Study of Scenario Analysis of the Electricity Market of Kazakhstan Using Renewable Energy Sources on the PyPSA Tool
Abstract
1. Introduction
2. Literature Review
2.1. General Structure of Kazakhstan’s Electricity Market
2.2. Energy Challenges in Kazakhstan
2.3. Energy System Modeling
2.3.1. PyPSA
2.3.2. PyPSA-Earth
2.3.3. PyPSA-KZ
3. Methodology
3.1. Model Description
3.2. Scenario Design
3.3. Verification & Validation of Model
3.4. Limitations
4. Results
4.1. Total System Cost and Tariff
4.2. Thermal Ramping of Generators
4.3. Generation Mix for 2030
4.4. Assessment of Mitigation of CO2 Emissions
4.5. Quantitative Validation of Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- KEGOC. Energy of Future Achievements. 2023. Available online: https://www.kegoc.kz/upload/iblock/2dc/hvvq26n4xdmko8v7vphd3u3a62rx05tf.pdf (accessed on 29 August 2025).
- Kazenergy Association. The National Energy Report Kazenergy 2023 Kazakhstan Association of Oil, Gas and Energy Sector Organizations. 2023. Available online: https://www.kazenergy.com/upload/document/energy-report/NationalReport23_en.pdf (accessed on 29 August 2025).
- Zhakiyev, N.; Akhmetov, Y.; Omirgaliyev, R.; Mukatov, B.; Baisakalova, N.; Zhakiyeva, S.; Kazbekov, B. Comprehensive Scenario Analyses for Coal Exit and Renewable Energy Development Planning of Kazakhstan Using PyPSA-KZ. Eng. Sci. 2024, 29, 1085. [Google Scholar] [CrossRef]
- Velinov, E.; Petrenko, Y.; Vechkinzova, E.; Denisov, I.; Siguencia, L.O.; Szostak, Z.G. “Leaky Bucket” of Kazakhstan’s Power Grid: Losses and Inefficient Distribution of Electric Power. Energies 2020, 13, 2947. [Google Scholar] [CrossRef]
- Vechkinzova, E.; Petrenko, Y.; Matkovskaya, Y.S.; Koshebayeva, G. The Dilemma of Long-Term Development of the Electric Power Industry in Kazakhstan. Energies 2021, 14, 2374. [Google Scholar] [CrossRef]
- KOREM. Korem Annual Report 2022. 2022. Available online: https://www.korem.kz/eng/o_kompanii/godovye_otchety/ (accessed on 29 August 2025).
- Haas, R.; Kemfert, C.; Auer, H.; Ajanovic, A.; Sayer, M.; Hiesl, A. On the economics of storage for electricity: Current state and future market design prospects. WIREs Energy Environ. 2022, 11, e431. [Google Scholar] [CrossRef]
- International Energy Agency. Kazakhstan 2022 Energy Sector Review. 2022. Available online: https://www.iea.org/reports/kazakhstan-2022 (accessed on 29 August 2025).
- PricewaterhouseCoopers. Energy Transition in Kazakhstan—Back to the Sustainable Future. 2023. Available online: https://www.pwc.com/kz/en/energy-report.html (accessed on 29 August 2025).
