Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,671)

Search Parameters:
Keywords = thermal integration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3590 KB  
Review
Advances in Flame-Retardant Coatings for Rigid Polyurethane Foams: A Critical Review
by Qinhe Guo, Jiong Chen, Lulu Xu, Min Chen, Yan Zhang, Yi Xiao, Yao Yuan, Kate Nguyen and Wei Wang
Fire 2025, 8(11), 419; https://doi.org/10.3390/fire8110419 (registering DOI) - 28 Oct 2025
Abstract
Rigid polyurethane foams (RPUFs) are essential polymeric materials, prized for their low density, high mechanical strength, and superior thermal insulation, making them indispensable in construction, refrigeration, and transportation. Despite these advantages, their highly porous, carbon-rich structure renders them intrinsically flammable, promoting rapid flame [...] Read more.
Rigid polyurethane foams (RPUFs) are essential polymeric materials, prized for their low density, high mechanical strength, and superior thermal insulation, making them indispensable in construction, refrigeration, and transportation. Despite these advantages, their highly porous, carbon-rich structure renders them intrinsically flammable, promoting rapid flame spread, intense heat release, and the generation of toxic smoke. Traditional strategies to reduce flammability have primarily focused on incorporating additive or reactive flame retardants into the foam matrix, which can effectively suppress combustion but often compromise mechanical integrity, suffer from migration or compatibility issues, and involve complex synthesis routes. Despite recent progress, the long-term stability, scalability, and durability of surface flame-retardant coatings for RPUFs remain underexplored, limiting their practical application in industrial environments. Recent advances have emphasized the development of surface-engineered flame-retardant coatings, including intumescent systems, inorganic–organic hybrids, bio-inspired materials, and nanostructured composites. These coatings form protective interfaces that inhibit ignition, restrict heat and mass transfer, promote char formation, and suppress smoke without altering the intrinsic properties of RPUFs. Emerging deposition methods, such as layer-by-layer assembly, spray coating, ultraviolet (UV) curing, and brush application, enable precise control over thickness, uniformity, and adhesion, enhancing durability and multifunctionality. Integrating bio-based and hybrid approaches further offers environmentally friendly and sustainable solutions. Collectively, these developments demonstrate the potential of surface-engineered coatings to achieve high-efficiency flame retardancy while preserving thermal and mechanical performance, providing a pathway for safe, multifunctional, and industrially viable RPUFs. Full article
(This article belongs to the Special Issue Smart Firefighting Technologies and Advanced Materials)
35 pages, 8558 KB  
Article
Towards Improved Efficiency of Low-Grade Solar Thermal Cooling: An RSM-Based Multi-Objective Optimization Study
by Abdelmajid Saoud and Joan Carles Bruno
Appl. Sci. 2025, 15(21), 11518; https://doi.org/10.3390/app152111518 - 28 Oct 2025
Abstract
This study investigates an integrated solar-driven single-effect H2O–LiBr absorption chiller powered by low-grade thermal energy. A detailed thermodynamic model, comprising a solar collector, a thermal storage tank, and an absorption cycle, was developed using the Engineering Equation Solver (EES) software V10.561. [...] Read more.
This study investigates an integrated solar-driven single-effect H2O–LiBr absorption chiller powered by low-grade thermal energy. A detailed thermodynamic model, comprising a solar collector, a thermal storage tank, and an absorption cycle, was developed using the Engineering Equation Solver (EES) software V10.561. A comprehensive parametric analysis and multi-objective optimization were then conducted to enhance both the energy and exergy performance of the system. The Response Surface Methodology (RSM), based on the Box–Behnken Design, was employed to develop regression models validated through analysis of variance (ANOVA). The generator temperature (78–86 °C), evaporator temperature (2.5–6.5 °C), and absorber/condenser temperature (30–40 °C) were selected as key variables. According to the results, the single-objective analyses revealed maximum values of COP = 0.8065, cooling capacity = 20.72 kW, and exergy efficiency = 39.29%. Subsequently, the multi-objective RSM optimization produced a balanced global optimum with COP = 0.797, cooling capacity = 20.68 kW, and exergy efficiency = 36.93%, achieved under optimal operating conditions of 78 °C generator temperature, 6.5 °C evaporator temperature, and 30 °C absorber/condenser temperature. The obtained results confirm the significance of the proposed low-grade solar absorption chiller, demonstrating comparable or superior performance to recent studies (e.g., COP ≈ 0.75–0.80 and ≈ 35–37%). This agreement validates the RSM-based optimization approach and confirms the system’s suitability for sustainable cooling applications in low-temperature solar environments. Full article
(This article belongs to the Section Applied Thermal Engineering)
19 pages, 3034 KB  
Review
Degradation Mechanisms in Quantum-Dot Light-Emitting Diodes: A Perspective on Nondestructive Analysis
by Hyunho Lee
Int. J. Mol. Sci. 2025, 26(21), 10465; https://doi.org/10.3390/ijms262110465 (registering DOI) - 28 Oct 2025
Abstract
Quantum-dot light-emitting diodes (QLEDs) have emerged as promising candidates for next-generation display technologies owing to their high color purity and external quantum efficiency. Despite rapid advancements in device performance, operational stability and long-term reliability remain critical challenges, particularly for cadmium-free and blue-emitting QLEDs. [...] Read more.
Quantum-dot light-emitting diodes (QLEDs) have emerged as promising candidates for next-generation display technologies owing to their high color purity and external quantum efficiency. Despite rapid advancements in device performance, operational stability and long-term reliability remain critical challenges, particularly for cadmium-free and blue-emitting QLEDs. This review provides a comprehensive overview of the degradation mechanisms of QLEDs, emphasizing the relationship between environmental factors, such as moisture, oxygen, and thermal stress, and excitonic factors, including charge-injection imbalance, Auger recombination, and interface deterioration. We further highlight the role of nondestructive characterization techniques, including impedance spectroscopy, Fourier transform infrared spectroscopy, transient photoluminescence, transient electroluminescence, transient absorption, and electroabsorption spectroscopy, in probing real-time charge dynamics and material degradation. By integrating the insights from these operando analyses, this review offers a detailed perspective on the origins of device degradation and provides guidance for rational design strategies aimed at enhancing the operational stability and commercialization potential of QLEDs. Full article
(This article belongs to the Special Issue Research on Luminescent Materials and Their Luminescence Mechanism)
Show Figures

