Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,157)

Search Parameters:
Keywords = thermal profiling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 18096 KB  
Article
Evaluation of the Drug–Polymer Compatibility and Dissolution Behaviour of Fenbendazole–Soluplus® Solid Dispersions Prepared by Hot-Melt Extrusion
by Amirhossein Karimi, Gilberto S. N. Bezerra, Clement L. Higginbotham and John G. Lyons
Polymers 2026, 18(3), 333; https://doi.org/10.3390/polym18030333 (registering DOI) - 26 Jan 2026
Abstract
Fenbendazole is an important anti-parasitic medicine widely used in the veterinary field and has recently been considered as a possible anti-cancer agent in humans by some researchers. Fenbendazole encounters challenges in its usage due to its limited aqueous solubility, which consequently impacts its [...] Read more.
Fenbendazole is an important anti-parasitic medicine widely used in the veterinary field and has recently been considered as a possible anti-cancer agent in humans by some researchers. Fenbendazole encounters challenges in its usage due to its limited aqueous solubility, which consequently impacts its therapeutic efficacy. In this work, an in vitro mechanistic investigation was conducted to evaluate the compatibility, amorphization behaviour and dissolution profile of fenbendazole dispersed in Soluplus® using the solid dispersion approach via hot-melt extrusion. Three different fenbendazole/Soluplus® ratios were formulated and characterised through systematic experimentation. Powder X-Ray Diffraction (PXRD), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray (EDX) and Fourier Transform Infrared Spectroscopy (FTIR) were employed for thermal, physical, chemical and morphological analyses. The solubility of the drug formulation during a dissolution test was investigated using Ultraviolet–Visible (UV–Vis) spectrophotometric measurements. In vitro dissolution testing in acidic and neutral media was employed as a controlled environment to compare dissolution behaviour among different loadings. The extrudates demonstrated markedly enhanced apparent solubility compared to neat fenbendazole, with the 5% formulation showing the highest dissolution rate (approximately 85% after 48 h). This improvement can be attributed to better wetting properties and drug dispersion within the Soluplus® matrix. This innovative strategy holds promise in surmounting fenbendazole’s solubility limitations, presenting a comprehensive solution to enhance its therapeutic effectiveness. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

