Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,008)

Search Parameters:
Keywords = thermal regime

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3574 KiB  
Article
Optimizing Sunflower Husk Pellet Combustion for B2B Bioenergy Commercialization
by Penka Zlateva, Nevena Mileva, Mariana Murzova, Kalin Krumov and Angel Terziev
Energies 2025, 18(15), 4189; https://doi.org/10.3390/en18154189 (registering DOI) - 7 Aug 2025
Abstract
This study analyses the potential of using sunflower husks as an energy source by producing bio-pellets and evaluating their combustion process in residential settings. As one of the leading sunflower producers in the European Union, Bulgaria generates significant agricultural residues with high, yet [...] Read more.
This study analyses the potential of using sunflower husks as an energy source by producing bio-pellets and evaluating their combustion process in residential settings. As one of the leading sunflower producers in the European Union, Bulgaria generates significant agricultural residues with high, yet underutilized, energy potential. This study employs a combination of experimental data and numerical modelling aided by ANSYS 2024 R1 to analyse the combustion of sunflower husk pellets in a hot water boiler. The importance of balanced air distribution for achieving optimal combustion, reduced emissions, and enhanced thermal efficiency is emphasized by the results of a comparison of two air supply regimes. It was found that a secondary air-dominated air supply regime results in a more uniform temperature field and a higher degree of oxidation of combustible components. These findings not only confirm the technical feasibility of sunflower husk pellets but also highlight their commercial potential as a sustainable, low-cost energy solution for agricultural enterprises and rural heating providers. The research indicates that there are business-to-business (B2B) market opportunities for biomass producers, boiler manufacturers, and energy distributors who wish to align themselves with EU green energy policies and the growing demand for solutions that support the circular economy. Full article
Show Figures

Figure 1

34 pages, 606 KiB  
Article
Role of Thermal Fluctuations in Nucleation of Three-Flavor Quark Matter
by Mirco Guerrini, Giuseppe Pagliara, Andrea Lavagno and Alessandro Drago
Universe 2025, 11(8), 258; https://doi.org/10.3390/universe11080258 - 5 Aug 2025
Abstract
We present a framework that aims to investigate the role of thermal fluctuations in matter composition and color superconductivity in the nucleation of three-flavor deconfined quark matter in the typical conditions of high-energy astrophysical systems related to compact stars. It is usually assumed [...] Read more.
We present a framework that aims to investigate the role of thermal fluctuations in matter composition and color superconductivity in the nucleation of three-flavor deconfined quark matter in the typical conditions of high-energy astrophysical systems related to compact stars. It is usually assumed that the flavor composition is locally fixed during the formation of the first seed of deconfined quark matter, since a weak interaction acts too slowly to re-equilibrate flavors. However, the matter composition fluctuates around its average equilibrium values at the typical temperatures of high-energy astrophysical processes. Here, we extend our previous two-flavor nucleation formalism to a three-flavor case. We develop a thermodynamic framework incorporating finite-size effects and thermal fluctuations in the local composition to compute the nucleation probability as the product of droplet formation and composition fluctuation rates. Moreover, we discuss the role of color superconductivity in nucleation, arguing that it can play a role only in systems larger than the typical coherence length of diquark pairs. We found that thermal fluctuations in the matter composition led to lowering the potential barrier between the metastable hadronic phase and the stable quark phase. Moreover, the formation of diquark pairs reduced the critical radius and thus the potential barrier in the low baryon density and temperature regime. Full article
(This article belongs to the Special Issue Compact Stars in the QCD Phase Diagram 2024)
Show Figures