Figure 1

8 pages, 1403 KB  
Proceeding Paper
Transient Analysis of Solar Driven Hydrogen Generation System Using Industrial Waste Water
by Yasir Ismail Saad, Muzaffar Ali, Javed Akhtar, Muhammad Usman, Muhammad Taha Manzoor, Müslüm Arıcı and Muhammad Aqil Khan
Eng. Proc. 2025, 111(1), 29; https://doi.org/10.3390/engproc2025111029 (registering DOI) - 28 Oct 2025
Abstract
This study investigates an integrated solar-powered system for wastewater treatment and hydrogen production, combining solar PV, a humidification–dehumidification (HDH) system, solar thermal collectors, and electrolysis. The objective is to evaluate the feasibility of utilizing industrial wastewater for both clean water production and green [...] Read more.
This study investigates an integrated solar-powered system for wastewater treatment and hydrogen production, combining solar PV, a humidification–dehumidification (HDH) system, solar thermal collectors, and electrolysis. The objective is to evaluate the feasibility of utilizing industrial wastewater for both clean water production and green hydrogen generation. A transient analysis is conducted using TRNSYS and EES software, modeling a system designed to process 4000 kg of wastewater daily. The results indicate that the HDH system produces 300 kg of clean water per hour, while the electrolyzer generates approximately 66.5 kg of hydrogen per hour. The solar PV system operates under the weather conditions of Kohat, Pakistan. This integrated approach demonstrates significant potential for sustainable wastewater treatment and renewable energy production, offering a promising solution for industrial applications. Full article
Show Figures