- Boute, A. Regulatory Stability and Renewable Energy Investment: The Case of Kazakhstan. Renew. Sustain. Energy Rev. 2020, 121, 109673. [Google Scholar] [CrossRef]
- Temirgaliyeva, N.; Junussova, M. Renewable Electricity Production and Sustainability of the National and Regional Power Systems of Kazakhstan. Silk Road J. Eurasian Dev. 2020, 2, 35–53. [Google Scholar] [CrossRef]
- Sitenko, D.; Gordeyeva, Y.; Sabyrzhan, A.; Syzdykova, E. Implementation of Innovative Technologies in Kazakhstan: A Case of the Energy Sector. Probl. Perspect. Manag. 2023, 21, 179–188. [Google Scholar] [CrossRef]
- Bespalyy, S.; Bespalaya, Y. Balancing Electricity and Integrating Renewable Energy Facilities into the Unified Energy System of Kazakhstan: Challenges and Opportunities. E3S Web Conf. 2025, 623, 03001. [Google Scholar] [CrossRef]
- Mouraviev, N. Renewable energy in Kazakhstan: Challenges to policy and governance. Energy Policy 2021, 149, 112051. [Google Scholar] [CrossRef]
- Neafie, J.; Kenzhetayev, K.; Laichinova, A.; Mavletova, S.; Tulegenova, A.; Ramazanova, Z.; Bayramov, E. Energy transition governance in an emerging economy: Opportunities and threats on the road to a sustainable future in Kazakhstan. Environ. Res. Lett. 2025, 20, 084007. [Google Scholar] [CrossRef]
- Brown, T.; Hörsch, J.; Schlachtberger, D. PyPSA: Python for Power System Analysis. J. Open Res. Softw. 2017, 6, 4. [Google Scholar] [CrossRef]
- Sharma, R.; Dhillon, J. PyPSA: Open Source Python Tool for Load Flow Study. J. Phys. Conf. Ser. 2021, 1854, 012036. [Google Scholar] [CrossRef]
- Hörsch, J.; Hofmann, F.; Schlachtberger, D.; Brown, T. PyPSA-Eur: An Open Optimisation Model of the European Transmission System. Energy Strategy Rev. 2018, 22, 207–215. [Google Scholar] [CrossRef]
- Fioriti, D.; Papavasileiou, A.; Brown, T.; Hörsch, J.; Hofmann, F.; Parzen, M. Country-Wise Open Energy Planning in High-Resolution with PyPSA-Earth. In Proceedings of the 2023 International Conference on Smart Energy Systems and Technologies (SEST), Mugla, Turkiye, 4–6 September 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Tehranchi, K.; Barnes, T.; Frysztacki, M.; Azevedo, I. PyPSA-USA: A Flexible Open-Source Energy System Model and Optimization Tool for the United States. SSRN Prepr. 2024. [Google Scholar] [CrossRef]
- Parzen, M.; Brown, T.; Fioriti, D.; Papavasileiou, A.; Hörsch, J. PyPSA-Earth: A New Global Open Energy System Optimization Model Demonstrated in Africa. Appl. Energy 2023, 341, 121096. [Google Scholar] [CrossRef]
- Assembayeva, M.; Egerer, J.; Mendelevitch, R.; Zhakiyev, N. Spatial electricity market data for the power system of Kazakhstan. Data Brief 2019, 23, 103781. [Google Scholar] [CrossRef] [PubMed]
- Zhakiyev, N.; Burkhanova, D.; Nurkanat, A.; Zhussipkaliyeva, S.; Sospanova, A.; Khamzina, A. Green energy in grey areas: The financial and policy challenges of Kazakhstan’s energy transition. Energy Res. Soc. Sci. 2025, 124, 104046. [Google Scholar] [CrossRef]
- Zhakiyev, N.; Khamzina, A.; Zhakiyeva, S.; De Miglio, R.; Bakdolotov, A.; Cosmi, C. Optimization Modelling of the Decarbonization Scenario of the Total Energy System of Kazakhstan until 2060. Energies 2023, 16, 5142. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Building a Unified National Power Market System in China; International Energy Agency: Paris, France, 2023. [Google Scholar] [CrossRef]
- Hou, M.Z.; Luo, J.; Huang, L.; Beck, H.-P.; Mehmood, F.; Wang, Q.; Wu, X.; Wu, L.; Yue, Y.; Fang, Y.; et al. Strategies toward carbon neutrality: Comparative analysis of China, USA, and Germany. Carbon Neutral Syst. 2025, 1, 3. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Denmark 2023—Analysis. 2023. Available online: https://www.iea.org/reports/denmark-2023 (accessed on 29 August 2025).