Figure 1

20 pages, 5212 KiB  
Article
Assessing the Land Surface Temperature Trend of Lake Drūkšiai’s Coastline
by Jūratė Sužiedelytė Visockienė, Eglė Tumelienė and Rosita Birvydienė
Land 2025, 14(8), 1598; https://doi.org/10.3390/land14081598 - 5 Aug 2025
Abstract
This study investigates long-term land surface temperature (LST) trends along the shoreline of Lake Drūkšiai, a transboundary lake in eastern Lithuania that formerly served as a cooling reservoir for the Ignalina Nuclear Power Plant (INPP). Although the INPP was decommissioned in 2009, its [...] Read more.
This study investigates long-term land surface temperature (LST) trends along the shoreline of Lake Drūkšiai, a transboundary lake in eastern Lithuania that formerly served as a cooling reservoir for the Ignalina Nuclear Power Plant (INPP). Although the INPP was decommissioned in 2009, its legacy continues to influence the lake’s thermal regime. Using Landsat 8 thermal infrared imagery and NDVI-based methods, we analysed spatial and temporal LST variations from 2013 to 2024. The results indicate persistent temperature anomalies and elevated LST values, particularly in zones previously affected by thermal discharges. The years 2020 and 2024 exhibited the highest average LST values; some years (e.g., 2018) showed lower readings due to localised environmental factors such as river inflow and seasonal variability. Despite a slight stabilisation observed in 2024, temperatures remain higher than those recorded in 2013, suggesting that pre-industrial thermal conditions have not yet been restored. These findings underscore the long-term environmental impacts of industrial activity and highlight the importance of satellite-based monitoring for the sustainable management of land, water resources, and coastal zones. Full article
Show Figures

Figure 1

9 pages, 1868 KiB  
Communication
Research on the Temperature Dependence of Deformation and Residual Stress via Image Relative Method
by Haiyan Li, Lei Zhang, Yudi Mao, Jinlun Zhang, Detian Wan and Yiwang Bao
Coatings 2025, 15(8), 913; https://doi.org/10.3390/coatings15080913 (registering DOI) - 5 Aug 2025
Viewed by 61
Abstract
Temperature dependence of the deformation behavior and the residual stress in 304 stainless steel beams with single-sided Al2O3 coatings of varying thicknesses are analyzed using the image relative method. The results demonstrate that, due to the mismatch of thermal expansion [...] Read more.
Temperature dependence of the deformation behavior and the residual stress in 304 stainless steel beams with single-sided Al2O3 coatings of varying thicknesses are analyzed using the image relative method. The results demonstrate that, due to the mismatch of thermal expansion coefficient between the coating and substrate, residual stresses were produced, which caused the bending deformation of the single-side coated specimens. Moreover, coating thickness significantly influences the deformation behavior of specimens. Within the elastic deformation regime, the single-side coated specimens would exhibit alternating bending and flattening deformations in response to the fluctuations of temperature. The higher ratio of the coating thickness to the substrate thickness is, the smaller bending curvature of specimens becomes, and the lower residual compressive stresses in the coating are. For the specimens undergoing elastic deformation, residual stresses can be effectively calculated through the Stoney’s formula. However, as the thickness of coating is close to that of substrate (the corresponding specimens would be regarded as the laminated composites), plastic deformation occurs. And the residual stresses in those specimens vary along the direction of the thickness and the length. In addition, the residual stress decreased with increasing temperature because of the stress relaxation. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

21 pages, 3452 KiB  
Article
Features of Ash and Slag Formation During Incomplete Combustion of Coal from the Karazhyra Deposit in Small- and Medium-Scale Power Plants
by Natalya Seraya, Vadim Litvinov, Gulzhan Daumova, Maksat Shaikhov, Raigul Ramazanova and Roza Aubakirova
Processes 2025, 13(8), 2467; https://doi.org/10.3390/pr13082467 - 4 Aug 2025
Viewed by 101
Abstract
The study presents a comprehensive assessment of the combustion efficiency of low-grade coal from the Karazhyra deposit in small- and medium-capacity boiler units of the energy workshops operated by Vostokenergo LLP (East Kazakhstan Region, Kazakhstan). It was found that the average annual thermal [...] Read more.
The study presents a comprehensive assessment of the combustion efficiency of low-grade coal from the Karazhyra deposit in small- and medium-capacity boiler units of the energy workshops operated by Vostokenergo LLP (East Kazakhstan Region, Kazakhstan). It was found that the average annual thermal energy output amounts to 2,387,348.85 GJ with a coal consumption of 164,328.5 tons. Based on operational data from 2016 to 2017, the average thermal efficiency (boiler efficiency) was 66.03%, with a maximum value of 75% recorded at the Zhezkent energy workshop. The average lower heating value (LHV) of the coal was 19.41 MJ/kg, which is below the design value of 20.52 MJ/kg, indicating the use of coal with reduced energy characteristics and elevated ash content (21.4%). The unburned carbon content in the ash and slag waste (ASW) was determined to be between 14 and 35%, indicating incomplete combustion. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed the presence of microspheres, porous granules, and coal residues, with silicon and aluminum oxides dominating the composition (up to 70.49%). Differences in the pollutant potential of ash from different boiler units were identified. Recommendations were substantiated regarding the adjustment of the air–fuel regime, modernization of combustion control systems, and utilization of ASW. The results may be used to develop measures aimed at improving the energy efficiency and environmental safety of coal-fired boiler plants. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