Figure 1

27 pages, 3199 KB  
Article
Heat Loss Calculation of the Electric Drives
by Tamás Sándor, István Bendiák, Döníz Borsos and Róbert Szabolcsi
Machines 2025, 13(11), 988; https://doi.org/10.3390/machines13110988 (registering DOI) - 28 Oct 2025
Abstract
In the realm of sustainable public transportation, the integration of intelligent electric bus propulsion systems represents a novel and promising approach to reducing environmental impact—particularly through the mitigation of NOx emissions and overall exhaust pollutants. This emerging technology underscores the growing need for [...] Read more.
In the realm of sustainable public transportation, the integration of intelligent electric bus propulsion systems represents a novel and promising approach to reducing environmental impact—particularly through the mitigation of NOx emissions and overall exhaust pollutants. This emerging technology underscores the growing need for advanced drive control architectures that ensure not only operational safety and reliability but also compliance with increasingly stringent emissions standards. The present article introduces an innovative analysis of energy-optimized dual-drive electric propulsion systems, with a specific focus on their potential for real-world application in emission-conscious urban mobility. A detailed dynamic model of a dual-drive electric bus was developed in MATLAB Simulink, incorporating a Fuzzy Logic-based decision-making algorithm embedded within the Transmission Control Unit (TCU). The proposed control architecture includes a torque-limiting safety strategy designed to prevent motor overspeed conditions, thereby enhancing both efficiency and mechanical integrity. Furthermore, the system architecture enables supervisory override of the Fuzzy Inference System (FIS) during critical scenarios, such as gear-shifting transitions, allowing adaptive control refinement. The study addresses the unique control and coordination challenges inherent in dual-drive systems, particularly in relation to optimizing gear selection for reduced energy consumption and emissions. Key areas of investigation include maximizing efficiency along the motor torque–speed characteristic, maintaining vehicular dynamic stability, and minimizing thermally induced performance degradation. The thermal modeling approach is grounded in integral formulations capturing major loss contributors including copper, iron, and mechanical losses while also evaluating convective heat transfer mechanisms to improve cooling effectiveness. These insights confirm that advanced thermal management is not only vital for performance optimization but also plays a central role in supporting long-term strategies for emission reduction and clean, efficient public transportation. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

17 pages, 3227 KB  
Article
Study of Scenario Analysis of the Electricity Market of Kazakhstan Using Renewable Energy Sources on the PyPSA Tool
by Ruslan Omirgaliyev, Adema Shauyenova, Nargiz Merlenkyzy, Akniyet Maulen and Nurkhat Zhakiyev
Appl. Sci. 2025, 15(21), 11497; https://doi.org/10.3390/app152111497 - 28 Oct 2025
Abstract
This study presents a scenario analysis of Kazakhstan’s electricity market using the PyPSA-KZ model, with a focus on the integration of renewable energy sources (RES). As Kazakhstan transitions towards a low-carbon economy, this study evaluates the technical and economic implications of increasing RES [...] Read more.
This study presents a scenario analysis of Kazakhstan’s electricity market using the PyPSA-KZ model, with a focus on the integration of renewable energy sources (RES). As Kazakhstan transitions towards a low-carbon economy, this study evaluates the technical and economic implications of increasing RES penetration under various scenarios, ranging from 10% to 60% RES shares, with projections targeted for the year 2030. The study simulates system behavior across scenarios and analyzes key indicators, including total system cost, electricity tariff, generation mix, thermal ramping, and CO2 emissions. Results indicate that up to 30% RES integration is feasible without significant structural changes, delivering reduced system costs and emissions. However, scenarios beyond 30% reveal growing flexibility challenges, necessitating investment in grid modernization, energy storage, and flexible backup capacity. The model outcomes are benchmarked against the International Energy Agency’s 2030 carbon neutrality scenarios and show strong alignment, particularly at 45% RES share. Comparative insights are also drawn from international experiences in Denmark and China. This research demonstrates that the PyPSA-KZ model is a powerful tool for planning Kazakhstan’s energy transition and offers data-driven recommendations to support national energy security and climate goals. Full article
Show Figures

