Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (650)

Search Parameters:
Keywords = thermal migration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3164 KB  
Article
Influence of MgO Binder Regulation on the Interfacial Structure of Lithium Thermal Batteries
by Zhi-Yang Fan, Xiao-Min Wang, Wei-Yi Zhang, Li-Ke Cheng, Wen-Xiu Gao and Cheng-Yong Shu
C 2026, 12(1), 10; https://doi.org/10.3390/c12010010 - 22 Jan 2026
Abstract
Lithium thermal batteries are primary reserve batteries utilizing solid molten salt electrolytes. They are regarded as ideal power sources for high-reliability applications due to their high power density, rapid activation, long shelf life, wide operating temperature range, and excellent environmental adaptability. However, existing [...] Read more.
Lithium thermal batteries are primary reserve batteries utilizing solid molten salt electrolytes. They are regarded as ideal power sources for high-reliability applications due to their high power density, rapid activation, long shelf life, wide operating temperature range, and excellent environmental adaptability. However, existing electrode systems are limited by insufficient conductivity and the use of high-impedance MgO binders. This results in sluggish electrode reaction kinetics and incomplete material conversion during high-temperature discharge, causing actual discharge capacities to fall far below theoretical values. To address this, FeS2-CoS2 multi-component composite cathode materials were synthesized via a high-temperature solid-phase method. Furthermore, two distinct MgO binders were systematically investigated: flake-like MgO (MgO-F) with a sheet-stacking structure and spherical MgO (MgO-S) with a low-tortuosity granular structure. Results indicate that while MgO-F offers superior electrolyte retention via physical confinement, its high tortuosity limits ionic conduction. In contrast, MgO-S facilitates the construction of a wettability-enhanced continuous ionic network, which effectively reduces interfacial impedance and enhances system conductivity. This regulation promoted Li+ migration and accelerated interfacial reaction kinetics. This study provides a feasible pathway for improving the electrochemical performance of lithium thermal batteries through morphology-oriented MgO binder regulation. Full article
(This article belongs to the Section Carbon Materials and Carbon Allotropes)
Show Figures

Graphical abstract

17 pages, 8979 KB  
Article
Study on Physical Simulation of Shale Gas Dissipation Behavior: A Case Study for Northern Guizhou, China
by Baofeng Lan, Hongqi Liu, Chun Luo, Shaopeng Li, Haishen Jiang and Dong Chen
Processes 2026, 14(2), 368; https://doi.org/10.3390/pr14020368 - 21 Jan 2026
Abstract
The Longmaxi from the Anchang Syncline in northern Guizhou exhibits a high degree of thermal evolution of organic matter and significant variation in gas content. Because the synclinal is narrow, steep, and internally faulted, the mechanisms controlling shale gas preservation and escape remain [...] Read more.
The Longmaxi from the Anchang Syncline in northern Guizhou exhibits a high degree of thermal evolution of organic matter and significant variation in gas content. Because the synclinal is narrow, steep, and internally faulted, the mechanisms controlling shale gas preservation and escape remain poorly understood, complicating development planning and engineering design. Research on oil and gas migration and accumulation mechanisms in synclinal structures is therefore essential. To address this issue, three proportionally scaled strata—pure shale, gray shale, and sandy shale—were fabricated, and faults and artificial fractures with different displacements and inclinations were introduced. The simulation system consisted of two glass tanks (No. 1 and No. 2). Each tank had three rows of eight transmitting electrodes on one side, and a row of eight receiving electrodes on the opposite side. Tank 1 remained fixed, while Tank 2 could be hydraulically tilted up to 65° to simulate air and water migration under varying formation inclinations. A gas-water injection device was connected at the base. Gas was first injected slowly into the model. After injecting a measured volume (recorded via the flowmeter), the system was allowed to rest for 24–48 h to ensure uniform gas distribution. Water was then injected to displace the gas. During displacement, Tank 1 remained horizontal, and Tank 2 was inclined at a preset angle. An embedded monitoring program automatically recorded resistivity data from the 48 electrodes, and water-driven gas migration was analyzed through resistivity changes. A gas escape rate parameter (Gd), based on differences in gas saturation, was developed to quantify escape velocity. The simulation results show that gas escape increased with formation inclination. Beyond a critical angle, the escape rate slowed and approached a maximum. Faults and fractures significantly enhanced gas escape. Full article
Show Figures