30 pages, 9116 KiB  
Article
Habitat Loss and Other Threats to the Survival of Parnassius apollo (Linnaeus, 1758) in Serbia
by Dejan V. Stojanović, Vladimir Višacki, Dragana Ranđelović, Jelena Ivetić and Saša Orlović
Insects 2025, 16(8), 805; https://doi.org/10.3390/insects16080805 - 4 Aug 2025
Viewed by 219
Abstract
The cessation of traditional mountain grazing has emerged as a principal driver of habitat degradation and the local extinction of Parnassius apollo (Linnaeus, 1758) in Serbia. While previous studies have cited multiple contributing factors, our research provides evidence that the abandonment of extensive [...] Read more.
The cessation of traditional mountain grazing has emerged as a principal driver of habitat degradation and the local extinction of Parnassius apollo (Linnaeus, 1758) in Serbia. While previous studies have cited multiple contributing factors, our research provides evidence that the abandonment of extensive livestock grazing has triggered vegetation succession, the disappearance of the larval host plant (Sedum album), and a reduction in microhabitat heterogeneity—conditions essential for the persistence of this stenophagous butterfly species. Through satellite-based analysis of vegetation dynamics (2015–2024), we identified clear structural differences between habitats that currently support populations and those where the species is no longer present. Occupied sites were characterized by low levels of exposed soil, moderate grass coverage, and consistently high shrub and tree density, whereas unoccupied sites exhibited dense encroachment of grasses and woody vegetation, leading to structural instability. Furthermore, MODIS-derived indices (2010–2024) revealed a consistent decline in vegetation productivity (GPP, FPAR, LAI) in succession-affected areas, alongside significant correlations between elevated land surface temperatures (LST), thermal stress (TCI), and reduced photosynthetic capacity. A wildfire event on Mount Stol in 2024 further exacerbated habitat degradation, as confirmed by remote sensing indices (BAI, NBR, NBR2), which documented extensive burn scars and post-fire vegetation loss. Collectively, these findings indicate that the decline of P. apollo is driven not only by ecological succession and climatic stressors, but also by the abandonment of land-use practices that historically maintained suitable habitat conditions. Our results underscore the necessity of restoring traditional grazing regimes and integrating ecological, climatic, and landscape management approaches to prevent further biodiversity loss in montane environments. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

24 pages, 2618 KiB  
Article
Effects of Postcure and Degradation in Wet Layup Carbon/Epoxy Composites Using Shear-Based Metrics
by Rabina Acharya and Vistasp M. Karbhari
J. Compos. Sci. 2025, 9(8), 411; https://doi.org/10.3390/jcs9080411 - 3 Aug 2025
Viewed by 220
Abstract
Non-autoclave-cured wet layup composites are used extensively in applications ranging from civil and marine infrastructure to offshore components and in transmission power systems. In many of these applications the composites can be exposed to elevated temperatures for extended periods of time. While residual [...] Read more.
Non-autoclave-cured wet layup composites are used extensively in applications ranging from civil and marine infrastructure to offshore components and in transmission power systems. In many of these applications the composites can be exposed to elevated temperatures for extended periods of time. While residual tensile characteristics have been used traditionally to assess the integrity of the composite after a thermal event/exposure, it is emphasized that fiber-dominated characteristics such as longitudinal tensile strength are not affected as much as those associated with shear. This paper reports on the investigation of shear related characteristics through off-axis and short-beam shear testing after exposure to temperatures between 66 °C and 260 °C for periods of time up to 72 h. It is shown that the use of shear test results in conjunction with tensile tests enables better assessment of the competing effects of postcure, which results in an increase in performance, and thermal degradation, which causes drops in performance. Off-axis-to-tensile strength and short-beam shear strength-to-tensile strength ratios are used to determine zones of influence and mechanisms. It is shown that temperatures up to 149 °C can lead to advantageous postcure related increases in performance whereas temperatures above 232 °C can lead to significant deterioration at time periods as low as 4 h. The use of shear tests is shown to provide data critical to performance integrity showing trends otherwise obscured by just the use of longitudinal tensile tests. A phenomenological model developed based on effects of the competing mechanisms and grouping based on phenomenon dominance and temperature regimes is shown to model data well providing a useful context for deign thresholds and determination of remaining structural integrity. Full article
Show Figures