Figure 1

12 pages, 2322 KB  
Article
Engineering Thermal Cross-Linking in Nanofiltration Membranes for Efficient Nicotine Extraction from Tobacco Extract
by He Du, Xinyuan Wang, Baodan Na, Yajun Ye, Yuemei Qiao, Linda Li, Ye Tian, Xiaoping Ning, Zhigang Wang, Xingquan Zhao and Chen Chen
Membranes 2025, 15(11), 327; https://doi.org/10.3390/membranes15110327 - 28 Oct 2025
Abstract
Tobacco extract contains numerous valuable components, among which nicotine possesses significant potential for high-value applications despite its well-known health risks. However, the efficient extraction of nicotine is challenging due to the complex composition of tobacco extracts and the limitations of conventional separation techniques. [...] Read more.
Tobacco extract contains numerous valuable components, among which nicotine possesses significant potential for high-value applications despite its well-known health risks. However, the efficient extraction of nicotine is challenging due to the complex composition of tobacco extracts and the limitations of conventional separation techniques. In this work, an integrally asymmetric nanofiltration membrane was developed via thermal cross-linking for highly efficient nicotine separation. A poly(aryl ether ketone) (PEK)-based ultrafiltration membrane was first prepared via non-solvent induced phase separation (NIPS), followed by controlled thermal cross-linking to tailor the membrane pore size toward the molecular weight of nicotine. To mitigate pore collapse and enhance flux, TiO2 nanoparticles were incorporated in situ through a sol–gel method. The resulting thermally cross-linked membrane exhibited a molecular weight cut-off of ~180 Da, a nicotine rejection rate of 93.2%, and a permeation flux of 143 L/(m2·h)—representing a 259% increase over the control membrane. Moreover, the thermally cross-linked membranes demonstrated exceptional chemical stability in various organic solvents and extreme pH conditions. This work offers a feasible and sustainable strategy for fabric high-performance nanofiltration membranes for the targeted extraction of bioactive molecules from complex plant extracts. Full article
(This article belongs to the Special Issue Applications of Membrane Filtration and Separation)
Show Figures

Figure 1

16 pages, 4229 KB  
Article
In Situ Construction of 2D/2D g-C3N4/rGO Hybrid Photocatalysts for Efficient Ciprofloxacin Degradation
by Mengyao Wang, Yong Li, Rui Li, Yali Zhang, Deyun Yue, Shihao Zhao, Maosong Chen and Haojie Song
Nanomaterials 2025, 15(21), 1641; https://doi.org/10.3390/nano15211641 - 28 Oct 2025
Abstract
Insufficient harvesting of visible photons, limited adsorption, and fast recombination of photogenerated electron-hole pairs restrict the application of graphitic carbon nitride (g-C3N4). Here, we propose a straightforward solid-phase synthesis method for fabricating 2D/2D graphitic carbon nitride/reduced graphene oxide (SCN/GR) [...] Read more.
Insufficient harvesting of visible photons, limited adsorption, and fast recombination of photogenerated electron-hole pairs restrict the application of graphitic carbon nitride (g-C3N4). Here, we propose a straightforward solid-phase synthesis method for fabricating 2D/2D graphitic carbon nitride/reduced graphene oxide (SCN/GR) hybrid photocatalysts. The synthesis process involves the thermal condensation of three precursors: dicyandiamide (as the g-C3N4 source), NH4Cl (as a pore-forming agent), and graphene oxide (GO, which is in situ reduced to rGO during thermal treatment). The incorporation of reduced graphene oxide (rGO) into the g-C3N4 matrix not only narrows the bandgap of the material but also expedites the separation of photogenerated carriers. The photocatalytic activity of the SCN/GR hybrid was systematically evaluated by degrading ciprofloxacin in aqueous solution under different light conditions. The results demonstrated remarkable degradation efficiency: 72% removal within 1 h under full-spectrum light, 81% under UV light, and 52% under visible light. Notably, the introduction of rGO significantly improved the visible light absorption capacity of g-C3N4. Additionally, SCN/GR exhibits exceptional cyclic stability, maintaining its structural integrity and photocatalytic properties unchanged across five successive degradation cycles. This study offers a simple yet effective pathway to synthesize 2D/2D composite photocatalysts, which hold significant promise for practical applications in water treatment processes. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