Figure 1

12 pages, 2655 KB  
Article
Microstructural, Electrical, and Magnetic Characterization of Degraded Photovoltaic Cells from Desert Environments: A Preliminary Study
by Fahima Djefaflia, Farida Khammar, Nadir Hachemi, Elfahem Sakher, Nozha El Ahlem Doghmane, Mounir Sakmeche, Houssem Eddine Doghmane, Leila Belgacem, Lala Gahramanli, Talia Tene and Cristian Vacacela Gomez
Sci 2026, 8(1), 22; https://doi.org/10.3390/sci8010022 - 21 Jan 2026
Abstract
This study examines the functional degradation of crystalline silicon photovoltaic cells after 17 years of field exposure in the Adrar Desert, Algeria. Harsh thermal, radiative, and mechanical conditions accelerate aging, affecting electrical performance and structural stability. Monocrystalline silicon cells were extracted and analyzed [...] Read more.
This study examines the functional degradation of crystalline silicon photovoltaic cells after 17 years of field exposure in the Adrar Desert, Algeria. Harsh thermal, radiative, and mechanical conditions accelerate aging, affecting electrical performance and structural stability. Monocrystalline silicon cells were extracted and analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, electrical resistivity measurements, and vibrating sample magnetometry (VSM). SEM revealed microcracks, delamination, and corrosion products. EDS showed Ag, Si, O, and C signals, while Raman indicated silicon features and signatures consistent with encapsulant (EVA) degradation. The temperature-dependent resistivity displayed a dual behavior with a minimum near ~72 °C, above which resistivity increased, consistent with a transition in the dominant transport mechanisms. VSM measurements showed an overall diamagnetic response with a weak hysteresis loop suggestive of defect-related contributions. The observed aging is primarily associated with oxidation, metal migration, and encapsulant degradation. These findings motivate more robust materials and interfaces for desert climates, alongside improved thermal management and active monitoring. Full article
Show Figures

Figure 1

27 pages, 12510 KB  
Article
The Prediction and Safety Control of the CO2 Phase Migration Path During the Shutdown Process of Supercritical Carbon Dioxide Pipelines
by Xinze Li, Jianye Li and Yifan Yin
Energies 2026, 19(2), 531; https://doi.org/10.3390/en19020531 - 20 Jan 2026
Abstract
CO2 pipeline transportation is a core link in the CCUS (Carbon Capture, Utilization, and Storage Technology) industry. Ensuring the flow safety of CO2 pipelines under transient conditions is currently a key and challenging issue in industry research. This paper focuses on [...] Read more.
CO2 pipeline transportation is a core link in the CCUS (Carbon Capture, Utilization, and Storage Technology) industry. Ensuring the flow safety of CO2 pipelines under transient conditions is currently a key and challenging issue in industry research. This paper focuses on the phase migration and safety control during the shutdown process of supercritical carbon dioxide pipelines. Taking a supercritical carbon dioxide transportation pipeline in Xinjiang Oilfield, China, as the research object, a hydro-thermal coupling model of the pipeline is established to simulate the pipeline and elucidate the coordinated variation patterns of temperature, pressure, density, and phase state. It was found that there were significant differences in the migration paths of the CO2 phase at different positions. The accuracy of the simulation results was verified through the self-built high-pressure visual reactor experimental system, and the influences of the initial temperature, initial pressure, and ambient temperature before pipeline shutdown on the slope of the phase migration path were explored. The phase migration line slope prediction model was established by using the least squares method and ridge regression method, the process boundary ranges and allowable shutdown time ranges for pipeline safety shutdowns in both summer and winter were further established. The research results show that when the pipeline operates under the low-pressure and high-temperature boundary, the CO2 in the pipeline vaporizes earlier from the starting point after the pipeline is shut down, and the safe shutdown time of the pipeline is shorter. There is a clear safety operation window in summer, while vaporization risks are widespread in winter. The phase migration path prediction formula and the safety zone division method proposed in this paper provide a theoretical basis and engineering guidance for the safe shutdown control of supercritical carbon dioxide pipelines, which can help reduce operational risks and lower maintenance costs. Full article
(This article belongs to the Special Issue New Advances in Carbon Capture, Utilization and Storage (CCUS))
Show Figures

