Thermal Management Optimization of Air Transport Racks Based on a Hybrid Framework
Abstract
1. Introduction
2. Research Methods
2.1. Construction of Compact Thermal Model
2.2. ACO-MPC Hybrid Thermal Management Framework
2.2.1. ACO Global Search for Optimal Control Combinations
2.2.2. MPC Dynamic Optimization and Execution
3. Results
3.1. Details of the Experimental Measurement System
3.1.1. Core Parameter Measurement Equipment and Selection Basis
3.1.2. System Installation and Synchronization Design
3.1.3. System Calibration and Error Control
3.2. Uncertainty Analysis of Experimental Results
3.2.1. Identification of Uncertainty Sources
3.2.2. Uncertainty Quantification Method
3.2.3. Uncertainty Analysis Results and Verification
3.3. Model Comparison
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Li, B.; Zhang, D. Thermal management of airborne electronic equipment in ATR chassis: A review. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 1567–1585. [Google Scholar]
- ARINC 600 Standard; Air TransportAvionics Equipment Interfaces. Air Transport Radio, Inc.: Boonton, NJ, USA, 2020.
- Yao, Y.; Liu, H.; Chen, J. Thermal analysis of ATR chassis under low-pressure and extreme temperature environments. Int. J. Heat Mass Transf. 2022, 185, 122108. [Google Scholar]
- Li, B.; Wang, Z.; Zhao, B. Vibration-resilient thermal design of ATR chassis for airborne applications. Appl. Therm. Eng. 2021, 192, 116905. [Google Scholar]
- Li, N.; Yibo, Z.; Xu, Y.; Li, J. Graphene/epoxy coating with radiation heat dissipation properties for spacecraft thermal management. Chem. Eng. J. 2025, 519, 165105. [Google Scholar] [CrossRef]
- Liu, X.; Chen, J.; Zheng, M.; Zhong, F.; Li, Y.; Hou, Y. Design and experiment of a new efficient cooling system for airborne electronic devices. Acta Aeronaut. Astronaut. Sin. 2025, 46, 131078. [Google Scholar] [CrossRef]
- Szpakowska-Peas, E.; Filipowicz, M. Selected aspects of electronic hardware development and testing for the flight reconfiguration system in accordance with the RTCA DO-160G standard. Aircr. Eng. Aerosp. Technol. 2025, 97, 28–36. [Google Scholar] [CrossRef]
- Liu, H.; Yu, J.; Wang, R. Model predictive control of portable electronic devices under skin temperature constraints. Energy 2022, 260, 125185. [Google Scholar] [CrossRef]
- Bartolini, A.; Benini, L.; Casale, G. Thermal and energy management of high-performance multicores: Distributed MPC. IEEE Trans. Parallel Distrib. Syst. 2013, 24, 170–183. [Google Scholar] [CrossRef]
- Li, B.; Zhang, D.; Wang, Z. Compact thermal modeling for ATR chassis based on model order reduction. Appl. Therm. Eng. 2022, 205, 118120. [Google Scholar]
- Wang, Z.; Li, B.; Yao, Y. Low-pressure convective heat transfer model for ATR chassis cooling. Heat Transf. Eng. 2023, 46, 432–445. [Google Scholar]
- Zhao, B.; Li, B.; Wang, Z. PID control for airborne electronic cooling systems in ATR chassis. IEEE Trans. Ind. Inform. 2021, 17, 5678–5686. [Google Scholar]
- Bhat, G.; Hanumaiah, V.; Gurumurthy, S. Algorithmic optimization of thermal and power management for heterogeneous mobile platforms. IEEE Trans. VLSI Syst. 2018, 26, 544–557. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stützle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2007, 1, 28–39. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Yao, Y. An ACO-MPC framework for energy-efficient path planning in autonomous maritime navigation. In Proceedings of the IEEE International Conference on Automation and Computing, Loughborough, UK, 27–29 August 2025; pp. 344–353. [Google Scholar]
- ISO/IEC Guide 98-3:2008; Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement (GUM: 1995). ISO/IEC: Geneva, Switzerland, 2008.