36 pages, 2322 KB  
Review
Photovoltaic-Thermal (PVT) Solar Collector and System Overview
by Sahand Hosouli, Mansoureh Aliakbari, Forough Raeisi, Muhammad Talha Jahangir, João Gomes, Damu Murali and Iván P. Acosta Pazmiño
Energies 2025, 18(21), 5643; https://doi.org/10.3390/en18215643 (registering DOI) - 27 Oct 2025
Abstract
Photovoltaic-thermal (PVT) solar collector technologies are considered a highly efficient solution for sustainable energy generation, capable of producing electricity and heat simultaneously. This paper reviews and discusses different aspects of PVT collectors, including fundamental principles, materials, diverse classifications, such as air-type and water-type, [...] Read more.
Photovoltaic-thermal (PVT) solar collector technologies are considered a highly efficient solution for sustainable energy generation, capable of producing electricity and heat simultaneously. This paper reviews and discusses different aspects of PVT collectors, including fundamental principles, materials, diverse classifications, such as air-type and water-type, and different cooling mechanisms to boost their performance, such as nano-fluids, Phase Change Materials (PCMs), and Thermoelectric Generators (TEGs). At the system level, this paper analyses PVT technologies’ integration in buildings and industrial applications and gives a comprehensive market overview. The methodology focused on evaluating advancements in design, thermal management, and overall system efficiency based on existing literature published from 2010 to 2025. From the findings of various studies, water-based PVT systems provide electrical efficiencies ranging from 8% to 22% and thermal efficiencies between 30% and 70%, which are almost always higher than air-based alternatives. Innovations, including nanofluids, phase change materials, and hybrid topologies, have improved energy conversion and storage. Market data indicates growing adoption in Europe and Asia, stressing significant investments led by Sunmaxx, Abora Solar, Naked Energy, and DualSun. Nonetheless, obstacles to PVT arise regarding aspects such as cost, design complexity, lack of awareness, and economic incentives. According to the findings of this study, additional research is required to reduce the operational expenses of such systems, improve system integration, and build supportive policy frameworks. This paper offers guidance on PVT technologies and how they can be integrated into different setups based on current normativity and regulatory frameworks. Full article
Show Figures

Figure 1

25 pages, 4176 KB  
Article
Aluminothermic Recovery of Strategic Ferroalloys from Ladle Slag: An Integrated Thermodynamic and Experimental Approach
by Filippo Disconzi, Maurizio Bellotto, Riccardo Frazzetto, Katya Brunelli, Matteo Ardit and Gilberto Artioli
Minerals 2025, 15(11), 1121; https://doi.org/10.3390/min15111121 - 27 Oct 2025
Abstract
Ladle slag (LF slag) is a by-product of secondary steelmaking that presents unique valorization challenges compared to BOF or EAF slags due to its distinctive chemical composition (high Al2O3 and CaO content) and uncontrolled hydraulic activity. While other steelmaking slags [...] Read more.
Ladle slag (LF slag) is a by-product of secondary steelmaking that presents unique valorization challenges compared to BOF or EAF slags due to its distinctive chemical composition (high Al2O3 and CaO content) and uncontrolled hydraulic activity. While other steelmaking slags can be reused as supplementary cementitious materials or aggregates, LF slag is predominantly landfilled, with over 2 million tons discarded annually in Europe alone. This study introduces a novel pyrometallurgical valorization strategy that, unlike conventional approaches focused solely on mineral recovery, simultaneously recovers both metallic and mineral value through aluminothermic reduction. This process utilizes end-of-waste aluminum scrap rather than virgin materials to reduce Fe and Si oxides, creating a circular economy solution that addresses two waste streams simultaneously. The process generates two valuable products with low liquidus temperatures: a ferrosilicon alloy (FeSi15-50 grade) and a residual oxide rich in calcium and magnesium aluminates suitable for cementitious or ceramic applications. Through the integration of FactSage thermodynamic simulations with experimental validation, it is possible to predict and control phase evolution during equilibrium cooling, an approach not previously applied to LF slag valorization. Experimental validation using industrial slags confirms the theoretical predictions and demonstrates the process operates in a near-energy-neutral, self-sustaining mode by recovering both chemical and sensible thermal energy (50–100 kWh per ton of slag). This represents approximately 90% lower energy consumption compared to conventional ferrosilicon production. The work provides a comprehensive and scalable approach to transform a problematic waste material into valuable products, supporting circular economy principles and low-carbon metallurgy objectives. Full article
Show Figures

