependent. Implications of these findings for battery system development are discussed. Full article
Show Figures

Figure 1

28 pages, 5473 KiB  
Review
Advances in the Battery Thermal Management Systems of Electric Vehicles for Thermal Runaway Prevention and Suppression
by Le Duc Tai and Moo-Yeon Lee
Batteries 2025, 11(6), 216; https://doi.org/10.3390/batteries11060216 - 1 Jun 2025
Viewed by 2206
Abstract
In response to the global imperative to reduce greenhouse gas emissions and fossil fuel dependency, electric vehicles (EVs) have emerged as a sustainable transportation alternative, primarily utilizing lithium-ion batteries (LIBs) due to their high energy density and efficiency. However, LIBs are highly sensitive [...] Read more.
In response to the global imperative to reduce greenhouse gas emissions and fossil fuel dependency, electric vehicles (EVs) have emerged as a sustainable transportation alternative, primarily utilizing lithium-ion batteries (LIBs) due to their high energy density and efficiency. However, LIBs are highly sensitive to temperature fluctuations, significantly affecting their performance, lifespan, and safety. One of the most critical threats to the safe operation of LIBs is thermal runaway (TR), an uncontrollable exothermic process that can lead to catastrophic failure under abusive conditions. Moreover, thermal runaway propagation (TRP) can rapidly spread failures across battery cells, intensifying safety threats. To address these challenges, developing advanced battery thermal management systems (BTMS) is essential to ensure optimal temperature control and suppress TR and TRP within LIB modules. This review systematically evaluates advanced cooling strategies, including indirect liquid cooling, water mist cooling, immersion cooling, phase change material (PCM) cooling, and hybrid cooling based on the latest studies published between 2020 and 2025. The review highlights their mechanisms, effectiveness, and practical considerations for preventing TR initiation and suppressing TRP in battery modules. Finally, key findings and future directions for designing next-generation BTMS are proposed, contributing valuable insights for enhancing the safety and reliability of LIB applications. Full article
Show Figures

Figure 1

36 pages, 2962 KiB  
Review
Safety Methods for Mitigating Thermal Runaway of Lithium-Ion Batteries—A Review
by Jun Deng, Zhen Hu, Jian Chen, Jingyu Zhao and Zujin Bai
Fire 2025, 8(6), 223; https://doi.org/10.3390/fire8060223 - 31 May 2025
Viewed by 2755
Abstract
Lithium-ion batteries (LIBs) are widely used as energy storage units in electric vehicles, mobile phones, and other electric devices due to their high voltage, large capacity, and long cycle life. Lithium-ion batteries are prone to thermal runway (TR), resulting in fires and explosions, [...] Read more.
Lithium-ion batteries (LIBs) are widely used as energy storage units in electric vehicles, mobile phones, and other electric devices due to their high voltage, large capacity, and long cycle life. Lithium-ion batteries are prone to thermal runway (TR), resulting in fires and explosions, which can seriously hinder the commercial development of LIBs. A series of safety methods has been studied to prevent TR of LIBs. The safety methods for suppressing TR in LIBs were reviewed, including safety equipment method, material modification method, thermal management method, and cooling method. The mechanism, advantages and disadvantages, and future applications of the TR suppression method are discussed. The effectiveness of the proposed safety method was evaluated through technical analysis and experimental testing, and the inhibitory effects of different safety methods on battery TR were summarized. The future trend of suppressing TR is discussed by summarizing and generalizing existing technologies for suppressing thermal runaway. This study provides a reference for exploring more effective methods to mitigate TR in the future. Full article
(This article belongs to the Special Issue Advances in Thermal Energy Storage in Fire Prevention and Control)
Show Figures