| Measured Parameter | Equipment Model | Measurement Range | Accuracy Class | Selection Basis |
|---|---|---|---|---|
| Core Heat Source Temperature | Platinum Resistance Sensor (PT1000) (Omega Engineering, Inc., Stamford, CT, USA) | −50~200 °C | ±0.05 °C | Adapts to the operating temperature range of −20~120 °C inside the chassis; its low temperature drift characteristic meets the requirements of long-term experiments |
| Ambient Air Pressure | Piezoresistive Air Pressure Sensor (MPX5100) (NXP Semiconductors, Eindhoven, The Netherlands) | 0~115 kPa | ±1 kPa | Covers the high-altitude air pressure range of 0~10 km (50~101 kPa) with a response time ≤10 ms |
| Fan Rotational Speed | Photoelectric Rotational Speed Sensor (E6B2-CWZ6C) (Omron Corporation, Kyoto, Japan) | 0~10,000 rpm | ±1 rpm | Non-contact measurement avoids interfering with fan airflow, adapting to the target rotational speed range of 1000~5000 rpm |
| RF Module Power | Power Analyzer (HIOKI PW3390) (Hioki E.E. Corporation, Nagoya, Japan) | 0~1000 W | ±0.1% reading + 0.1% range | High-frequency sampling (10 kHz) captures instantaneous fluctuations of RF power, meeting the measurement requirements of 20~80 W |
| Type of Uncertainty | Specific Sources |
|---|---|
| Equipment Intrinsic Error (Type B) | Sensor accuracy limitations (e.g., allowable error of ±0.05 °C for PT1000 sensors), and the quantization error of data acquisition cards |
| Repeated Measurement Error (Type A) | Random fluctuations in multiple measurements under the same operating conditions |
| Data Processing Error (Type B) | Calibration curve fitting errors, deviations introduced by data filtering and interpolation algorithms |
| Measured Parameter | Type A Uncertainty (uA) | Type B Uncertainty | Combined Standard Uncertainty (uC) | Expanded Uncertainty U | Relative Expanded Uncertainty |
|---|---|---|---|---|---|
| Core Heat Source Temperature (°C) | 0.038 | 0.029 | 0.048 | ±0.096 | <0.1% |
| Ambient Air Pressure (kPa) | 0.085 | 0.577 | 0.583 | ±1.166 | <1.2% |
| Fan Rotational Speed (rpm) | 0.35 | 0.67 | 0.67 | ±1.34 | <0.14% |
| RF Module Power (W) | 0.042 | 0.097 | 0.097 | ±0.194 | <0.24% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xie, B.; Yao, C.; Tan, L.; Guo, J.; Wang, J.; Zhang, H.; Tao, J.; Liu, J. Thermal Management Optimization of Air Transport Racks Based on a Hybrid Framework. Appl. Sci. 2026, 16, 442. https://doi.org/10.3390/app16010442
Xie B, Yao C, Tan L, Guo J, Wang J, Zhang H, Tao J, Liu J. Thermal Management Optimization of Air Transport Racks Based on a Hybrid Framework. Applied Sciences. 2026; 16(1):442. https://doi.org/10.3390/app16010442
Chicago/Turabian StyleXie, Biao, Changfeng Yao, Liang Tan, Jiangyu Guo, Jian Wang, Hui Zhang, Juntong Tao, and Jia Liu. 2026. "Thermal Management Optimization of Air Transport Racks Based on a Hybrid Framework" Applied Sciences 16, no. 1: 442. https://doi.org/10.3390/app16010442
APA StyleXie, B., Yao, C., Tan, L., Guo, J., Wang, J., Zhang, H., Tao, J., & Liu, J. (2026). Thermal Management Optimization of Air Transport Racks Based on a Hybrid Framework. Applied Sciences, 16(1), 442. https://doi.org/10.3390/app16010442