18 pages, 394 KB  
Article
Viscosity Characteristics of Cationic Polyacrylamide Aqueous Solutions
by Mamdouh T. Ghannam, Mohamed Y. E. Selim, Ahmed Thaher, Nejood Ahmad, Reem Almarzooqi and Afnan Khalil
Polymers 2026, 18(3), 331; https://doi.org/10.3390/polym18030331 - 26 Jan 2026
Abstract
This investigation evaluates the viscosity and flow performance of cationic polyacrylamide (CPAA) solutions by assessing the effect of CPAA concentrations, shear rate, temperature, and electrolyte salt types. The study aims to characterize the flow behavior of CPAA solutions for different industrial utilizations under [...] Read more.
This investigation evaluates the viscosity and flow performance of cationic polyacrylamide (CPAA) solutions by assessing the effect of CPAA concentrations, shear rate, temperature, and electrolyte salt types. The study aims to characterize the flow behavior of CPAA solutions for different industrial utilizations under some challenging conditions of high salinity of two different electrolytes and high-temperature environments. In addition, the study addresses the critical shear rate thresholds at which the transition from shear-thinning to shear-thickening occurs. An Anton Paar rotational rheometer was employed to evaluate the flow behavior of cationic polyacrylamide solutions over the range of 20–80 °C at 20 °C intervals. Polymer samples were prepared from CPAA powder in a concentration range of 500–5000 ppm. To determine the electrolyte effects, NaCl and CaCl2 were incorporated into the polymer solutions with a concentration range of 0–10 Wt.%. This study revealed that shear stress is vastly sensitive to CPAA concentration at shear rates less than 200 s−1, whereas this sensitivity reduces at higher shear rates where the resulting profiles converge. Moreover, a considerable decrease in shear stress was reported with temperature as a result of the thermal influence on the molecular interaction forces. Rheological analysis of the CPAA solutions shows they exhibit strong non-Newtonian shear-thinning behaviors with viscosity decreasing significantly as the shear rate approaches 200 s−1. On the contrary, a transition to a shear-thickening profile is observed at a shear rate above this limit of 200 s−1. The results show that the dynamic viscosity of the CPAA solutions rises significantly as the concentration increases from 500 to 5000 ppm. At a shear rate of 10 s−1, the dynamic viscosity increased from 2.4 to 33.8 mPa·s as the CPAA concentration increased from 500 to 5000 ppm (exactly 2.4, 11.8, 16.6, and 33.8 mPa.s for 500, 1500, 2500, and 5000 ppm, respectively). Additionally, increasing the temperature from 20 to 80 °C exerts a strong negative influence on dynamic viscosity. Specifically, for the 5000 ppm concentration at a shear rate of 10 s−1, the dynamic viscosity decreased from 33.8 to 18.3 mPa.s as the temperatures rose from 20 to 80 °C (recorded as 33.8, 27.9, and 18.3 mPa.s at 20, 40, and 80 °C, respectively). Furthermore, the introduction of different electrolytes, such as NaCl and CaCl2, significantly reduces the viscosity flow profiles. Full article
(This article belongs to the Special Issue Advances in Rheology and Polymer Processing)
15 pages, 1641 KB  
Article
P-Type Emitter Thin-Film Fabrication by a Dry–Wet–Dry Mixed Oxidation in TOPCon Solar Cells
by Yan Guo, Xingrong Zhu, Cheng Xie, Jiabing Huang and Jicheng Zhou
Coatings 2026, 16(2), 157; https://doi.org/10.3390/coatings16020157 - 25 Jan 2026
Abstract
To address the high-temperature and high-cost challenges of the conventional dry oxidation process in boron diffusion for n-type tunnel oxide passivated contact solar cells, this study proposes a dry–wet–dry mixed oxidation drive-in process for fabricating p-type emitters in TOPCon solar cells. Through systematic [...] Read more.
To address the high-temperature and high-cost challenges of the conventional dry oxidation process in boron diffusion for n-type tunnel oxide passivated contact solar cells, this study proposes a dry–wet–dry mixed oxidation drive-in process for fabricating p-type emitters in TOPCon solar cells. Through systematic investigation of oxidation temperature, O2/H2O flow ratio, and oxidation time effects on emitter performance, it is found that mixed oxidation at 1000 °C achieves comparable sheet resistance and doping profiles to dry oxidation at 1050 °C. For our newly developed mixed oxidation process, in which the oxidation temperature is 1000 °C, oxidation time is 80 min with O2/H2O flow ratio of 20:1, the same photoelectric conversion efficiency has been achieved. Comparing the data, the mixed oxidation process forms a dry/wet/dry three-layer SiO2 structure, reducing the oxidation temperature by 50 °C while achieving an average efficiency of 26.02%, comparable to high-temperature dry oxidation. This process not only reduces the thermal budget of quartz tubes and extends equipment service life but also provides a feasible solution for the low-temperature manufacturing of high-efficiency TOPCon solar cells, showing significant industrial application prospects. Full article
(This article belongs to the Special Issue Innovative Thin Films and Coatings for Solar Cells)
Show Figures

Figure 1

20 pages, 2986 KB  
Article
Thermal Stratification in Solar Storage Tanks: Long-Term Modelling and Efficiency Analysis
by Barbara Król and Krzysztof Kupiec
Energies 2026, 19(3), 627; https://doi.org/10.3390/en19030627 - 25 Jan 2026
Abstract
The storage tank plays a key role in solar thermal installations, as thermal stratification allows high temperatures to be maintained in the upper region while keeping the return temperature to the collectors low. This study analyses the influence of thermal stratification on short- [...] Read more.
The storage tank plays a key role in solar thermal installations, as thermal stratification allows high temperatures to be maintained in the upper region while keeping the return temperature to the collectors low. This study analyses the influence of thermal stratification on short- and long-term performance of solar domestic hot water systems using a multi-node storage tank model. An algorithm was developed to compute temperature profiles along the height of a storage tank operating under time-varying temperature and flow-rate conditions. Time courses of temperatures and heat fluxes in a solar domestic hot water system were determined. In addition, the seasonal variation in the optimal locations for supplying the tank with water from the solar collector was identified. Annual simulations were performed for the climate of Kraków (Poland) and the domestic hot water demand of a single-family household. The results show that the effect of the degree of stratification on solar fraction and solar efficiency is small. It was also demonstrated that the effect of thermal stratification within the tank on stabilizing the temperature of the produced water is more significant than the effect associated with increasing the tank volume. Full article
(This article belongs to the Special Issue Advances in the Design and Application of Solar Energy in Buildings)
Show Figures