Figure 1

14 pages, 3834 KiB  
Article
Comparative Study of Thermal Runaway Propagation and Material Barrier Effect of Lithium-Ion Batteries
by Yikai Mao, Yaoyu Chen, Yanglin Ye, Yin Chen and Mingyi Chen
Batteries 2025, 11(6), 214; https://doi.org/10.3390/batteries11060214 - 29 May 2025
Viewed by 645
Abstract
Battery thermal runaway (TR) is usually accompanied by a large amount of heat release, as well as a jet of flame. This not only causes harm to the surrounding environment but even exacerbates thermal runaway propagation (TRP). At this stage, many types of [...] Read more.
Battery thermal runaway (TR) is usually accompanied by a large amount of heat release, as well as a jet of flame. This not only causes harm to the surrounding environment but even exacerbates thermal runaway propagation (TRP). At this stage, many types of materials are used to suppress TRP, and people tend to focus on improving one characteristic of the material while ignoring other properties of the material. This may leave potential pitfalls for TRP suppression, suggesting the need to study multiple properties of multiple materials. In order to better weigh the advantages and disadvantages of different types of materials when suppressing TRP, we compared three typical materials for suppressing TRP behavior in lithium-ion batteries (LIBs). These materials are phase change materials (PCM), ceramic fibers, and glass fibers. They are all available in two different thicknesses, 2 mm and 3 mm. The experiments started with a comparative analysis of the TR experimental phenomena in the presence of the different materials. Then, the temperature and mass loss of the battery module during TR were analyzed separately and comparatively. The 3 mm glass fiber showed the best inhibition effect, which extended the TR interval between cells 1 and 2 to 894 s and successfully inhibited the TR of cell 3. Compared with the blank group, the total mass loss decreased from 194.3 g to 182.2 g, which is a 6.2% reduction. Subsequently, we comprehensively analyzed the performance of the three materials in suppressing TRP by combining their suppressing mechanisms. The experimental results show that glass fiber has the best effect in suppressing TRP due to its excellent thermal insulation and mechanical properties. This study may provide new insights into how to trade-off material properties for TRP suppression in the future. Full article
(This article belongs to the Special Issue Advances in Lithium-Ion Battery Safety and Fire)
Show Figures

Graphical abstract

25 pages, 9390 KiB  
Article
A Thermal Runaway Protection Strategy for Prismatic Lithium-Ion Battery Modules Based on Phase Change and Thermal Decomposition of Sodium Acetate Trihydrate
by Tianqi Yang, Hanwei Xu, Chengfu Xie, Linzhi Xu, Min Liu, Lingyu Chen, Qianqian Xin, Juan Zeng, Hengyun Zhang and Jinsheng Xiao
Batteries 2025, 11(5), 198; https://doi.org/10.3390/batteries11050198 - 17 May 2025
Viewed by 649
Abstract
With the rapid development of battery energy storage technology, the issue of thermal runaway (TR) in lithium-ion batteries has become a key challenge restricting their safe application. This study presents an innovative protection strategy that integrates liquid cooling with sodium acetate trihydrate (SAT)-based [...] Read more.
With the rapid development of battery energy storage technology, the issue of thermal runaway (TR) in lithium-ion batteries has become a key challenge restricting their safe application. This study presents an innovative protection strategy that integrates liquid cooling with sodium acetate trihydrate (SAT)-based composite phase change materials (CPCM) to mitigate TR and its propagation in prismatic battery modules. Through numerical simulation, this study systematically investigates the TR protection mechanism and optimization pathways for prismatic battery modules. The results indicate that pure SAT exhibits poor latent heat performance due to its low thermal conductivity. In contrast, the incorporation of expanded graphite (EG) significantly enhances thermal conductivity and improves the overall latent heat performance. Compared to traditional paraffin-expanded graphite (PA-EG), SAT-EG, with a latent heat 4.8 times higher than that of PA-EG, demonstrates more than six times the effectiveness in delaying thermal runaway propagation (TRP). When combined with liquid cooling, the TR protection effect is further enhanced, and TR will not be triggered when the initial abnormal heat generation rate is relatively low. Even if an abnormal battery experiences TR, its propagation will be prevented when the thickness of the SAT-EG exceeds 12 mm. Ambient temperature influences both the peak temperature and the timing of its occurrence in the battery module. Among the different liquid cooling layouts, the combined bottom and side cooling scheme exhibits superior performance compared to the standalone schemes. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