Graphical abstract

18 pages, 6891 KiB  
Article
Physics-Based Data Augmentation Enables Accurate Machine Learning Prediction of Melt Pool Geometry
by Siqi Liu, Ruina Li, Jiayi Zhou, Chaoyuan Dai, Jingui Yu and Qiaoxin Zhang
Appl. Sci. 2025, 15(15), 8587; https://doi.org/10.3390/app15158587 (registering DOI) - 2 Aug 2025
Viewed by 252
Abstract
Accurate melt pool geometry prediction is essential for ensuring quality and reliability in Laser Powder Bed Fusion (L-PBF). However, small experimental datasets and limited physical interpretability often restrict the effectiveness of traditional machine learning (ML) models. This study proposes a hybrid framework that [...] Read more.
Accurate melt pool geometry prediction is essential for ensuring quality and reliability in Laser Powder Bed Fusion (L-PBF). However, small experimental datasets and limited physical interpretability often restrict the effectiveness of traditional machine learning (ML) models. This study proposes a hybrid framework that integrates an explicit thermal model with ML algorithms to improve prediction under sparse data conditions. The explicit model—calibrated for variable penetration depth and absorptivity—generates synthetic melt pool data, augmenting 36 experimental samples across conduction, transition, and keyhole regimes for 316 L stainless steel. Three ML methods—Multilayer Perceptron (MLP), Random Forest, and XGBoost—are trained using fivefold cross-validation. The hybrid approach significantly improves prediction accuracy, especially in unstable transition regions (D/W ≈ 0.5–1.2), where morphological fluctuations hinder experimental sampling. The best-performing model (MLP) achieves R2 > 0.98, with notable reductions in MAE and RMSE. The results highlight the benefit of incorporating physically consistent, nonlinearly distributed synthetic data to enhance generalization and robustness. This physics-augmented learning strategy not only demonstrates scientific novelty by integrating mechanistic modeling into data-driven learning, but also provides a scalable solution for intelligent process optimization, in situ monitoring, and digital twin development in metal additive manufacturing. Full article
Show Figures

Figure 1

12 pages, 2519 KiB  
Article
Mathematical Formulation of Causal Propagation in Relativistic Ideal Fluids
by Dominique Brun-Battistini, Alfredo Sandoval-Villalbazo and Hernando Efrain Caicedo-Ortiz
Axioms 2025, 14(8), 598; https://doi.org/10.3390/axioms14080598 - 1 Aug 2025
Viewed by 178
Abstract
We establish a rigorous kinetic-theoretical framework to analyze causal propagation in thermal transport phenomena within relativistic ideal fluids, building a more rigorous framework based on the kinetic theory of gases. Specifically, we provide a refined derivation of the wave equation governing thermal and [...] Read more.
We establish a rigorous kinetic-theoretical framework to analyze causal propagation in thermal transport phenomena within relativistic ideal fluids, building a more rigorous framework based on the kinetic theory of gases. Specifically, we provide a refined derivation of the wave equation governing thermal and density fluctuations, clarifying its hyperbolic nature and the associated characteristic propagation speeds. The analysis confirms that thermal fluctuations in a simple non-degenerate relativistic fluid satisfy a causal wave equation in the Euler regime, and it recovers the classical expression for the speed of sound in the non-relativistic limit. This work offers enhanced mathematical and physical insights, reinforcing the validity of the hyperbolic description and suggesting a foundation for future studies in dissipative relativistic hydrodynamics. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

