Aluminothermic Recovery of Strategic Ferroalloys from Ladle Slag: An Integrated Thermodynamic and Experimental Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Theoretical Framework
2.1.1. Slag Characterization and Properties
2.1.2. Reducing Agents and Supplementary Materials
2.2. Experimental Methods and Analysis
3. Results
3.1. SLAG_AV: Optimal FeSi Recovery—Thermodynamic Simulation
3.2. SLAG_AV: Optimal FeSi Recovery—Experimental Test
3.2.1. Residual SLAG Analysis
3.2.2. Ferroalloy Analysis
- Vermiculate structure (1): an enrichment in Si at 33.59 wt.% and the appearance of C at 13.84 wt.%, which is not detected among the main elements in the total map scan. This carbon presence confirms the artifact from reactivity with the graphite crucible during cooling and is highlighted by the phase diagram in the graphite region.
- Cluster of small dots (2): these dots confirm the C intrusion with a higher concentration at 44.90 wt.%. In this case, the microstructure appears spheroidal rather than linear. The elemental composition of the dotted structure reveals Fe at 50.62 wt.%, Si at 2.74 wt.%, C at 44.90 wt.%, Al at 0.51 wt.%, Mn at 0.72 wt.%, and Ca at 0.51 wt.%.
- Larger, featureless spots (3): EDS punctual analysis reveals a Ti intrusion at 80.49 wt.%. Indeed, Ti is detected in the total map scan at 0.36 wt.% and foreseen by the simulation, and its concentration in this spot confirms its presence in the form of this intrusion. Moreover, apart from the repeated presence of C at 11.20 wt.% (another crucible artifact), another relevant minor element identified is Cr at 3.32 wt.%. The elemental composition of the featureless spot intrusion includes Ti at 80.49 wt.%, C at 11.20 wt.%, V at 2.71 wt.%, Cr at 3.32 wt.%, Fe at 1.94 wt.%, and S at 0.33 wt.%.
3.3. Environmental Performance Assessment: Life Cycle Assessment Results
4. Discussion
4.1. Residual Oxide Slag Composition and Structure
4.2. Ferroalloy Composition and Microstructure
4.3. Experimental Limitations
4.4. Environmental Performance Assessment
4.5. Broader Implications and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hasanbeigi, A. An International Benchmarking of Energy and CO2 Intensities; Global Efficiency Intelligence: St. Petersburg, FL, USA, 2022. [Google Scholar]
- Pardo, N.; Moya, J.A. Prospective scenarios on energy efficiency and CO2 emissions in the European Iron & Steel industry. Energy 2013, 54, 113–128. [Google Scholar] [CrossRef]
- Jiang, Y.; Ling, T.-C.; Shi, C.; Pan, S.-Y. Characteristics of steel slags and their use in cement and concrete—A review. Resour. Conserv. Recycl. 2018, 136, 187–197. [Google Scholar] [CrossRef]
- Yi, H.; Xu, G.; Cheng, H.; Wang, J.; Wan, Y.; Chen, H. An Overview of Utilization of Steel Slag. Procedia Environ. Sci. 2012, 16, 791–801. [Google Scholar] [CrossRef]
- Motz, H.; Geiseler, J. Products of steel slags an opportunity to save natural resources. Waste Manag. 2001, 21, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Luxán, M.P.; Sotolongo, R.; Dorrego, F.; Herrero, E. Characteristics of the slags produced in the fusion of scrap steel by electric arc furnace. Cem. Concr. Res. 2000, 30, 517–519. [Google Scholar] [CrossRef]
- Tsakiridis, P.E.; Papadimitriou, G.D.; Tsivilis, S.; Koroneos, C. Utilization of steel slag for Portland cement clinker production. J. Hazard. Mater. 2008, 152, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Menad, N.; Kanari, N.; Save, M. Recovery of high grade iron compounds from LD slag by enhanced magnetic separation techniques. Int. J. Miner. Process. 2014, 126, 1–9. [Google Scholar] [CrossRef]
- Setién, J.; Hernández, D.; González, J.J. Characterization of ladle furnace basic slag for use as a construction material. Constr. Build. Mater. 2009, 23, 1788–1794. [Google Scholar] [CrossRef]
- Barati, M.; Esfahani, S.; Utigard, T.A. Energy recovery from high temperature slags. Energy 2011, 36, 5440–5449. [Google Scholar] [CrossRef]
- Gasik, M.M. Introduction. In Handbook of Ferroalloys; Elsevier: Amsterdam, The Netherlands, 2013; pp. 3–7. [Google Scholar] [CrossRef]
- ISO 5445:1980; Ferrosilicon—Specification and Conditions of Delivery. International Organization for Standardization: Geneva, Switzerland, 1980.