Figure 1

27 pages, 2150 KB  
Article
Conceptual Retrofit of a Hydrogen–Electric VTOL Rotorcraft: The Hawk Demonstrator Simulation
by Jubayer Ahmed Sajid, Seeyama Hossain, Ivan Grgić and Mirko Karakašić
Designs 2026, 10(1), 9; https://doi.org/10.3390/designs10010009 (registering DOI) - 24 Jan 2026
Viewed by 172
Abstract
Decarbonisation of the aviation sector is essential for achieving global-climate targets, with hydrogen propulsion emerging as a viable alternative to battery–electric systems for vertical flight. Unlike previous studies focusing on clean-sheet eVTOL concepts or fixed-wing platforms, this work provides a comprehensive retrofit evaluation [...] Read more.
Decarbonisation of the aviation sector is essential for achieving global-climate targets, with hydrogen propulsion emerging as a viable alternative to battery–electric systems for vertical flight. Unlike previous studies focusing on clean-sheet eVTOL concepts or fixed-wing platforms, this work provides a comprehensive retrofit evaluation of a two-seat light helicopter (Cabri G2/Robinson R22 class) to a hydrogen–electric hybrid powertrain built around a Toyota TFCM2-B PEM fuel cell (85 kW net), a 30 kg lithium-ion buffer battery, and 700 bar Type-IV hydrogen storage totalling 5 kg, aligned with the Vertical Flight Society (VFS) mission profile. The mass breakdown, mission energy equations, and segment-wise hydrogen use for a 100 km sortie are documented using a single main rotor with a radius of R = 3.39 m, with power-by-segment calculations taken from the team’s final proposal. Screening-level simulations are used solely for architectural assessment; no experimental validation is performed. Mission analysis indicates a 100 km operational range with only 3.06 kg of hydrogen consumption (39% fuel reserve). The main contribution is a quantified demonstration of a practical retrofit pathway for light rotorcraft, showing approximately 1.8–2.2 times greater range (100 km vs. 45–55 km battery-only baseline, including respective safety reserves). The Hawk demonstrates a 28% reduction in total propulsion system mass (199 kg including PEMFC stack and balance-of-plant 109 kg, H2 storage 20 kg, battery 30 kg, and motor with gearbox 40 kg) compared to a battery-only configuration (254.5 kg battery pack, plus equivalent 40 kg motor and gearbox), representing approximately 32% system-level mass savings when thermal-management subsystems (15 kg) are included for both configurations. Full article
(This article belongs to the Section Mechanical Engineering Design)
Show Figures