14 pages, 2075 KiB  
Article
Quantifying Polar Mesospheric Clouds Thermal Impact on Mesopause
by Arseniy Sokolov, Elena Savenkova, Andrey Koval, Nikolai Gavrilov, Karina Kravtsova, Kseniia Didenko and Tatiana Ermakova
Atmosphere 2025, 16(8), 922; https://doi.org/10.3390/atmos16080922 - 30 Jul 2025
Viewed by 226
Abstract
The article is focused on the quantitative assessment of the thermal impact of polar mesospheric clouds (PMCs) on the mesopause caused by the emission of absorbed solar and terrestrial infrared (IR) radiation by cloud particles. For this purpose, a parameterization of mesopause heating [...] Read more.
The article is focused on the quantitative assessment of the thermal impact of polar mesospheric clouds (PMCs) on the mesopause caused by the emission of absorbed solar and terrestrial infrared (IR) radiation by cloud particles. For this purpose, a parameterization of mesopause heating by PMC crystals has been developed, the main feature of which is to incorporate the thermal properties of ice and the interaction of cloud particles with the environment. Parametrization is based on PMCs zero-dimensional (0-D) model and uses temperature, pressure, and water vapor data in the 80–90 km altitude range retrieved from Solar Occultation for Ice Experiment (SOFIE) measurements. The calculations are made for 14 PMC seasons in both hemispheres with the summer solstice as the central date. The obtained results show that PMCs can make a significant contribution to the heat balance of the upper atmosphere, comparable to the heating caused, for example, by the dissipation of atmospheric gravity waves (GWs). The interhemispheric differences in heating are manifested mainly in the altitude structure: in the Southern Hemisphere (SH), the area of maximum heating values is 1–2 km higher than in the Northern Hemisphere (NH), while quantitatively they are of the same order. The most intensive heating is observed at the lower boundary of the minimum temperature layer (below 150 K) and gradually weakens with altitude. The NH heating median value is 5.86 K/day, while in the SH it is 5.24 K/day. The lowest values of heating are located above the maximum of cloud ice concentration in both hemispheres. The calculated heating rates are also examined in the context of the various factors of temperature variation in the observed atmospheric layers. It is shown in particular that the thermal impact of PMC is commensurate with the influence of dissipating gravity waves at heights of the mesosphere and lower thermosphere (MLT), which parameterizations are included in all modern numerical models of atmospheric circulation. Hence, the developed parameterization can be used in global atmospheric circulation models for further study of the peculiarities of the thermodynamic regime of the MLT. Full article
(This article belongs to the Special Issue Observations and Analysis of Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

27 pages, 11944 KiB  
Article
Heatwave-Induced Thermal Stratification Shaping Microbial-Algal Communities Under Different Climate Scenarios as Revealed by Long-Read Sequencing and Imaging Flow Cytometry
by Ayagoz Meirkhanova, Adina Zhumakhanova, Polina Len, Christian Schoenbach, Eti Ester Levi, Erik Jeppesen, Thomas A. Davidson and Natasha S. Barteneva
Toxins 2025, 17(8), 370; https://doi.org/10.3390/toxins17080370 - 27 Jul 2025
Viewed by 402
Abstract
The effect of periodical heatwaves and related thermal stratification in freshwater aquatic ecosystems has been a hot research issue. A large dataset of samples was generated from samples exposed to temporary thermal stratification in mesocosms mimicking shallow eutrophic freshwater lakes. Temperature regimes were [...] Read more.
The effect of periodical heatwaves and related thermal stratification in freshwater aquatic ecosystems has been a hot research issue. A large dataset of samples was generated from samples exposed to temporary thermal stratification in mesocosms mimicking shallow eutrophic freshwater lakes. Temperature regimes were based on IPCC climate warming scenarios, enabling simulation of future warming conditions. Surface oxygen levels reached 19.37 mg/L, while bottom layers dropped to 0.07 mg/L during stratification. Analysis by FlowCAM revealed dominance of Cyanobacteria under ambient conditions (up to 99.2%), while Cryptophyta (up to 98.9%) and Chlorophyta (up to 99.9%) were predominant in the A2 and A2+50% climate scenarios, respectively. We identified temperature changes and shifts in nutrient concentrations, particularly phosphate, as critical factors in microbial community composition. Furthermore, five distinct Microcystis morphospecies identified by FlowCAM-based analysis were associated with different microbial clusters. The combined use of imaging flow cytometry, which differentiates phytoplankton based on morphological parameters, and nanopore long-read sequencing analysis has shed light into the dynamics of microbial communities associated with different Microcystis morphospecies. In our observations, a peak of algicidal bacteria abundance often coincides with or is followed by a decline in the Cyanobacteria. These findings highlight the importance of species-level classification in the analysis of complex ecosystem interactions and the dynamics of algal blooms in freshwater bodies in response to anthropogenic effects and climate change. Full article
Show Figures