- Iacobescu, R.I.; Koumpouri, D.; Pontikes, Y.; Saban, R.; Angelopoulos, G.N. Valorisation of electric arc furnace steel slag as raw material for low energy belite cements. J. Hazard. Mater. 2011, 196, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Bale, C.W.; Bélisle, E.; Chartrand, P.; Decterov, S.A.; Eriksson, G.; Gheribi, A.E.; Hack, K.; Jung, I.-H.; Kang, Y.-B.; Melançon, J.; et al. FactSage thermochemical software and databases, 2010–2016. Calphad 2016, 54, 35–53. [Google Scholar] [CrossRef]
- Jung, I.-H.; Decterov, S.A.; Pelton, A.D. Critical thermodynamic evaluation and optimization of the FeO-Fe2O3-MgO-SiO2 system. Metall. Mater. Trans. B 2004, 35, 877–889. [Google Scholar] [CrossRef]
- De La Torre, A.G.; Bruque, S.; Aranda, M.A.G. Rietveld quantitative amorphous content analysis. J. Appl. Crystallogr. 2001, 34, 196–202. [Google Scholar] [CrossRef]
- Goldstein, J.I.; Newbury, D.E.; Michael, J.R.; Ritchie, N.W.; Scott, J.H.J.; Joy, D.C. Scanning Electron Microscopy and X-Ray Microanalysis, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2018; p. 550. ISBN 978-1-4939-6674-5. [Google Scholar] [CrossRef]
- Gomes, H.I.; Mayes, W.M.; Rogerson, M.; Stewart, D.I.; Burke, I.T. Alkaline residues and the environment: A review of impacts, management practices and opportunities. J. Clean. Prod. 2016, 112, 3571–3582. [Google Scholar] [CrossRef]
- Fleischanderl, A.; Gennari, U.; Ilie, A. ZEWA—Metallurgical process for treatment of residues from steel industry and other industrial sectors to generate valuable products. Ironmak. Steelmak. 2004, 31, 444–449. [Google Scholar] [CrossRef]
- Bermúdez, A.; Gómez, D.; Muñiz, M.C.; Salgado, P.; Vázquez, R. Numerical simulation of a thermo-electromagneto-hydrodynamic problem in an induction heating furnace. Appl. Numer. Math. 2009, 59, 2082–2104. [Google Scholar] [CrossRef]
- Han, J.; Fu, D.; Guo, J.; Ji, Z.; Zhang, T. Volatilization and condensation behavior of magnesium vapor during magnesium production via a silicothermic process with magnesite. Vacuum 2021, 189, 110227. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.