Figure 1

27 pages, 3203 KB  
Article
Machine Learning and Physics-Informed Neural Networks for Thermal Behavior Prediction in Porous TPMS Metals
by Mohammed Yahya and Mohamad Ziad Saghir
Fluids 2026, 11(2), 29; https://doi.org/10.3390/fluids11020029 - 23 Jan 2026
Viewed by 80
Abstract
Triply periodic minimal surface (TPMS) structures provide high surface area to volume ratios and tunable conduction pathways, but predicting their thermal behavior across different metallic materials remains challenging because multi-material experimentation is costly and full-scale simulations require extremely fine meshes to resolve the [...] Read more.
Triply periodic minimal surface (TPMS) structures provide high surface area to volume ratios and tunable conduction pathways, but predicting their thermal behavior across different metallic materials remains challenging because multi-material experimentation is costly and full-scale simulations require extremely fine meshes to resolve the complex geometry. This study develops a physics-informed neural network (PINN) that reconstructs steady-state temperature fields in TPMS Gyroid structures using only two experimentally measured materials, Aluminum and Silver, which were tested under identical heat flux and flow conditions. The model incorporates conductivity ratio physics, Fourier-based thermal scaling, and complete spatial temperature profiles directly into the learning process to maintain physical consistency. Validation using the complete Aluminum and Silver datasets confirms excellent agreement for Aluminum and strong accuracy for Silver despite its larger temperature gradients. Once trained, the PINN can generalize the learned behavior to nine additional metals using only their conductivity ratios, without requiring new experiments or numerical simulations. A detailed heat transfer analysis is also performed for Magnesium, a lightweight material that is increasingly considered for thermal management applications. Since no published TPMS measurements for Magnesium currently exist, the predicted Nusselt numbers obtained from the PINN-generated temperature fields represent the first model-based evaluation of its convective performance. The results demonstrate that the proposed PINN provides an efficient, accurate, and scalable surrogate model for predicting thermal behavior across multiple metallic TPMS structures and supports the design and selection of materials for advanced porous heat technologies. Full article
Show Figures

Figure 1

10 pages, 3424 KB  
Article
Pulsed Field Ablation for the Treatment of Ventricular Arrhythmias Using a Focal, Contact-Force Sensing Catheter: A Single-Center Case Series and Review
by Cristian Martignani, Giulia Massaro, Alberto Spadotto, Maria Carelli, Lorenzo Bartoli, Alessandro Carecci, Andrea Angeletti, Matteo Ziacchi, Mauro Biffi and Matteo Bertini
J. Cardiovasc. Dev. Dis. 2026, 13(2), 59; https://doi.org/10.3390/jcdd13020059 - 23 Jan 2026
Viewed by 66
Abstract
Background: Catheter ablation is a validated treatment for ventricular arrhythmias (VA), but conventional radiofrequency (RF) energy may cause collateral injury due to non-selective thermal damage. Pulsed Field Ablation (PFA), a non-thermal modality based on irreversible electroporation, offers myocardial tissue selectivity and enhanced safety. [...] Read more.
Background: Catheter ablation is a validated treatment for ventricular arrhythmias (VA), but conventional radiofrequency (RF) energy may cause collateral injury due to non-selective thermal damage. Pulsed Field Ablation (PFA), a non-thermal modality based on irreversible electroporation, offers myocardial tissue selectivity and enhanced safety. While PFA is widely adopted for atrial arrhythmias’ ablation, its application in the ventricles remains an evolving frontier. Methods: We report a single-center experience using the Centauri PFA system integrated with a focal, contact-force sensing irrigated catheter (Tacticath™ SE, Abbott Laboratories, St. Paul, MN, USA) in four consecutive patients with drug-refractory VA. Two patients presented with frequent premature ventricular complexes (PVC) arising from the right and left ventricular outflow tract, respectively, while two had ischemic cardiomyopathy with recurrent scar-related ventricular tachycardia (VT). All procedures were guided by high-density mapping using the EnSite X system (Abbott Laboratories, St. Paul, MN, USA). Procedural safety, acute efficacy, and early follow-up outcomes were assessed. Results: All ablations achieved acute procedural success without complications. In both PVC cases, PFA led to immediate and complete suppression of ectopy, with a ≥95% reduction in arrhythmic burden at 12- and 9-months follow-up, respectively. In the VT cases, the arrhythmogenic substrate was effectively modified, rendering the clinical VT non-inducible. ICD interrogation during a 9-month follow-up showed complete absence of recurrent sustained VT. No coronary spasm, atrioventricular block, pericardial effusion, or other adverse events occurred. Conclusions: In this initial experience, focal PFA using a contact-force sensing catheter appeared feasible and effective for both focal and scar-related VA. This system provides an intuitive workflow similar to RF ablation. While our data suggest a favourable safety profile, larger studies are required to definitively confirm safety margins near critical structures. Full article
(This article belongs to the Special Issue Hybrid Ablation of the Atrial Fibrillation)
Show Figures