Figure 1

20 pages, 5050 KB  
Article
Improving Mechanical Coffee Drying with Recycled Insulating Materials: A Thermal Efficiency and Economic Feasibility Analysis
by Valentina Cruz-Ospina, Eduardo Duque-Dussán and Juan R. Sanz-Uribe
Foods 2026, 15(2), 367; https://doi.org/10.3390/foods15020367 - 20 Jan 2026
Abstract
Mechanical coffee drying is an energy-intensive stage of postharvest processing that directly affects product quality and production costs. This study evaluated the technical and economic feasibility of using expanded polystyrene (EPS) as a thermal insulation material to improve the performance of a mechanical [...] Read more.
Mechanical coffee drying is an energy-intensive stage of postharvest processing that directly affects product quality and production costs. This study evaluated the technical and economic feasibility of using expanded polystyrene (EPS) as a thermal insulation material to improve the performance of a mechanical coffee dryer and to demonstrate its potential for sustainable reuse. Experiments were conducted using a total of 210 kg of wet parchment coffee (Coffea arabica L. var. Cenicafé 1) per treatment, corresponding to three experimental replicates of 70 kg each, dried at 50 ± 2 °C, comparing an EPS-insulated dryer (0.02 m thickness) with a non-insulated control. A theoretical model based on steady-state heat transfer through series resistances estimated energy losses and system efficiency for different insulating materials. Theoretical results indicated that EPS, polyethylene foam, and cork reduced heat losses by 58.1%, 54.3%, and 50.9%, respectively. Experimentally, EPS reduced drying time by 7.82%, fuel consumption by 13.9%, and energy demand by 9.5%, while increasing overall efficiency by 6.7% and reducing wall heat losses by 37.7%. Improved temperature stability enhanced heat retention and moisture migration behavior. Economically, EPS reduced operating costs, yielding annual savings of USD 81.5, a 0.45-year payback period, and an annual return on investment (ROI) of 10.86, confirming its viability as a cost-effective and sustainable solution for improving energy efficiency in mechanical coffee drying. Full article
Show Figures