- Lund, H.; Münster, M.; Werner, S.; Mathiesen, A.; Weinberger, J.; Zvingilaite, F. Smart Energy Denmark: A Consistent and Detailed Strategy for a Fully Decarbonized Society. Renew. Sustain. Energy Rev. 2022, 168, 112777. [Google Scholar] [CrossRef]
- Chen, H.; He, L.; Chen, J.; Yuan, B.; Huang, T.; Cui, Q. Impacts of Clean Energy Substitution for Polluting Fossil Fuels in Terminal Energy Consumption on the Economy and Environment in China. Sustainability 2019, 11, 6419. [Google Scholar] [CrossRef]








| Year | Total Electricity (GWh) | RES Total (GWh) | RES Share (%) | Hydro (GWh) | Wind (GWh) | Solar (GWh) | Biomass (GWh) | Notes |
|---|---|---|---|---|---|---|---|---|
| 2015 | 90,800 | 9429 | 10.38 | 8725 | 500 | 200 | 4 | Modern RES ≈ 704 GWh (wind + solar + bio); hydro inferred ≈ 8725 GWh. |
| 2018 | 106,800 | 11,249 | 10.53 | 10,710.6 | 400.5 | 137.9 | 0 | Wind per IEA; solar per KOREM; hydro = RES total − modern RES. |
| 2020 | 108,085.8 | 12,216 | 11.3 | 9545.8 | 1094.1 | 1250.7 | 4.9 | [8] by source; totals align with KEGOC. |
| 2023 | 112,823.1 | 14,059 | 12.46 | 7341.9 | 3805.6 | 1881.7 | 1.4 | [1]: wind/solar/small HPP/bio; hydro = total RES − modern RES. |
| Variable | Unit | Value/Range | Temporal Res. | Spatial Res. |
|---|---|---|---|---|
| Annual electricity demand | GWh | 112,800 | Annual (+hourly profile) | National |
| Hourly load profile | - | Timeseries | Hourly (8760) | National/regions |
| Regional demand split | % | North 40/Center 25/South 25/ West 10 | Annual | Four macro-regions |
| Existing capacity by tech | MW | Coal 10,000; Gas 5000; Hydro 3000; Wind 2500; Solar 2200 | Annual | By bus/region |
| Wind resource (CF) | - | Timeseries | Hourly | Cells ⟶ buses |
| Solar resource (CF) | - | Timeseries | Hourly | Cells ⟶ buses |
| Hydro Availability | - | Timeseries | Monthly/Hourly | By plant/basin |
| Technology | CAPEX (EUR/kW) | Fixed Operation and Maintenance (O&M) (EUR/kW/yr) | Var. O&M (EUR/MWh) | Efficiency/CF |
|---|---|---|---|---|
| Coal | 1600 | 45 | 4.0 | = 0.36 |
| CCGT | 900 | 20 | 3.0 | = 0.55 |
| OCGT | 600 | 10 | 4.0 | = 0.4 |
| Wind (onshore) | 1150 | 30 | 0–2 | CF = 0.36 |
| Solar PV (utility) | 650 | 12 | 0–1 | CF = 0.20 |
| Hydro (large) | 200 | 30 | 2.0 | CF = 0.45 |
| Battery Storage (4 h) | Power: 300; Energy: 150 | 7 | - | = 0.88 |
| Assumption | Unit | Value/Range | Scenario Link |
|---|---|---|---|
| Discount Rate (WACC) | % | 8 | Constant |
| price | EUR/t | 0/25/50 | varies |
| Coal price | EUR/ | 8–12 | varies |
| Natural gas price | EUR/ | 18–28 | varies |
| Reserve equipment | % of load | 12 | constant |
| Transmission expansion limit | % vs. base | +20 | varies |
| RES target | % of gen | 10–60 | Defines scenarios |
| Cost Type | Carrier | RES | RES | RES | RES | RES | RES |
|---|---|---|---|---|---|---|---|
| 10% | 20% | 30% | 40% | 50% | 60% | ||
| Capital Cost | wind | 120.49 | 127.96 | 414.57 | 674.79 | 1552.46 | 2260.62 |
| solar | 68.83 | 68.83 | 455.91 | 942.40 | 805.20 | 894.82 | |
| coal | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| CCGT | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| OCGT | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| Total | 189.32 | 196.78 | 870.48 | 1617.19 | 2357.66 | 3155.44 | |
