Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = thermal drift of offset

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2327 KiB  
Article
Experimental Study of Ambient Temperature Influence on Dimensional Measurement Using an Articulated Arm Coordinate Measuring Machine
by Vendula Samelova, Jana Pekarova, Frantisek Bradac, Jan Vetiska, Matej Samel and Robert Jankovych
Metrology 2025, 5(3), 45; https://doi.org/10.3390/metrology5030045 (registering DOI) - 1 Aug 2025
Abstract
Articulated arm coordinate measuring machines are designed for in situ use directly in manufacturing environments, enabling efficient dimensional control outside of climate-controlled laboratories. This study investigates the influence of ambient temperature variation on the accuracy of length measurements performed with the Hexagon Absolute [...] Read more.
Articulated arm coordinate measuring machines are designed for in situ use directly in manufacturing environments, enabling efficient dimensional control outside of climate-controlled laboratories. This study investigates the influence of ambient temperature variation on the accuracy of length measurements performed with the Hexagon Absolute Arm 8312. The experiment was carried out in a laboratory setting simulating typical shop floor conditions through controlled temperature changes in the range of approximately 20–31 °C. A calibrated steel gauge block was used as a reference standard, allowing separation of the influence of the measuring system from that of the measured object. The results showed that the gauge block length changed in line with the expected thermal expansion, while the articulated arm coordinate measuring machine exhibited only a minor residual thermal drift and stable performance. The experiment also revealed a constant measurement offset of approximately 22 µm, likely due to calibration deviation. As part of the study, an uncertainty budget was developed, taking into account all relevant sources of influence and enabling a more realistic estimation of accuracy under operational conditions. The study confirms that modern carbon composite articulated arm coordinate measuring machines with integrated compensation can maintain stable measurement behavior even under fluctuating temperatures in controlled environments. Full article
Show Figures

Figure 1

23 pages, 12309 KiB  
Article
An Improved sRGB Optical Algorithm Considering Thermal Effects and Adaptability for Low-Cost Automotive-Grade Dedicated LED Chips
by Lingling Hong and Miao Liu
World Electr. Veh. J. 2025, 16(4), 235; https://doi.org/10.3390/wevj16040235 - 17 Apr 2025
Viewed by 418
Abstract
Achieving a stable color output across wide temperature ranges in automotive LED applications is challenging, especially when using cost-sensitive chips with limited computational resources. This study proposes an improved temperature model that integrates Fourier heat conduction and thermal resistance concepts to more accurately [...] Read more.
Achieving a stable color output across wide temperature ranges in automotive LED applications is challenging, especially when using cost-sensitive chips with limited computational resources. This study proposes an improved temperature model that integrates Fourier heat conduction and thermal resistance concepts to more accurately capture self-heating and power dissipation effects. To accommodate the constraints of low-cost automotive-grade microcontrollers (MCUs), the associated optical algorithm is converted from floating-point to a 16.16 fixed-point format, reducing both memory usage and computational overhead. Experimental results conducted from −40 °C to 120 °C show that the improved model predicts LED temperatures within 5 °C of measured values, reducing errors by up to 30% compared to conventional PN-junction-based methods. Furthermore, by comparing the chromaticity points generated under the new and traditional models—and implementing an additional three-duty-cycle offset at 1% brightness—the improved approach reduces chromaticity drift by approximately 0.0052 in the CIE 1931 xy color space. These findings confirm the superior stability and accuracy of the new model for both thermal management and chromaticity compensation, offering a cost-effective solution for automotive LED systems requiring precise color control under constrained MCU resources. Full article
Show Figures