Figure 1

15 pages, 4562 KB  
Article
Investigating the Role of Silica in Thermo-Oxidative Degradation of EPDM Recycled Composites for Applications in Building and Construction
by Xavier Colom, Leire Moral and Javier Cañavate
Polymers 2026, 18(2), 250; https://doi.org/10.3390/polym18020250 - 16 Jan 2026
Viewed by 155
Abstract
This work investigates the structural, acoustic, and thermo-oxidative degradation behavior of elastomeric composites made from neat EPDM and recycled devulcanized EPDM (EPDMd) blends, both with and without silica (SiO2). SiO2 plays a complex role in degradation, possibly acting as a [...] Read more.
This work investigates the structural, acoustic, and thermo-oxidative degradation behavior of elastomeric composites made from neat EPDM and recycled devulcanized EPDM (EPDMd) blends, both with and without silica (SiO2). SiO2 plays a complex role in degradation, possibly acting as a catalyst and also affecting the properties of the materials. Samples were subjected to accelerated degradation at 80 °C for 30 days. The characterization included the mechanical, spectroscopical (FTIR-ATR), thermal (TGA), and morphological (SEM) studies of the samples. Given EPDM’s use in construction as a sound-absorber, its acoustic properties were also analyzed. The determination of the mechanical properties shows that the incorporation of SiO2 improves the Young’s modulus (YM), maintains the tensile strength (TS) at similar values, and causes a decrease in elongation at break (EB). The content of EPDMd slightly decreases both the TS and the EB and increases the YM. The thermo-oxidative degradation of the studied composites does not affect the TS values, but it increases the YM for the samples with and without SiO2 for EPDMd contents higher than 40 phr, and decreases the EB for samples with and without SiO2 for all EPDMd contents. The FTIR-ATR, TGA, and SEM results show that the addition of SiO2 catalyzes the thermo-oxidative degradation process, while the EPDMd inhibits structural degradation. Migration of the ZnSt2 included in the formulations to the surface is common in these elastomers. In this case, EPDMd forms microaggregates, which retain the exudation of ZnSt2 crystals, especially in the non-degraded samples. The degraded samples present irregular structures, with microcavities, cracks, and occlusions, which increase the acoustic absorption mainly at frequencies below 1500 Hz. Full article
Show Figures

Figure 1

23 pages, 39024 KB  
Article
Spatiotemporal Link Between MVT Pb–Zn Mineralization and Paleo-Oil Reservoirs in the Micangshan Area, China: Implications for Fluid Migration and Metallogenic Model
by Xiaodong Huang, Cuihua Chen, Yan Zhang, Ying Gu, Xiang Lai, Xiaojie Chen and Xuying Wang
Minerals 2026, 16(1), 77; https://doi.org/10.3390/min16010077 - 14 Jan 2026
Viewed by 130
Abstract
The Micangshan lead–zinc deposits, located in the northern margin of the Sichuan Basin, are classified as the Mississippi Valley-type (MVT) deposits. This study investigates the genetic linkage between Pb–Zn mineralization and paleo-oil reservoirs in the region, which is distinct from separate investigations on [...] Read more.
The Micangshan lead–zinc deposits, located in the northern margin of the Sichuan Basin, are classified as the Mississippi Valley-type (MVT) deposits. This study investigates the genetic linkage between Pb–Zn mineralization and paleo-oil reservoirs in the region, which is distinct from separate investigations on lead–zinc deposits or paleo-oil reservoirs. Through mineralogy, isotope, and fluid inclusion analyses, it is revealed that the direction of ore-forming fluid migration and the ore-forming process are closely related to the thermal cracking of paleo-oil reservoirs. The deposits show a characteristic clustered distribution along the southern part of the Micangshan area, with high-grade mineralization concentrated in the Nanmushu and Kongxigou Pb–Zn deposits. Rb–Sr isotopic dating indicates that mineralization occurred during the Late Cambrian to Early Ordovician (Nanmushu deposit 486.7 ± 3.1 Ma; Kongxigou deposit 472 ± 6.1 Ma), coinciding with the formation of the first-stage paleo-oil reservoirs. The study concludes that the MVT Pb–Zn mineralization in the Micangshan area is genetically linked to the first-stage paleo-oil reservoirs’ hydrocarbon generation and migration events. The organic-rich hydrothermal fluids facilitated the migration and precipitation of Pb–Zn minerals. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