Figure 1

26 pages, 5269 KB  
Article
Development and Optimization of Resveratrol-Loaded NLCs via Low-Energy Methods: A Promising Alternative to Conventional High-Energy or Solvent-Based Techniques
by Nicoly T. R. Britto, Lilian R. S. Montanheri, Juliane N. B. D. Pelin, Raquel A. G. B. Siqueira, Matheus de Souza Alves, Tereza S. Martins, Ian W. Hamley, Patrícia S. Lopes, Vânia R. Leite-Silva and Newton Andreo-Filho
Processes 2026, 14(2), 393; https://doi.org/10.3390/pr14020393 - 22 Jan 2026
Viewed by 108
Abstract
High-energy methods dominate the development of lipid nanoparticles but often require specialized equipment that increases production costs. Low-energy approaches, particularly those free of organic solvents, offer a promising alternative. This study aimed to obtain nanostructured lipid carriers (NLCs) using a solvent-free, low-energy process [...] Read more.
High-energy methods dominate the development of lipid nanoparticles but often require specialized equipment that increases production costs. Low-energy approaches, particularly those free of organic solvents, offer a promising alternative. This study aimed to obtain nanostructured lipid carriers (NLCs) using a solvent-free, low-energy process combining microemulsification and phase inversion. Cetearyl alcohol and PEG-40 hydrogenated castor oil were selected as the solid lipid and surfactant, respectively; the formulation and process were optimized through a Box–Behnken Design. Incorporation of the ionic surfactant extended colloidal stability, while the poloxamer in the aqueous phase enhanced steric stabilization. Resveratrol was efficiently encapsulated (E.E. = 98%), contributing to reduced particle size (291 nm), improved homogeneity (PDI = 0.25), and positive surface charge (+43 mV). Scale-up yielded stable particles carrying resveratrol with a mean size of 507 nm, PDI = 0.24, and ZP = +52 mV. The optimized formulation remained stable for 90 days at 8 °C. In vitro release demonstrated a sustained and controlled release profile, with significantly lower resveratrol release compared to the free compound. Thermal analysis confirmed drug incorporation within the lipid matrix, while transmission electron microscopy (TEM) revealed spherical particles (~200 nm) and SAXS indicated a nanostructure of ~50 nm. Overall, this study demonstrates that solvent-free, low-energy processing can produce stable and scalable NLC formulations, successfully encapsulating resveratrol with favorable physicochemical properties and controlled release behavior. These findings highlight a simple, cost-effective strategy for developing lipid-based nanocarriers with potential applications in drug delivery. Full article
Show Figures

Figure 1

28 pages, 1402 KB  
Article
Solid-State Transformers in the Global Clean Energy Transition: Decarbonization Impact and Lifecycle Performance
by Nikolay Hinov
Energies 2026, 19(2), 558; https://doi.org/10.3390/en19020558 - 22 Jan 2026
Viewed by 50
Abstract
The global clean energy transition requires power conversion technologies that combine high efficiency, operational flexibility, and reduced environmental impact over their entire service life. Solid-state transformers (SSTs) have emerged as a promising alternative to conventional line-frequency transformers, offering bidirectional power flow, high-frequency isolation, [...] Read more.
The global clean energy transition requires power conversion technologies that combine high efficiency, operational flexibility, and reduced environmental impact over their entire service life. Solid-state transformers (SSTs) have emerged as a promising alternative to conventional line-frequency transformers, offering bidirectional power flow, high-frequency isolation, and advanced control capabilities that support renewable integration and electrified infrastructures. This paper presents a comparative life cycle assessment (LCA) of conventional transformers and SSTs across representative power-system applications, including residential and industrial distribution networks, electric vehicle fast-charging infrastructure, and transmission–distribution interface substations. The analysis follows a cradle-to-grave approach and is based on literature-derived LCA data, manufacturer specifications, and harmonized engineering assumptions applied consistently across all case studies. The results show that, under identical assumptions, SST-based solutions are associated with indicative lifecycle CO2 emission reductions of approximately 10–30% compared to conventional transformers, depending on power rating and operating profile (≈90–1000 t CO2 over 25 years across the four cases). These reductions are primarily driven by lower operational losses and reduced material intensity, while additional system-level benefits arise from enhanced controllability and compatibility with renewable-rich and hybrid AC/DC grids. The study also identifies key challenges that influence the sustainability performance of SSTs, including higher capital cost, thermal management requirements, and the long-term reliability of power-electronic components. Overall, the results indicate that SSTs represent a relevant enabling technology for future low-carbon power systems, while highlighting the importance of transparent assumptions and lifecycle-oriented evaluation when comparing emerging grid technologies. Full article
(This article belongs to the Special Issue Challenges and Opportunities in the Global Clean Energy Transition)
Show Figures