Figure 1

21 pages, 7696 KiB  
Article
Frequency-Modulated Antipodal Chaos Shift Keying Chaotic Communication on Field Program Gate Array: Prototype Design and Performance Insights
by Filips Capligns, Ruslans Babajans, Darja Cirjulina, Deniss Kolosovs and Anna Litvinenko
Appl. Sci. 2025, 15(3), 1156; https://doi.org/10.3390/app15031156 - 23 Jan 2025
Cited by 2 | Viewed by 918
Abstract
Using chaos for communication can provide more robust channel security, covert transmission, and inherent support for spread-spectrum modulation. Although numerous studies have explored this technology, its practical deployment remains limited due to substantial hardware demands, complex signal processing, and a lack of efficient [...] Read more.
Using chaos for communication can provide more robust channel security, covert transmission, and inherent support for spread-spectrum modulation. Although numerous studies have explored this technology, its practical deployment remains limited due to substantial hardware demands, complex signal processing, and a lack of efficient modulation methods for chaotic signals. In this study, a novel chaotic digital communication system is proposed and studied. A prototype of a frequency-modulated antipodal chaos shift keying (FM-ACSK) system is implemented on an Intel Cyclone V field-programmable gate array (FPGA) along with a complete mathematical model using Matlab R2022a Simulink software. Using FPGAs to implement chaotic oscillators avoids analog system problems such as component drift and high thermal instability while providing determined system parameters, rapid prototyping, and high throughput. The employment of FM over a chaotic modulation layer provides a passband operation (currently at an intermediate frequency of 10.7 MHz) while adding the benefits of carrier frequency offset robustness and constant signal envelope. Within this study, the robustness of FM-ACSK to white noise in the channel was evaluated using bit error rate, which was tested through hardware experiments and simulations. The results show the feasibility and potential performance limitations of this approach to chaotic communication system design. Full article
(This article belongs to the Special Issue Current Updates of Programmable Logic Devices and Synthesis Methods)
Show Figures

Figure 1

17 pages, 9583 KiB  
Article
A CMOS Switched Capacitor Filter Based Potentiometric Readout Circuit for pH Sensing System
by Shanthala Lakshminarayana, Revathy Perumalsamy, Chenyun Pan, Sungyong Jung, Hoon-Ju Chung and Hyusim Park
J. Low Power Electron. Appl. 2025, 15(1), 3; https://doi.org/10.3390/jlpea15010003 - 19 Jan 2025
Viewed by 1619
Abstract
This work presents a potentiometric readout circuit for a pH-sensing system in an oral healthcare device. For in vivo applications, noise, area, and power consumption of the readout electronics play critical roles. While CMOS amplifiers are commonly used in readout circuits for these [...] Read more.
This work presents a potentiometric readout circuit for a pH-sensing system in an oral healthcare device. For in vivo applications, noise, area, and power consumption of the readout electronics play critical roles. While CMOS amplifiers are commonly used in readout circuits for these applications, their applicability is limited due to non-deterministic noises such as flicker and thermal noise. To address these challenges, the Correlated Double Sampler (CDS) topology is widely employed as a sampled-data circuit for potentiometric readout, effectively eliminating DC offset and drift, thereby reducing overall noise. Therefore, this work introduces a novel potentiometric readout circuit realized with CDS and a switched-capacitor-based low-pass filter (SC-LPF) to enhance the noise characteristic of overall circuit. The proposed readout circuit is implemented in an integrated circuit using 0.18 µm CMOS process, which occupies an area of 990 µm × 216 µm. To validate the circuit performances, simulations were conducted with a 5 pF load and a 1 MHz input clock. The readout circuit operates with a supply voltage range ±1.65 V and linearly reproduces the pH sensor output of ±1.5 V. Noise measured with a 1 MHz sampling clock shows 0.683 µVrms, with a power consumption of 124.1 µW. Full article
Show Figures