14 pages, 3491 KB  
Article
Microstructure and Soft Magnetic Properties of an FeGaYCo Film
by Haohao Deng, Zhibin Zhu, Zihao Zhao, Li Jiang, Yanhui Li, Zhiqiang Cao and Wei Zhang
Coatings 2026, 16(1), 77; https://doi.org/10.3390/coatings16010077 - 8 Jan 2026
Viewed by 175
Abstract
Soft magnetic materials are critical for efficient electromagnetic energy conversion, with their development evolving from traditional alloys like ferrites to amorphous/nanocrystalline materials and advanced multi-component alloys. While multi-component alloys address key limitations of prior materials (e.g., low resistivity, poor thermal stability), gaps remain [...] Read more.
Soft magnetic materials are critical for efficient electromagnetic energy conversion, with their development evolving from traditional alloys like ferrites to amorphous/nanocrystalline materials and advanced multi-component alloys. While multi-component alloys address key limitations of prior materials (e.g., low resistivity, poor thermal stability), gaps remain in understanding how preparation parameters regulate the microstructure and properties. This study systematically investigates the effects of sputtering power and substrate temperature on the microstructural evolution and soft magnetic properties of an FeGaYCo film. First, the sputtering power increases from 70 W to 160 W. This adjustment refines grains, promotes crystallization, and drives coercivity (HC) and saturation magnetization (MS) to first decrease then increase —with optimal soft magnetic properties (HC = 5.7 Oe, MS = 1164.3 emu/cm3) being achieved at 100 W. For substrate temperature, increasing the temperature from 25 °C to 100 °C enhances atomic migration (leading to larger grains) but exerts limited influence on the overall number of grains per unit volume; the lowest HC (3.8 Oe) and highest MS (1321.2 emu/cm3) occur at 75 °C. These findings provide theoretical and experimental support for developing a high-performance next-generation soft magnetic film. Full article
(This article belongs to the Special Issue Modification and Technology of Thin Films)
Show Figures

Figure 1

14 pages, 2468 KB  
Article
Transient Arcing Characteristics of the Pantograph–Catenary System in Electrical Sectioning Overlaps
by Like Pan, Xiaokang Wang, Yuan Yuan, Tong Xing and Liming Chen
Infrastructures 2026, 11(1), 17; https://doi.org/10.3390/infrastructures11010017 - 8 Jan 2026
Viewed by 140
Abstract
Transient arcing often occurs as an electric locomotive traverses an electrical sectioning overlap (ESO), deteriorating current collection stability and reducing the durability of the pantograph–catenary (PC) system. In this study, the formation mechanism and electrical evolution characteristics of transient arcing in the ESO [...] Read more.
Transient arcing often occurs as an electric locomotive traverses an electrical sectioning overlap (ESO), deteriorating current collection stability and reducing the durability of the pantograph–catenary (PC) system. In this study, the formation mechanism and electrical evolution characteristics of transient arcing in the ESO region are investigated through theoretical analysis and numerical simulations. First, based on the dynamic motion of the locomotive passing through the ESO, the transient arcing mechanism of the ESO is clarified, and the plasma characteristics of the arc are described. Then, the electromagnetic, airflow, and thermal field interactions within the PC contact gap during arc ignition are analyzed. A Multiphysics coupled PC arc model is developed, incorporating aerodynamic, electromagnetic, and heat transfer effects. Subsequently, finite element meshing and boundary conditions are applied to simulate the transient evolution of the ESO arc. Finally, the transient arcing characteristics of the ESO are analyzed. The results indicate that the current density is highly concentrated at the initial arcing stage and gradually forms an axially symmetric conductive channel (approximately 107 A/m2), which shifts upward as the contact gap increases. Moreover, due to the geometric discontinuity of the ESO, a strong localized electric field develops near the wire edge, leading to arc root migration and reignition. Full article
(This article belongs to the Special Issue The Resilience of Railway Networks: Enhancing Safety and Robustness)
Show Figures