Figure 1

38 pages, 5872 KB  
Review
Faults, Failures, Reliability, and Predictive Maintenance of Grid-Connected Solar Systems: A Comprehensive Review
by Karl Kull, Bilal Asad, Muhammad Amir Khan, Muhammad Usman Naseer, Ants Kallaste and Toomas Vaimann
Appl. Sci. 2025, 15(21), 11461; https://doi.org/10.3390/app152111461 - 27 Oct 2025
Abstract
This paper reviews recent progress in fault detection, reliability analysis, and predictive maintenance methods for grid-connected solar photovoltaic (PV) systems. With the rising adoption of solar power globally, maintaining system reliability and performance is vital for a sustainable energy supply. Common faults discussed [...] Read more.
This paper reviews recent progress in fault detection, reliability analysis, and predictive maintenance methods for grid-connected solar photovoltaic (PV) systems. With the rising adoption of solar power globally, maintaining system reliability and performance is vital for a sustainable energy supply. Common faults discussed include panel degradation, electrical issues, inverter failures, and grid disturbances, all of which affect system efficiency and safety. While traditional diagnostics like thermal imaging and V-I curve analysis offer valuable insights, they mostly detect issues reactively. New approaches using Artificial Intelligence (AI), Machine Learning (ML), and Internet of Things (IoT) enable real-time monitoring and predictive diagnostics, significantly enhancing accuracy and reliability. This study represents the introduction of a consolidated decision framework and taxonomy that systematically integrates and evaluates the fault types, symptoms, signals, diagnostics, and field-readiness across both plant types and voltage levels. Moreover, this study provides quantitative benchmarks of performance metrics, energy losses, and diagnostic accuracies of 95% confidence intervals. Adopting these advanced techniques promotes proactive management, reducing operational risks and downtime, thus reinforcing the resilience and sustainability of solar power infrastructure. Full article
(This article belongs to the Special Issue Feature Review Papers in Energy Science and Technology)
Show Figures

Figure 1

19 pages, 3047 KB  
Article
Thermal Management of Wide-Bandgap Power Semiconductors: Strategies and Challenges in SiC and GaN Power Devices
by Gyuyeon Han, Junseok Kim, Sanghyun Park and Wongyu Bae
Electronics 2025, 14(21), 4193; https://doi.org/10.3390/electronics14214193 (registering DOI) - 27 Oct 2025
Abstract
Wide-Bandgap (WBG) semiconductors—silicon carbide (SiC) and gallium nitride (GaN)— enable high-power-density conversion, but performance is limited by where heat is generated and how it is removed. This review links device-level loss mechanisms (conduction and switching, including output-capacitance hysteresis and dynamic on-resistance) to structure-driven [...] Read more.
Wide-Bandgap (WBG) semiconductors—silicon carbide (SiC) and gallium nitride (GaN)— enable high-power-density conversion, but performance is limited by where heat is generated and how it is removed. This review links device-level loss mechanisms (conduction and switching, including output-capacitance hysteresis and dynamic on-resistance) to structure-driven hot spots within the ultra-thin (tens of nanometers) two-dimensional electron gas (2DEG) channel of GaN HEMTs and to thermal boundary resistance at layer interfaces. We compare wire-bondless package concepts—double-sided cooling, embedded packaging, and interleaved planar layouts—and survey system-level cooling that shortens the conduction path and raises heat-transfer coefficients. The impact on reliability is discussed using temperature-sensitive electrical parameters (e.g., on-state VDS, threshold voltage, drain leakage, di/dt, and gate current) for real-time junction-temperature estimation and compact electro-thermal RC models for remaining-useful-life prediction. Evidence from recent literature points to interface resistance in GaN-on-SiC as a primary bottleneck, while near-junction cooling and advanced packages are effective mitigations. We argue for integrated co-design—devices, packaging, electromagnetic interference (EMI)-aware layout, and cooling—together with interface engineering and health monitoring to deliver reliable, high-density WBG systems. Full article
(This article belongs to the Topic Wide Bandgap Semiconductor Electronics and Devices)
Show Figures