Figure 1

16 pages, 7594 KB  
Article
Rooting Ability of Eucalyptus dunnii Maiden Mini-Cuttings Is Conditioned by Stock Plant Nighttime Temperature
by Matías Nión, Silvia Ross, Jaime González-Tálice, Leopoldo Torres, Sofía Bottarro, Mariana Sotelo-Silveira, Selene Píriz-Pezzutto, Fábio Antônio Antonelo and Arthur Germano Fett-Neto
Plants 2026, 15(2), 335; https://doi.org/10.3390/plants15020335 - 22 Jan 2026
Viewed by 37
Abstract
Clonal propagation often must incorporate heaters to warm stock plants and stabilize growth. This study investigates the impact that different temperature regimes for stock plants have on the rooting capacity of mini-cuttings derived therefrom. Experiments were conducted in growth chambers using two clones [...] Read more.
Clonal propagation often must incorporate heaters to warm stock plants and stabilize growth. This study investigates the impact that different temperature regimes for stock plants have on the rooting capacity of mini-cuttings derived therefrom. Experiments were conducted in growth chambers using two clones of Eucalyptus dunnii Maiden, with clone A’s rooting being moderately better that that of clone B in commercial production. Root primordia differentiation and elongation were faster in clone A than clone B. Stock plants were maintained for one month under two temperature conditions: Δ0 (26/26 °C day/night) and Δ10 (26/16 °C). The main results indicate that rooting significantly decreased with the reduction in nocturnal temperature. Clone A exhibited a 38% reduction in rooting, whereas clone B showed a more pronounced decrease of 65%. In cold nights, soluble carbohydrates at the cutting bases dropped by approximately 25% considering both clones, and overall foliar nutrients also decreased. Cutting base transcript profiles revealed that cold nights decreased the expression of efflux auxin transporter PIN1, increased expression of auxin catabolism-related enzyme DAO, and that expression of auxin nuclear receptor TIR1 remained stable. Fine management of clonal gardens by adjusting thermal conditions can optimize the physiological status of donor plants and enhance the rooting potential and establishment of the derived cuttings. Full article
Show Figures

Figure 1

15 pages, 9324 KB  
Article
Melt Pool Dynamics and Quantitative Prediction of Surface Topography in Laser Selective Forming of Optical Glass
by Lianshuang Ning, Weijie Fu and Xinming Zhang
Machines 2026, 14(1), 122; https://doi.org/10.3390/machines14010122 - 21 Jan 2026
Viewed by 107
Abstract
Laser local forming is an effective method for reshaping optical glass, yet the deformation of the material during the cooling phase remains poorly understood. This study investigates the dynamic evolution of the molten pool, specifically focusing on the transition from an initial convex [...] Read more.
Laser local forming is an effective method for reshaping optical glass, yet the deformation of the material during the cooling phase remains poorly understood. This study investigates the dynamic evolution of the molten pool, specifically focusing on the transition from an initial convex shape to a final “M-shaped” profile. A combined approach using thermal-fluid simulation and high-speed imaging experiments was employed to track the surface changes throughout the heating and cooling cycles. The results show that while the surface bulges outward during laser irradiation, the material redistributes after the laser is switched off due to non-uniform cooling and volumetric shrinkage. The specific roles of viscosity and surface tension in driving this reverse flow were identified. Furthermore, the study established a quantitative model linking laser parameters to the final surface dimensions, providing a reliable tool for predicting and controlling the precision of glass forming. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