Figure 1

18 pages, 2262 KB  
Article
Thermal Management Optimization of Air Transport Racks Based on a Hybrid Framework
by Biao Xie, Changfeng Yao, Liang Tan, Jiangyu Guo, Jian Wang, Hui Zhang, Juntong Tao and Jia Liu
Appl. Sci. 2026, 16(1), 442; https://doi.org/10.3390/app16010442 - 31 Dec 2025
Viewed by 263
Abstract
With the development of avionics systems towards high integration and high power density, the thermal management of electronic equipment in ATR chassis is facing severe challenges, and the extreme aviation environment further exacerbates the difficulty of heat dissipation. Traditional fixed control strategies suffer [...] Read more.
With the development of avionics systems towards high integration and high power density, the thermal management of electronic equipment in ATR chassis is facing severe challenges, and the extreme aviation environment further exacerbates the difficulty of heat dissipation. Traditional fixed control strategies suffer from problems such as energy consumption, redundancy, and local overheating, whereas single-model predictive control (MPC) is prone to local optimization. This paper proposes a thermal management optimization scheme based on the ACO-MPC hybrid framework: Firstly, a compact thermal model integrating aviation environmental parameters, such as high-altitude, low-pressure conditions and vibration impacts, is constructed. The balanced truncation method is adopted for model order reduction in this study. By retaining the key thermodynamic characteristics of the system, the original three-dimensional thermal model containing more than 800 nodes is simplified to 25 core nodes, which ensures simulation accuracy while improving computational efficiency; Secondly, the ACO-MPC hybrid framework is designed, which uses Ant Colony Optimization (ACO) for global optimization to provide optimized initial values for Model Predictive Control (MPC), breaking through the local optimization limitation of MPC and realizing the collaboration of “global optimization—dynamic control”; Finally, the effectiveness of the framework is verified in three typical aviation scenarios. The results show that compared with traditional methods, this framework has significantly improved heat dissipation efficiency, energy consumption control, and temperature stability, and has strong adaptability to environmental disturbances, which can be migrated to the ATR chassis of different specifications. Full article
Show Figures

Figure 1

22 pages, 5137 KB  
Article
Thermal and Hygric Behavior of Bio-Based Building Dual Walls
by Kenza Sidqui, Yousra Taouirte, Kaoutar Zeghari, Ionut Voicu, Anne-Lise Tiffonnet, Michael Marion and Hasna Louahlia
Buildings 2026, 16(1), 83; https://doi.org/10.3390/buildings16010083 - 24 Dec 2025
Viewed by 270
Abstract
Biosourced materials made of a combination of raw earth and fibers are attracting increasing interest for low-carbon construction due to their reduced environmental impact and good thermal and hygric performance. This study investigates several soil–fiber composites selected and formulated at different densities to [...] Read more.
Biosourced materials made of a combination of raw earth and fibers are attracting increasing interest for low-carbon construction due to their reduced environmental impact and good thermal and hygric performance. This study investigates several soil–fiber composites selected and formulated at different densities to assess their thermal conductivity, enabling the selection of two complementary materials: a structural earthen mix and a lightweight insulating mix. Experimental measurements were taken under controlled conditions and used to characterize heat and moisture fluxes, and numerical calculations were carried out to evaluate the performance of single and double-layer wall configurations. The results showed that an increase in thermal gradients accelerates vapor migration and alters the internal distribution of moisture. The evaluation of wall configurations demonstrated that placing the earthen insulating layer externally optimizes thermal fluxes and eliminates condensation risks at the interface between materials, while internal insulation can be sensitive to hygrothermal gradients and prone to moisture accumulation. The combined experimental–numerical approach provides new insights into high-performance designs of bio-based earthen envelopes, establishing guidelines for minimizing moisture-related risks in low-carbon building systems. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