Figure 1

22 pages, 7102 KiB  
Article
Electrolytic Plasma Hardening of 20GL Steel: Thermal Modeling and Experimental Characterization of Surface Modification
by Bauyrzhan Rakhadilov, Rinat Kurmangaliyev, Yerzhan Shayakhmetov, Rinat Kussainov, Almasbek Maulit and Nurlat Kadyrbolat
Appl. Sci. 2025, 15(15), 8288; https://doi.org/10.3390/app15158288 - 25 Jul 2025
Viewed by 125
Abstract
This study investigates the thermal response and surface modification of low-carbon manganese-alloyed 20GL steel during electrolytic plasma hardening. The objective was to evaluate the feasibility of surface hardening 20GL steel—traditionally considered difficult to quench—by combining high-rate surface heating with rapid cooling in an [...] Read more.
This study investigates the thermal response and surface modification of low-carbon manganese-alloyed 20GL steel during electrolytic plasma hardening. The objective was to evaluate the feasibility of surface hardening 20GL steel—traditionally considered difficult to quench—by combining high-rate surface heating with rapid cooling in an electrolyte medium. To achieve this, a transient two-dimensional heat conduction model was developed to simulate temperature evolution in the steel sample under three voltage regimes. The model accounted for dynamic thermal properties and non-linear boundary conditions, focusing on temperature gradients across the thickness. Experimental temperature measurements were obtained using a K-type thermocouple embedded at a depth of 2 mm, with corrections for sensor inertia based on exponential response behavior. A comparison between simulation and experiment was conducted, focusing on peak temperatures, heating and cooling rates, and the effective thermal penetration depth. Microhardness profiling and metallographic examination confirmed surface strengthening and structural refinement, which intensified with increasing voltage. Importantly, the study identified a critical cooling rate threshold of approximately 50 °C/s required to initiate martensitic transformation in 20GL steel. These findings provide a foundation for future optimization of quenching strategies for low-carbon steels by offering insight into the interplay between thermal fluxes, surface kinetics, and process parameters. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

15 pages, 2830 KiB  
Article
Predictive Framework for Lithium Plating Risk in Fast-Charging Lithium-Ion Batteries: Linking Kinetics, Thermal Activation, and Energy Loss
by Junais Habeeb Mokkath
Batteries 2025, 11(8), 281; https://doi.org/10.3390/batteries11080281 - 22 Jul 2025
Viewed by 333
Abstract
Fast charging accelerates lithium-ion battery operation but increases the risk of lithium (Li) plating—a process that undermines efficiency, longevity, and safety. Here, we introduce a predictive modeling framework that captures the onset and severity of Li plating under practical fast-charging conditions. By integrating [...] Read more.
Fast charging accelerates lithium-ion battery operation but increases the risk of lithium (Li) plating—a process that undermines efficiency, longevity, and safety. Here, we introduce a predictive modeling framework that captures the onset and severity of Li plating under practical fast-charging conditions. By integrating an empirically parameterized SOC threshold model with time-dependent kinetic simulations and Arrhenius based thermal analysis, we delineate operating regimes prone to irreversible Li accumulation. The framework distinguishes reversible and irreversible plating fractions, quantifies energy losses, and identifies a critical activation energy (0.25 eV) associated with surface-limited deposition. Visualizations in the form of severity maps and voltage-zone risk classifications enable direct application to battery management systems. This approach bridges electrochemical degradation modeling with real-time charge protocol design, offering a practical tool for safe, high-performance battery operation. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