Figure 1

27 pages, 3330 KB  
Article
Low-Carbon Economic Dispatch Method for Integrated Energy in Aluminum Electrolysis Considering Production Safety Constraints
by Yulong Yang, Songyuan Li, Songnan Wang and Ruiming Zhang
Processes 2025, 13(11), 3442; https://doi.org/10.3390/pr13113442 - 27 Oct 2025
Abstract
The aluminum electrolysis industry is a typical high-energy-consumption and high-carbon-emission sector, and its low-carbon transformation is crucial for achieving “dual-carbon” goals. However, aluminum electrolysis is constrained by thermodynamic safety limits, and conventional dispatch models also often overlook carbon emission trading and the integrated [...] Read more.
The aluminum electrolysis industry is a typical high-energy-consumption and high-carbon-emission sector, and its low-carbon transformation is crucial for achieving “dual-carbon” goals. However, aluminum electrolysis is constrained by thermodynamic safety limits, and conventional dispatch models also often overlook carbon emission trading and the integrated utilization of waste heat. To address these challenges, a low-carbon economic dispatch method considering production safety constraints is proposed in the paper for integrated energy systems in aluminum electrolysis, aiming to enhance wind power utilization and ensure operational safety. First, a load model incorporating thermodynamic safety constraints is developed, and a thermal dynamics equation of electrolytic cells is established to characterize the temperature dynamics of aluminum loads. Then, a bi-level optimization framework for the power–aluminum system is constructed: the upper level minimizes grid power-supply costs by coordinating thermal, wind, and photovoltaic generation, while the lower level maximizes enterprise profit, balancing production safety and economic efficiency to achieve coordination between the system and enterprise layers. Finally, a tiered carbon trading mechanism and waste heat heating model are integrated into the framework, combined with a second-order RC building thermal inertia model to realize coordinated optimization among electricity, heat, and carbon flows. The simulation results demonstrate that the proposed method effectively reduces carbon emissions while ensuring electrolytic cell safety: with carbon trading, emissions decrease by 7.2%; when incorporating waste heat utilization reduces boiler heating emissions, they decrease by 74.7%; and further considering building thermal inertia increases wind power utilization to 99.6%, achieving the coordinated optimization of electricity–heat–carbon systems. Full article
Show Figures

Figure 1

31 pages, 3314 KB  
Review
Harnessing Edible Insect Bioactives for Gut Health: A Comprehensive Review on Chitin-Derived Prebiotics and Peptidomic Insights from the Black Soldier Fly
by Thamer Alhasyani, Tarek Ebeid, Mohamed Ghonimy, Saif Alharbi, Mohamed F. Y. Hassan, Abdullah Jarallah, Mohammed Alkhurayji, Ahmed A. H. Abdellatif and Hassan Barakat
Foods 2025, 14(21), 3654; https://doi.org/10.3390/foods14213654 (registering DOI) - 27 Oct 2025
Abstract
The growing need for sustainable protein and functional food ingredients has made edible insects stand out as a flexible source of bioactives. Black Soldier Fly larva (BSFL) bioactives, such as chitooligosaccharides (COSs) and peptides, present potential benefits for gut health; nevertheless, their molecular [...] Read more.
The growing need for sustainable protein and functional food ingredients has made edible insects stand out as a flexible source of bioactives. Black Soldier Fly larva (BSFL) bioactives, such as chitooligosaccharides (COSs) and peptides, present potential benefits for gut health; nevertheless, their molecular pathways, clinical validation, and commercial scalability have yet to be thoroughly investigated. This study systematically analyzes current progress in BSFL bioactive extraction and characterization, emphasizing enzymatic and thermal processing, controlled enzyme development, and integrated supercritical fluid enzymatic pipelines. We assess preclinical and animal research that illustrates prebiotic modulation of Bifidobacterium, Lactobacillus, and Faecalibacterium populations; antimicrobial peptide-mediated immune signaling; and antioxidant activity. Multi-omics frameworks that connect the microbial metabolism of COS to gut health help us understand how these processes function. A comparison of the regulatory environments for food and feed applications in the EU, North America, and Asia shows that there are gaps in human safety trials, harmonized standards, and techno-economic assessments. Finally, we suggest some next steps: randomized controlled human trials in groups with irritable bowel syndrome (IBS) and metabolic syndrome; standardized data integration pipelines for multi-omics; and life cycle and cost–benefit analyses of modular, vertically integrated BSFL biorefineries with AI-driven reactors, digital twins, and blockchain traceability. Addressing these issues will hasten the conversion of BSFL bioactives into safe, effective, and sustainable functional meals and nutraceuticals. Full article
Show Figures