| Element/Oxide | CaO | SiO2 | Al2O3 | Fe2O3 | MgO | MnO | S | Cr2O3 | ZnO | TiO2 |
|---|---|---|---|---|---|---|---|---|---|---|
| SLAG_AV (wt.%) | 51.89 ± 0.26 | 23.81 ± 0.12 | 14.02 ± 0.07 | 0.61 ± 0.006 | 7.36 ± 0.04 | 0.40 ± 0.004 | 1.04 ± 0.01 | 0.05 ± 0.003 | 0.01 ± 0.001 | 0.78 ± 0.008 |
| Reagents | Products | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Slag(g) | Fe Scrap (g) | Al EoW (g) | Silica Sand (g) | FeSi25 (g) | Residual Slag (g) | |||||||||||
| CaO | 51.89 | Fe | 54.51 | Al | 24.01 | SiO2 | 12.51 | 76.80 | 125.69 | |||||||
| S | 1.04 | Al2O3 | 4.81 | Al2O3 | 1.16 | |||||||||||
| MgO | 7.36 | Mg | 1.22 | K2O | 0.32 | |||||||||||
| Al2O3 | 14.02 | Fe2O3 | 5.45 | Mn | 0.24 | Na2O | 0.20 | |||||||||
| SiO2 | 23.81 | |||||||||||||||
| 202.49 | 202.49 | |||||||||||||||
| Final Products Simulated | ||||||||||||||||
| FeSi25 (wt.%) | Residual Slag (wt.%) | |||||||||||||||
| Fe | Si | Mn | Ti | Al | CaO | MgO | SiO2 | Al2O3 | ||||||||
| 76.63 | 21.72 | 0.72 | 0.61 | 0.32 | 41.11 | 7.39 | 1.09 | 50.41 | ||||||||
| 100.00 | 100.00 | |||||||||||||||
| Oxide | CaO | Al2O3 | SiO2 | MgO | Fe2O3 | Na2O | TiO2 | K2O | P2O5 | MnO |
|---|---|---|---|---|---|---|---|---|---|---|
| % wt. | 46.49 ± 0.23 | 43.53 ± 0.22 | 4.72 ± 0.05 | 4.20 ± 0.04 | 0.02 ± 0.002 | 0.02 ± 0.002 | 0.02 ± 0.002 | 0.02 ± 0.002 | 0.02 ± 0.002 | 0.005 ± 0.001 |
| Element | Weight% |
|---|---|
| Al | 4.21 ± 0.1 |
| Si | 19.46 ± 0.1 |
| Ti | 0.36 ± 0 |
| Cr | 0.22 ± 0 |
| Mn | 0.93 ± 0 |
| Fe | 74.83 ± 0.1 |
| Oxide | Simulation | Experimental Results | Notes |
|---|---|---|---|
| CaO | 41.11 | 46.49 | Higher experimental concentration |
| Al2O3 | 50.41 | 43.53 | Lower alumina concentration in the experiment |
| SiO2 | 1.09 | 4.72 | Less efficient silica reduction in the experiment |
| MgO | 7.39 | 4.20 | MgO loss due to volatilization at elevated temperatures |
| Fe2O3 | - | 0.06 | Traces of iron are not completely reduced |
| C | - | ~5.00 * | Contamination from graphite crucible (* XRD estimated value) |
| Element | Simulation | Experimental Results | Notes |
|---|---|---|---|
| Fe | 76.63 | 74.83 | Slight reduction in iron content |
| Si | 21.72 | 19.46 | Si content below the FeSi25 target |
| Al | 0.32 | 4.21 | Significant increase in residual Al |
| Mn | 0.72 | 0.93 | Slight increase in Mn |
| Ti | 0.61 | 0.36 | Reduction in Ti content |
| Cr | - | 0.22 | Traces of Cr not predicted by simulation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Disconzi, F.; Bellotto, M.; Frazzetto, R.; Brunelli, K.; Ardit, M.; Artioli, G. Aluminothermic Recovery of Strategic Ferroalloys from Ladle Slag: An Integrated Thermodynamic and Experimental Approach. Minerals 2025, 15, 1121. https://doi.org/10.3390/min15111121
Disconzi F, Bellotto M, Frazzetto R, Brunelli K, Ardit M, Artioli G. Aluminothermic Recovery of Strategic Ferroalloys from Ladle Slag: An Integrated Thermodynamic and Experimental Approach. Minerals. 2025; 15(11):1121. https://doi.org/10.3390/min15111121
Chicago/Turabian StyleDisconzi, Filippo, Maurizio Bellotto, Riccardo Frazzetto, Katya Brunelli, Matteo Ardit, and Gilberto Artioli. 2025. "Aluminothermic Recovery of Strategic Ferroalloys from Ladle Slag: An Integrated Thermodynamic and Experimental Approach" Minerals 15, no. 11: 1121. https://doi.org/10.3390/min15111121
APA StyleDisconzi, F., Bellotto, M., Frazzetto, R., Brunelli, K., Ardit, M., & Artioli, G. (2025). Aluminothermic Recovery of Strategic Ferroalloys from Ladle Slag: An Integrated Thermodynamic and Experimental Approach. Minerals, 15(11), 1121. https://doi.org/10.3390/min15111121