25 pages, 5186 KB  
Article
UAV-Based Remote Sensing Methods in the Structural Assessment of Remediated Landfills
by Grzegorz Pasternak, Łukasz Wodzyński, Jacek Jóźwiak, Eugeniusz Koda, Janina Zaczek-Peplinska and Anna Podlasek
Remote Sens. 2026, 18(1), 57; https://doi.org/10.3390/rs18010057 - 24 Dec 2025
Viewed by 393
Abstract
Remediated landfills require long-term monitoring due to ongoing processes such as settlement, water infiltration, leachate migration, and biogas emissions, which may lead to cover degradation and environmental risks. Traditional ground-based inspections are often time-consuming, costly, and limited in terms of spatial coverage. This [...] Read more.
Remediated landfills require long-term monitoring due to ongoing processes such as settlement, water infiltration, leachate migration, and biogas emissions, which may lead to cover degradation and environmental risks. Traditional ground-based inspections are often time-consuming, costly, and limited in terms of spatial coverage. This study presents the application of Unmanned Aerial Vehicle (UAV)-based remote sensing methods for the structural assessment of a remediated landfill. A multi-sensor approach was employed, combining geometric data (Light Detection and Ranging (LiDAR) and photogrammetry), hydrological modeling (surface water accumulation and runoff), multispectral imaging, and thermal data. The results showed that subsidence-induced depressions modified surface drainage, leading to water accumulation, concentrated runoff, and vegetation stress. Multispectral imaging successfully identified zones of persistent instability, while UAV thermal imaging detected a distinct leachate-related anomaly that was not visible in red–green–blue (RGB) or multispectral data. By integrating geometric, hydrological, spectral, and thermal information, this paper demonstrates practical applications of remote sensing data in detecting cover degradation on remediated landfills. Compared to traditional methods, UAV-based monitoring is a low-cost and repeatable approach that can cover large areas with high spatial and temporal resolution. The proposed approach provides an effective tool for post-closure landfill management and can be applied to other engineered earth structures. Full article
Show Figures

Graphical abstract

16 pages, 6567 KB  
Article
Influence of the Hainan Plume on the Deep Thermal Structure and Shallow Geothermal Field of Southeastern Coastal China
by Huihui Zhang, Lijuan He and Yaqi Wang
J. Mar. Sci. Eng. 2026, 14(1), 19; https://doi.org/10.3390/jmse14010019 - 22 Dec 2025
Viewed by 303
Abstract
Thermal anomalies within the lithosphere are an important manifestation of mantle plume–lithosphere interaction. Early studies primarily concentrated on the presence of the Hainan plume and its surface responses, with comparatively little research devoted to its hotspot track and lithospheric-scale thermal responses. Based on [...] Read more.
Thermal anomalies within the lithosphere are an important manifestation of mantle plume–lithosphere interaction. Early studies primarily concentrated on the presence of the Hainan plume and its surface responses, with comparatively little research devoted to its hotspot track and lithospheric-scale thermal responses. Based on high-resolution seismic data, we reveal that, although a low-velocity anomaly caused by the plume exists in the asthenospheric mantle beneath Hainan Island (>70 km), no such anomaly is observed in the lithospheric mantle (40~70 km). In comparison, within the same depth slice, a low-velocity body in the lithospheric mantle (40~70 km) is observed beneath the Jiangxi–Fujian boundary, accompanied by high-surface heat flow, and its location is shifted approximately 1300 km to the northeast relative to the low-velocity anomaly in the asthenosphere located under Hainan Island. To explain the spatial offset of the low-velocity anomalies, we constructed a three-dimensional geodynamic model aimed at investigating the lithospheric thermal evolution during interaction between the stationary Hainan plume and the moving South China Plate. The findings indicate that the lithospheric low-velocity zone beneath the Jiangxi-Fujian region may be a consequence of the migration of the lithospheric thermal anomaly caused by the Hainan plume with the South China Plate. Full article
(This article belongs to the Special Issue Advances in Ocean Plate Motion and Seismic Research)
Show Figures