15 pages, 4350 KiB  
Article
Investigation of Thermal Runaway in Prismatic Batteries with Dual-Parallel Jelly-Roll Architecture Under Thermal Abuse Conditions
by Jinmei Li, Dong Li, Xin Li, Ting Sun and Qiang Li
Batteries 2025, 11(5), 196; https://doi.org/10.3390/batteries11050196 - 16 May 2025
Viewed by 685
Abstract
In response to the increasingly serious global warming crisis, new energy batteries have progressively replaced highly polluting primary energy sources. Lithium-ion batteries (LIBs) are widely implemented due to their high safety and energy density. Although LIBs exhibit enhanced safety features, significant fire risks [...] Read more.
In response to the increasingly serious global warming crisis, new energy batteries have progressively replaced highly polluting primary energy sources. Lithium-ion batteries (LIBs) are widely implemented due to their high safety and energy density. Although LIBs exhibit enhanced safety features, significant fire risks persist during thermal runaway (TR) events occurring in charging/discharging processes. To elucidate dual-parallel jelly-roll architecture TR characteristics of LIBs under varied operational conditions, this study integrates theoretical analysis with experimental methods, conducting thermal abuse tests under four distinct working conditions: open circuit, constant-current charging, constant-voltage charging, and discharging. The results demonstrate substantial differences in TR characteristics across operational conditions. A thermodynamic equilibrium-based triggering model proved capable of qualitatively evaluating TR risk levels under these conditions. Furthermore, the established TR triggering model reveals that the intensified Joule heating and polarization effects during constant-current charging account for its elevated fire risk compared to other states. These findings provide operational guidelines for optimizing safety strategies in energy storage power stations. Full article
Show Figures

Figure 1

14 pages, 3206 KiB  
Article
Characterization of Thermal Runaway of Lithium Ternary Power Battery in Semi-Confined Space
by Hai Xu, Chenghao Hou, Po Hu and Yanhe Chen
Energies 2025, 18(10), 2444; https://doi.org/10.3390/en18102444 - 9 May 2025
Viewed by 447
Abstract
In some new energy aircraft powered by lithium-ion batteries (LIBs), the LIBs operate in semi-confined spaces. Therefore, studying the thermal runaway (TR) characteristics of LIBs in such spaces is significant to safety research of new energy aircraft. This paper investigated TR of LIBs [...] Read more.
In some new energy aircraft powered by lithium-ion batteries (LIBs), the LIBs operate in semi-confined spaces. Therefore, studying the thermal runaway (TR) characteristics of LIBs in such spaces is significant to safety research of new energy aircraft. This paper investigated TR of LIBs in semi-confined space by using external heating, and compared it with the TR characteristics in open space in terms of behavior characteristics and temperature changes of lithium ternary power batteries in semi-confined spaces. The results show that the TR process of LIBs can be subdivided into seven different stages according to the TR characteristics of LIBs. Compared with the TR process of the LIB in open space, TR of the LIB in semi-confined space has an additional explosion stage. In terms of temperature, the maximum TR temperature of the LIB in open space is 708 °C, and the maximum heating rate is 72.3 °C/s, while the maximum temperature in semi-confined space is 552 °C, and the maximum heating rate is 32.1 °C/s. This study is beneficial for the subsequent provision of certain theoretical guidance for LIBs use in semi-confined environments. Full article
Show Figures

Figure 1

25 pages, 3739 KiB  
Article
Electrochemical–Thermal Modeling of Lithium-Ion Batteries: An Analysis of Thermal Runaway with Observation on Aging Effects
by Milad Tulabi and Roberto Bubbico
Batteries 2025, 11(5), 178; https://doi.org/10.3390/batteries11050178 - 2 May 2025
Viewed by 2475
Abstract
The increasing demand for energy storage solutions, particularly in electric vehicles and renewable energy systems, has intensified research on lithium-ion (Li-ion) battery safety and performance. A critical challenge is thermal runaway (TR), a highly exothermic sequence of reactions triggered by mechanical, electrical, or [...] Read more.
The increasing demand for energy storage solutions, particularly in electric vehicles and renewable energy systems, has intensified research on lithium-ion (Li-ion) battery safety and performance. A critical challenge is thermal runaway (TR), a highly exothermic sequence of reactions triggered by mechanical, electrical, or thermal abuse, which can lead to catastrophic failures. While most TR models focus on fresh cells, aging significantly impacts battery behavior and safety. This study develops an electrochemical–thermal coupled model that incorporates aging effects to better predict thermal behavior and TR initiation in cylindrical Li-ion batteries. The model is validated against experimental data for fresh NMC and aged NCA cells, and statistical analysis is conducted to identify key factors influencing TR (p < 0.05). A full factorial design evaluates the effects of internal resistance (10, 20, 30, and 40 mΩ), capacity (1, 2, 3, and 5 Ah), and current rate (1C, 3C, 6C, and 8C) on temperature evolution. Additionally, a machine learning algorithm (logistic regression) is employed to identify an internal resistance threshold, beyond which thermal runaway (TR) becomes highly probable, and to predict TR probability based on key battery parameters. The model achieved a high prediction accuracy of 95% on the test dataset. Results indicate that aging affects thermal stability in complex ways. The increased internal resistance exacerbates heating rates, while capacity fade reduces stored energy, mitigating TR risk. These findings provide a validated framework for enhancing battery thermal management and predictive safety mechanisms, which contributed to the development of safer, more reliable Li-ion energy storage systems. Full article
Show Figures