| Operational Cost | wind | 10.03 | 26.71 | 97.46 | 153.01 | 346.11 | 490.59 |
| solar | 4.71 | 10.57 | 72.05 | 143.68 | 123.58 | 135.88 | |
| coal | 2194.43 | 1891.46 | 1819.28 | 1591.74 | 1304.27 | 1019.00 | |
| CCGT | 780.66 | 778.46 | 458.47 | 347.51 | 321.00 | 291.44 | |
| OCGT | 29.43 | 26.14 | 6.52 | 4.58 | 4.16 | 3.72 | |
| Total | 3019.26 | 2733.34 | 2453.78 | 2240.51 | 2099.12 | 1940.63 |
| Indicator | Observed | Model | Units | MAPE (%) | RMSE (Units) |
|---|---|---|---|---|---|
| Total generation | 106,800 | 104,500 | GWh | 2.15 | 2300 |
| Thermal (steam/coal) | 86,000 | 82,500 | GWh | 4.07 | 3500 |
| Gas (CCGT + OCGT) | 9100 | 10,200 | GWh | 12.09 | 1100 |
| Hydro | 10,400 | 10,900 | GWh | 4.81 | 500 |
| Wind | 430 | 460 | GWh | 6.98 | 30 |
| Solar | 110 | 140 | GWh | 27.27 | 30 |
| emissions | 90 | 85 | Mt | 5.56 | 5 |
| Tariff proxy | 36 | 34.5 | EUR/MWh | 4.17 | 1.5 |
| Indicator | PyPSA-KZ | IEA (2030 CN) | China | Denmark | Align |
|---|---|---|---|---|---|
| Coal generation (2030) | Drops to ∼30–35 TWh at 45% RES | Drops to 33.5 TWh (from 71.7 TWh) | Still dominant in western provinces, a gradual national decline [25,26] | Fully phased out by 2028 [27,28] | Yes |
| Wind + solar generation | Sharp increase at 45% RES (solar > wind due to southern irradiance) | Wind: 21 TWh, Solar: 12.6 TWh | Fast growth; targeting 1200 GW solar + wind by 2030; curtailment in NW [25,29] | >80% electricity from wind + solar by 2030 [27] | Partial |
| CO2 emissions (45% RES) | ∼50 Mt (–40% vs. 10% RES baseline); below 1990 target | Similar to the 2030 CN scenario [8] | 9.7% national CO2 cut by 2030; electricity slower [26] | Near-zero by 2030 [27,28] | Partial |
| Thermal ramping | Increases as coal shifts to peaker role | Observed in CN scenario [8] | Thermal assets used for balancing [25] | Shifted to gas/hydro + DSM+ interconnectors [18] | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omirgaliyev, R.; Shauyenova, A.; Merlenkyzy, N.; Maulen, A.; Zhakiyev, N. Study of Scenario Analysis of the Electricity Market of Kazakhstan Using Renewable Energy Sources on the PyPSA Tool. Appl. Sci. 2025, 15, 11497. https://doi.org/10.3390/app152111497
Omirgaliyev R, Shauyenova A, Merlenkyzy N, Maulen A, Zhakiyev N. Study of Scenario Analysis of the Electricity Market of Kazakhstan Using Renewable Energy Sources on the PyPSA Tool. Applied Sciences. 2025; 15(21):11497. https://doi.org/10.3390/app152111497
Chicago/Turabian StyleOmirgaliyev, Ruslan, Adema Shauyenova, Nargiz Merlenkyzy, Akniyet Maulen, and Nurkhat Zhakiyev. 2025. "Study of Scenario Analysis of the Electricity Market of Kazakhstan Using Renewable Energy Sources on the PyPSA Tool" Applied Sciences 15, no. 21: 11497. https://doi.org/10.3390/app152111497
APA StyleOmirgaliyev, R., Shauyenova, A., Merlenkyzy, N., Maulen, A., & Zhakiyev, N. (2025). Study of Scenario Analysis of the Electricity Market of Kazakhstan Using Renewable Energy Sources on the PyPSA Tool. Applied Sciences, 15(21), 11497. https://doi.org/10.3390/app152111497