Figure 1

20 pages, 1554 KB  
Article
Impact of Soil Profile Mineralogy on the Elemental Composition of Chardonnay Grapes and Wines in the Anapa Region
by Zaual Temerdashev, Aleksey Abakumov, Mikhail Bolshov, Alexan Khalafyan, Evgeniy Gipich, Aleksey Lukyanov and Alexander Vasilev
Beverages 2026, 12(1), 1; https://doi.org/10.3390/beverages12010001 - 22 Dec 2025
Viewed by 414
Abstract
The aim of this work is to study the correlations of the elemental composition in the “soil–grape–wine” chain to determine the regional origin of Chardonnay grapes and wine. Soil samples (n = 40) from five vineyards in the Anapa region, Russia, taken [...] Read more.
The aim of this work is to study the correlations of the elemental composition in the “soil–grape–wine” chain to determine the regional origin of Chardonnay grapes and wine. Soil samples (n = 40) from five vineyards in the Anapa region, Russia, taken from eight different depths, grapes from these vineyards (n = 75), and wines obtained from these grapes (n = 5) were analyzed using inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. The mineralogical composition of the soils was determined using thermal and X-ray phase analysis. The mineralogical composition of vineyard soils mainly consists of calcite, quartz, nontronite, vermiculite, and muscovite. According to spectrometric analysis, the distribution of both the total content and the mobile forms of elements in soil profiles turned out to be similar. The content of Na, Ca, and Sr increased with increasing sampling depth, while the content of Co, Cu, Fe, Ni, Mn, Pb, and Zn decreased. Regardless of the area of cultivation, the predominant elements in grapes are K, Ca, Na, and Mg. It is established that the elemental profiles of grapes and wine are correlated. At the same time, during the winemaking process, a decrease in the concentration of most elements (Al, Ba, Ca, Cu, K, Mg, Mn, Ni, Rb, Sr, Ti, and Zn) is observed. It has been shown that the vine is able to accumulate not only mobile but also less bioavailable forms of metals from the soil (Cu, Fe, K, Rb, Ti, and Zn), while the migration of Ca and Na remains low (<7%). Using discriminant analysis, a model of grape identification based on the concentrations of Al, Li, Mn, Na, Pb, and Rb was developed. This model demonstrated a high accuracy (100% for training and test datasets) in grape classification by region, confirming that the elemental “fingerprint” is a reliable marker of terroir. Full article
Show Figures

Graphical abstract

14 pages, 2089 KB  
Article
Pulsed Electric Field Treatment of Berry Fruit Seeds: Effect on Phenolic Compound Recovery
by Iga Piasecka-Lenartowicz, Stanisław Kalisz, Artur Wiktor and Agata Górska
Appl. Sci. 2025, 15(24), 13006; https://doi.org/10.3390/app152413006 - 10 Dec 2025
Cited by 1 | Viewed by 314
Abstract
Pulsed electric field (PEF) technology represents a promising non-thermal method for enhancing the extraction of bioactive compounds from plant matrices. This study investigated the influence of PEF treatment on the bioactive compounds composition of aqueous extracts obtained after processing blackcurrant, redcurrant, chokeberry, raspberry, [...] Read more.
Pulsed electric field (PEF) technology represents a promising non-thermal method for enhancing the extraction of bioactive compounds from plant matrices. This study investigated the influence of PEF treatment on the bioactive compounds composition of aqueous extracts obtained after processing blackcurrant, redcurrant, chokeberry, raspberry, and blackberry seeds. The seeds were treated at 8 kV or 10 kV electrode voltage, and 50 kJ/kg energy input, and the resulting extracts were analyzed for total polyphenol content (TPC), antioxidant capacity (ABTS and DPPH assays), anthocyanin composition (HPLC-DAD), and color parameters (L*, a*, b*). The PEF treatment significantly enhanced the release of polyphenols, anthocyanins, and antioxidant compounds, particularly in chokeberry, raspberry, and blackberry seed extracts. Extracts obtained after PEF treatment exhibited higher TPC, in a range between 0.57 and 3.00 mg GAE/g, and higher radical scavenging activity in a range 2.33–35.07 µmol TE/g in ABTS assay and 1.07–12.27 µmol TE/g in DPPH assay. Also, more intense red coloration was determined, confirming that electroporation facilitated pigment and phenolic migration into the aqueous phase. These findings demonstrate that PEF is an efficient and solvent-free intensification technique for the valorization of berry by-products, generating aqueous fractions rich in natural antioxidants and colorants that support circular and sustainable fruit-processing practices. Full article
Show Figures

Figure 1

Back to TopTop