Figure 1

21 pages, 795 KB  
Article
Evaluation Method for the Development Effect of Reservoirs with Multiple Indicators in the Liaohe Oilfield
by Feng Ye, Yong Liu, Junjie Zhang, Zhirui Guan, Zhou Li, Zhiwei Hou and Lijuan Wu
Energies 2025, 18(21), 5629; https://doi.org/10.3390/en18215629 (registering DOI) - 27 Oct 2025
Abstract
To address the limitation that single-index evaluation fails to fully reflect the development performance of reservoirs of different types and at various development stages, a multi-index comprehensive evaluation system featuring the workflow of “index screening–weight determination–model evaluation–strategy guidance” was established. Firstly, the grey [...] Read more.
To address the limitation that single-index evaluation fails to fully reflect the development performance of reservoirs of different types and at various development stages, a multi-index comprehensive evaluation system featuring the workflow of “index screening–weight determination–model evaluation–strategy guidance” was established. Firstly, the grey correlation analysis method (with a correlation degree threshold set at 0.65) was employed to screen 12 key evaluation indicators, including reservoir physical properties (porosity, permeability) and development dynamics (recovery factor, water cut, well activation rate). Subsequently, the fuzzy analytic hierarchy process (FAHP, for subjective weighting, with the consistency ratio (CR) of expert judgments < 0.1) was coupled with the attribute measurement method (for objective weighting, with information entropy redundancy < 5%) to determine the indicator weights, thereby balancing the influences of subjective experience and objective data. Finally, two evaluation models, namely the fuzzy comprehensive decision-making method and the unascertained measurement method, were constructed to conduct evaluations on 308 reservoirs in the Liaohe Oilfield (covering five major categories: integral medium–high-permeability reservoirs, complex fault-block reservoirs, low-permeability reservoirs, special lithology reservoirs, and thermal recovery heavy oil reservoirs). The results indicate that there are 147 high-efficiency reservoirs categorized as Class I and Class II in total. Although these reservoirs account for 47.7% of the total number, they control 71% of the geological reserves (154,548 × 104 t) and 78% of the annual oil production (738.2 × 104 t) in the oilfield, with an average well activation rate of 65.4% and an average recovery factor of 28.9. Significant quantitative differences are observed in the development characteristics of different reservoir types: Integral medium–high-permeability reservoirs achieve an average recovery factor of 37.6% and an average well activation rate of 74.1% by virtue of their excellent physical properties (permeability mostly > 100 mD), with Block Jin 16 (recovery factor: 56.9%, well activation rate: 86.1%) serving as a typical example. Complex fault-block reservoirs exhibit optimal performance at the stage of “recovery degree > 70%, water cut ≥ 90%”, where 65.6% of the blocks are classified as Class I, and the recovery factor of blocks with a “good” rating (42.3%) is 1.8 times that of blocks with a “poor” rating (23.5%). For low-permeability reservoirs, blocks with a rating below medium grade account for 68% of the geological reserves (8403.2 × 104 t), with an average well activation rate of 64.9%. Specifically, Block Le 208 (permeability < 10 mD) has an annual oil production of only 0.83 × 104 t. Special lithology reservoirs show polarized development performance, as Block Shugu 1 (recovery factor: 32.0%) and Biantai Buried Hill (recovery factor: 20.4%) exhibit significantly different development effects due to variations in fracture–vug development. Among thermal recovery heavy oil reservoirs, ultra-heavy oil reservoirs (e.g., Block Du 84 Guantao, with a recovery factor of 63.1% and a well activation rate of 92%) are developed efficiently via steam flooding, while extra-heavy oil reservoirs (e.g., Block Leng 42, with a recovery factor of 19.6% and a well activation rate of 30%) are constrained by reservoir heterogeneity. This system refines the quantitative classification boundaries for four development levels of water-flooded reservoirs (e.g., for Class I reservoirs in the high water cut stage, the recovery factor is ≥35% and the water cut is ≥90%), as well as the evaluation criteria for different stages (steam huff and puff, steam flooding) of thermal recovery heavy oil reservoirs. It realizes the transition from traditional single-index qualitative evaluation to multi-index quantitative evaluation, and the consistency between the evaluation results and the on-site development adjustment plans reaches 88%, which provides a scientific basis for formulating development strategies for the Liaohe Oilfield and other similar oilfields. Full article
Show Figures

Figure 1

Back to TopTop