Figure 1

27 pages, 6230 KiB  
Review
Critical Perspectives on the Design of Polymeric Materials for Mitigating Thermal Runaway in Lithium-Ion Batteries
by Hangyu Zhou, Jianhong He, Shang Gao, Xuan Cao, Chenghui Li, Qing Zhang, Jialiang Gao, Yongzheng Yao, Chuanwei Zhai, Zhongchun Hu, Hongqing Zhu and Rongxue Kang
Polymers 2025, 17(9), 1227; https://doi.org/10.3390/polym17091227 - 30 Apr 2025
Viewed by 987
Abstract
During the global energy transition, electric vehicles and electrochemical energy storage systems are rapidly gaining popularity, leading to a strong demand for lithium battery technology with high energy density and long lifespan. This technological advancement, however, hinges critically on resolving safety challenges posed [...] Read more.
During the global energy transition, electric vehicles and electrochemical energy storage systems are rapidly gaining popularity, leading to a strong demand for lithium battery technology with high energy density and long lifespan. This technological advancement, however, hinges critically on resolving safety challenges posed by intrinsically reactive components particularly flammable polymeric separators, organic electrolyte systems, and high-capacity electrodes, which collectively elevate risks of thermal runaway (TR) under operational conditions. The strategic integration of smart polymeric materials that enable early detection of TR precursors (e.g., gas evolution, thermal spikes, voltage anomalies) and autonomously interrupt TR propagation chains has emerged as a vital paradigm for next-generation battery safety engineering. This paper begins with the development characteristics of thermal runaway in lithium batteries and analyzes recent breakthroughs in polymer-centric component design, multi-parameter sensing polymers, and TR propagation barriers. The discussion extends to intelligent material systems for emerging battery chemistries (e.g., solid-state, lithium-metal) and extreme operational environments, proposing design frameworks that leverage polymer multifunctionality for hierarchical safety mechanisms. These insights establish foundational principles for developing polymer-integrated lithium batteries that harmonize high energy density with intrinsic safety, addressing critical needs in sustainable energy infrastructure. Full article
(This article belongs to the Special Issue Advanced Polymer Materials for Safe Ion Batteries)
Show Figures

Figure 1

15 pages, 4681 KiB  
Article
A Case Study on Gas Venting Events in NCM523 Batteries During Thermal Runaway Under Different Pressures in a Sealed Chamber
by Cheng Li, Hewu Wang, Yalun Li and Minggao Ouyang
World Electr. Veh. J. 2025, 16(4), 189; https://doi.org/10.3390/wevj16040189 - 22 Mar 2025
Viewed by 566
Abstract
The venting process is one of the most important events during the thermal runaway (TR) of lithium-ion batteries (LIBs) in determining fire accidents, while different ambient pressures will exert an influence on the venting events as well as the TR. Ternary nickel–cobalt–manganese (NCM) [...] Read more.
The venting process is one of the most important events during the thermal runaway (TR) of lithium-ion batteries (LIBs) in determining fire accidents, while different ambient pressures will exert an influence on the venting events as well as the TR. Ternary nickel–cobalt–manganese (NCM) batteries with a 75% state of charge (SOC) were employed to conduct TR tests under different ambient pressures in a sealed chamber with dilute oxygen. It was found that elevated ambient pressure results in milder ejections in terms of jet temperature and mass loss. Gas venting characteristics were also obtained. Additionally, the amount of carbon dioxide (CO2), hydrogen (H2), methane (CH4), and ethylene (C2H4) released increase with ambient pressure, while carbon monoxide (CO) varies inversely with ambient pressure. The higher the ambient pressure is, the greater the flammability risk is. The molar amount of C, H, O, and total gases released shows a positive correlation with the maximum battery temperature and ambient pressure. This study will support the design of safety valves and help reveal the effects of venting events on the evolution of TR. Full article
Show Figures

Figure 1

Back to TopTop