21 pages, 18596 KiB  
Article
Thermal Accumulation Mechanisms of Deep Geothermal Reservoirs in the Moxi Area, Sichuan Basin, SW China: Evidence from Temperature Measurements and Structural Characteristics
by Wenbo Yang, Weiqi Luo, Simian Yang, Wei Zheng, Luquan Zhang, Fang Lai, Shuang Yang and Zhongquan Li
Energies 2025, 18(15), 3901; https://doi.org/10.3390/en18153901 - 22 Jul 2025
Viewed by 232
Abstract
The Moxi area in the Sichuan Basin hosts abundant deep geothermal resources, but their thermal regime and accumulation mechanisms remain poorly understood. Using 2D/3D seismic data, drilling records, and temperature measurements (DST), we analyze deep thermal fields, reservoir–caprock systems, and structural features. The [...] Read more.
The Moxi area in the Sichuan Basin hosts abundant deep geothermal resources, but their thermal regime and accumulation mechanisms remain poorly understood. Using 2D/3D seismic data, drilling records, and temperature measurements (DST), we analyze deep thermal fields, reservoir–caprock systems, and structural features. The following are our key findings: (1) Heat transfer is conduction-dominated, with thermal anomalies in Late Permian–Early Cambrian strata. Four mudstone/shale caprocks and three carbonate reservoirs occur, with the Longtan Formation as the key seal. Reservoir geothermal gradients (25.05–32.55 °C/km) exceed basin averages. (2) Transtensional strike-slip faults form E-W/NE/NW networks; most terminate at the Permian Longtan Formation, with few extending into the Lower Triassic while penetrating the Archean–Lower Proterozoic basement. (3) Structural highs positively correlate with higher geothermal gradients. (4) The deep geothermal reservoirs and thermal accumulation mechanisms in the Moxi area are jointly controlled by crustal thinning, basement uplift, and structural architecture. Mantle-derived heat converges at basement uplift cores, generating localized thermal anomalies. Fault networks connect these deep heat sources, facilitating upward fluid migration. Thick Longtan Formation shale seals these rising thermal fluids, causing anomalous heating in underlying strata and concentrated thermal accumulation in reservoirs—enhanced by thermal focusing effects from uplift structures. This study establishes a theoretical framework for target selection and industrial-scale geothermal exploitation in sedimentary basins, highlighting the potential for repurposing oil/gas infrastructure. Full article
Show Figures

Figure 1

21 pages, 2049 KiB  
Article
Tracking Lava Flow Cooling from Space: Implications for Erupted Volume Estimation and Cooling Mechanisms
by Simone Aveni, Gaetana Ganci, Andrew J. L. Harris and Diego Coppola
Remote Sens. 2025, 17(15), 2543; https://doi.org/10.3390/rs17152543 - 22 Jul 2025
Viewed by 1041
Abstract
Accurate estimation of erupted lava volumes is essential for understanding volcanic processes, interpreting eruptive cycles, and assessing volcanic hazards. Traditional methods based on Mid-Infrared (MIR) satellite imagery require clear-sky conditions during eruptions and are prone to sensor saturation, limiting data availability. Here, we [...] Read more.
Accurate estimation of erupted lava volumes is essential for understanding volcanic processes, interpreting eruptive cycles, and assessing volcanic hazards. Traditional methods based on Mid-Infrared (MIR) satellite imagery require clear-sky conditions during eruptions and are prone to sensor saturation, limiting data availability. Here, we present an alternative approach based on the post-eruptive Thermal InfraRed (TIR) signal, using the recently proposed VRPTIR method to quantify radiative energy loss during lava flow cooling. We identify thermally anomalous pixels in VIIRS I5 scenes (11.45 µm, 375 m resolution) using the TIRVolcH algorithm, this allowing the detection of subtle thermal anomalies throughout the cooling phase, and retrieve lava flow area by fitting theoretical cooling curves to observed VRPTIR time series. Collating a dataset of 191 mafic eruptions that occurred between 2010 and 2025 at (i) Etna and Stromboli (Italy); (ii) Piton de la Fournaise (France); (iii) Bárðarbunga, Fagradalsfjall, and Sundhnúkagígar (Iceland); (iv) Kīlauea and Mauna Loa (United States); (v) Wolf, Fernandina, and Sierra Negra (Ecuador); (vi) Nyamuragira and Nyiragongo (DRC); (vii) Fogo (Cape Verde); and (viii) La Palma (Spain), we derive a new power-law equation describing mafic lava flow thickening as a function of time across five orders of magnitude (from 0.02 Mm3 to 5.5 km3). Finally, from knowledge of areas and episode durations, we estimate erupted volumes. The method is validated against 68 eruptions with known volumes, yielding high agreement (R2 = 0.947; ρ = 0.96; MAPE = 28.60%), a negligible bias (MPE = −0.85%), and uncertainties within ±50%. Application to the February-March 2025 Etna eruption further corroborates the robustness of our workflow, from which we estimate a bulk erupted volume of 4.23 ± 2.12 × 106 m3, in close agreement with preliminary estimates from independent data. Beyond volume estimation, we show that VRPTIR cooling curves follow a consistent decay pattern that aligns with established theoretical thermal models, indicating a stable conductive regime during the cooling stage. This scale-invariant pattern suggests that crustal insulation and heat transfer across a solidifying boundary govern the thermal evolution of cooling basaltic flows. Full article
Show Figures

Figure 1

Back to TopTop