21 pages, 300 KB  
Article
Optimizing Thermal Pretreatment for Volatile Bioactive Profiling in Medicinal Plants Using HS-GC-MS Analysis
by Péter Tamás Nagy, Florence Alexandra Tóth, Levente Czeglédi and Attila Péter Kiss
Appl. Sci. 2026, 16(2), 1031; https://doi.org/10.3390/app16021031 - 20 Jan 2026
Viewed by 58
Abstract
Oregano (Origanum vulgare L.), basil (Ocimum basilicum L.), rosemary (Rosmarinus officinalis L.), yarrow (Achillea millefolium L.), and thyme (Thymus vulgaris L.) are aromatic medicinal plants rich in bioactive volatile compounds with antioxidant, antimicrobial, and anti-inflammatory properties. This study [...] Read more.
Oregano (Origanum vulgare L.), basil (Ocimum basilicum L.), rosemary (Rosmarinus officinalis L.), yarrow (Achillea millefolium L.), and thyme (Thymus vulgaris L.) are aromatic medicinal plants rich in bioactive volatile compounds with antioxidant, antimicrobial, and anti-inflammatory properties. This study presents a simple, solvent-free, and eco-friendly headspace GC-MS method for VOC profiling. Optimized thermal pretreatment (40–90 °C) enhanced compound detection, particularly at 70–90 °C, without loss of reproducibility. The approach lowers analytical costs and waste generation, supporting green analytical practices and the sustainable valorization of medicinal herbs as natural functional ingredients. Full article
(This article belongs to the Special Issue Advanced Phytochemistry and Its Applications)
27 pages, 10006 KB  
Article
Analysis About the Leaks and Explosions of Alternative Fuels
by José Miguel Mahía-Prados, Ignacio Arias-Fernández, Manuel Romero Gómez and Sandrina Pereira
Energies 2026, 19(2), 514; https://doi.org/10.3390/en19020514 - 20 Jan 2026
Viewed by 116
Abstract
The maritime sector is under growing pressure to decarbonize, driving the adoption of alternative fuels such as methane, methanol, ammonia, and hydrogen. This study evaluates their thermal behavior and associated risks using Engineering Equation Solve software for heat transfer modeling and Areal Locations [...] Read more.
The maritime sector is under growing pressure to decarbonize, driving the adoption of alternative fuels such as methane, methanol, ammonia, and hydrogen. This study evaluates their thermal behavior and associated risks using Engineering Equation Solve software for heat transfer modeling and Areal Locations of Hazardous Atmospheres software for dispersion and explosion analysis in pipelines and storage scenarios. Results indicate that methane presents moderate and predictable risks, mainly from thermal effects in fires or Boiling Liquid Expanding Vapor Explosion events, with low toxicity. Methanol offers the safest operational profile, stable at ambient temperature and easily manageable, though it remains slightly flammable even when diluted. Ammonia shows the greatest toxic hazard, with impact distances reaching several kilometers even when emergency shutoff systems are active. Hydrogen, meanwhile, poses the most severe flammability and explosion risks, capable of autoignition and generating destructive overpressures. Thermal analysis highlights that cryogenic fuels require complex insulation systems, increasing storage costs, while methanol and gaseous hydrogen remain thermally stable but have lower energy density. The study concludes that methanol is the most practical transition fuel, when comparing thermal behavior and associated risks, while hydrogen and ammonia demand further technological and regulatory development. Proper insulation, ventilation, and automatic shutoff systems are essential to ensure safe decarbonization in maritime transport. Full article
(This article belongs to the Special Issue Advances in Green Hydrogen Energy Production)
Show Figures

Figure 1

26 pages, 4053 KB  
Article
Design and Characterization of Gold Nanorod Hyaluronic Acid Hydrogel Nanocomposites for NIR Photothermally Assisted Drug Delivery
by Alessandro Molinelli, Leonardo Bianchi, Elisa Lacroce, Zoe Giorgi, Laura Polito, Ada De Luigi, Francesca Lopriore, Francesco Briatico Vangosa, Paolo Bigini, Paola Saccomandi and Filippo Rossi
Gels 2026, 12(1), 88; https://doi.org/10.3390/gels12010088 - 19 Jan 2026
Viewed by 143
Abstract
The combination of gold nanoparticles (AuNPs) with hydrogels has drawn significant interest in the design of smart materials as advanced platforms for biomedical applications. These systems endow light-responsiveness enabled by the AuNPs localized surface plasmon resonance (LSPR) phenomenon. In this study, we propose [...] Read more.
The combination of gold nanoparticles (AuNPs) with hydrogels has drawn significant interest in the design of smart materials as advanced platforms for biomedical applications. These systems endow light-responsiveness enabled by the AuNPs localized surface plasmon resonance (LSPR) phenomenon. In this study, we propose a nanocomposite hydrogel in which gold nanorods (AuNRs) are included in an agarose–carbomer–hyaluronic acid (AC-HA)-based hydrogel matrix to study the correlation between light irradiation, local temperature increase, and drug release for potential light-assisted drug delivery applications. The gel is obtained through a facile microwave-assisted polycondensation reaction, and its properties are investigated as a function of both the hyaluronic acid molecular weight and ratio. Afterwards, AuNRs are incorporated in the AC-HA formulation, before the sol–gel transition, to impart light-responsiveness and optical properties to the otherwise inert polymeric matrix. Particular attention is given to the evaluation of AuNRs/AC-HA light-induced heat generation and drug delivery performances under near-infrared (NIR) laser irradiation in vitro. Spatiotemporal thermal profiles and high-resolution thermal maps are registered using fiber Bragg grating (FBG) sensor arrays, enabling accurate probing of maximum internal temperature variations within the composite matrix. Lastly, using a high-steric-hindrance protein (BSA) as a drug mimetic, we demonstrate that moderate localized heating under short-time repeated NIR exposure enhances the release from the nanocomposite hydrogel. Full article
(This article belongs to the Special Issue Hydrogels for Tissue Repair: Innovations and Applications)
Show Figures

Graphical abstract

23 pages, 5037 KB  
Article
Experimental Valorization of Recycled Palm Oil in Topical Formulations: Preparation, Characterization, and Antimicrobial Assessment
by Paula Rusu, Andreea Creteanu, Alina-Mirela Ipate, Maricel Danu, Mirela-Fernanda Zaltariov, Daniela Rusu, Cristina Gabriela Tuchilus, Gladiola Tantaru and Gabriela Lisa
Molecules 2026, 31(2), 335; https://doi.org/10.3390/molecules31020335 - 19 Jan 2026
Viewed by 132
Abstract
Sustainable strategies for revalorizing food industry by-products are increasingly relevant in the development of modern experimental dermato-cosmetic formulations. In this study, two semisolid cosmetic creams (R10 and EM-R10) were designed using recycled palm oil—physically purified after intensive frying—as the lipid phase. The recycled [...] Read more.
Sustainable strategies for revalorizing food industry by-products are increasingly relevant in the development of modern experimental dermato-cosmetic formulations. In this study, two semisolid cosmetic creams (R10 and EM-R10) were designed using recycled palm oil—physically purified after intensive frying—as the lipid phase. The recycled oil was incorporated strictly within a controlled experimental framework and does not imply cosmetic-grade regulatory compliance. The formulations incorporated distinct bioactive profiles: R10 combined apricot and pineapple extracts with lime essential oil, while EM-R10 integrated fir bud and green tea extracts alongside the same essential oil. Both preparations contained Fragard as a preservative and niacinamide and panthenol as vitaminic components. The physicochemical properties of the formulations were assessed through rheology, confocal microscopy, ATR-FTIR, SEM, DSC, and contact angle measurements. Antimicrobial activity was evaluated against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans using disk diffusion and broth microdilution assays. The results demonstrate that, despite partial thermal degradation, recycled palm oil retains modified structural features that influence formulation-related properties relevant to topical systems. EM-R10 showed superior spreadability, adhesion, stability, and diffusion-related performance, as well as improved antimicrobial activity, within the investigated experimental conditions, highlighting recycled palm oil as a promising sustainable lipid phase for experimental dermato-cosmetic formulations, pending further purification, toxicological evaluation, and regulatory compliance assessment. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

Back to TopTop