Figure 1

21 pages, 21508 KiB  
Article
Induction Coil Design Considerations for High-Frequency Domestic Cooktops
by Ahmet Erken and Atiye Hulya Obdan
Appl. Sci. 2024, 14(17), 7996; https://doi.org/10.3390/app14177996 - 7 Sep 2024
Cited by 1 | Viewed by 3980
Abstract
The use of wide band gap (WBG) semiconductor switches in power converters is increasing day by day due to their superior chemical and physical properties, such as electrical field strength, drift speed, and thermal conductivity. These new-generation power switches offer advantages over traditional [...] Read more.
The use of wide band gap (WBG) semiconductor switches in power converters is increasing day by day due to their superior chemical and physical properties, such as electrical field strength, drift speed, and thermal conductivity. These new-generation power switches offer advantages over traditional induction cooker systems, such as fast and environmentally friendly heating. The size of passive components can be reduced, and the decreasing inductance value of induction coils and capacitors with low ESR (equivalent series resistance) values contributes to total efficiency. Other design parameters, such as passive components with lower values, heatsinks with low volumes, cooling fans with low power, and induction coils with fewer turns, can offset the cost of WBG power devices. High-frequency operation can also be effective in heating non-ferromagnetic materials like aluminum and copper, making them suitable for heating these types of pans without complex induction coil and power converter designs. However, the use of these new generation power switches necessitates a re-examination of induction coil design. High switching frequency leads to a high resonance frequency in the power converter, which requires lower-value passive components compared to conventional cookers. The most important component is the induction coil, which requires fewer turns and magnetic cores. This study examines the induction heating equivalent circuit, discusses the general structure and design parameters of the induction coil, and performs FEM (finite element method) analyses using Ansys Maxwell. The results show that the induction coil inductance value in new-generation cookers decreases by 80% compared to traditional cookers, and the number of windings and magnetic cores decreases by 50%. These analyses, performed for high-power applications, are also performed for low-power applications. While the inductance value of the induction coil is 90 μH at low frequencies, it is reduced to the range of 5 μH to 20 μH at high frequencies. The number of windings is reduced by half or a quarter. The new-generation cooker system experimentally verifies the coil design based on the parameters derived from the analysis. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

24 pages, 9281 KiB  
Article
Excellent Performance and Feasible Mechanism of ErOx-Boosted MnOx-Modified Biochars Derived from Sewage Sludge and Rice Straw for Formaldehyde Elimination: In Situ DRIFTS and DFT
by Jiajie Wang, Lei Gao, Dong Xie, Caiting Li, Liping Xiang, Yun Jiang, Qing Xu, Huiyu Xiong, Lei Yi, Jie Liu and Jiajun Wu
Catalysts 2023, 13(8), 1222; https://doi.org/10.3390/catal13081222 - 17 Aug 2023
Cited by 2 | Viewed by 1696
Abstract
To avoid resource waste and environmental pollution, a chain of ErOx-boosted MnOx-modified biochars derived from rice straw and sewage sludge (EryMn1-y/BACs, where biochars derived from rice straw and sewage sludge were defined as BACs) were [...] Read more.
To avoid resource waste and environmental pollution, a chain of ErOx-boosted MnOx-modified biochars derived from rice straw and sewage sludge (EryMn1-y/BACs, where biochars derived from rice straw and sewage sludge were defined as BACs) were manufactured for formaldehyde (HCHO) elimination. The optimal 15%Er0.5Mn0.5/BAC achieved a 97.2% HCHO removal efficiency at 220 °C and exhibited favorable EHCHO and thermal stability in a wide temperature window between 180 and 380 °C. The curbed influences of H2O and SO2 offset the boosting effect of O2 in a certain range. Er–Mn bimetallic-modified BACs offered a superior HCHO removal performance compared with that of BACs boosted using Er or Mn separately, owing to the synergistic effect of ErOx and MnOx conducive to improving the samples’ total pore volume and surface area, surface active oxygen species, promoting redox ability, and inhibiting the crystallization of MnOx. Moreover, the support’s hierarchical porous structure not only expedited the diffusion and mass transfer of reactants and their products but also elevated the approachability of adsorption and catalytic sites. Notably, these prominent features were partly responsible for the outstanding performance and excellent tolerance to H2O and SO2. Using in situ DRIFTS characterization analysis, it could be inferred that the removal process of HCHO was HCHOad → dioxymethylene (DOM) → formate species → CO2 + H2O, further enhanced with reactive oxygen species. The DFT calculation once again proved the removal process of HCHO and the strengthening effect of Er doping. Furthermore, the optimal catalytic performance of 15%Er0.5Mn0.5/BAC demonstrated its vast potential for practical applications. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Figure 1

27 pages, 7914 KiB  
Article
JPSS-1 VIIRS Prelaunch Reflective Solar Band Testing and Performance
by David Moyer, Amit Angal, Hassan Oudrari, Evan Haas, Qiang Ji, Frank De Luccia and Xiaoxiong Xiong
Remote Sens. 2022, 14(20), 5113; https://doi.org/10.3390/rs14205113 - 13 Oct 2022
Cited by 7 | Viewed by 2079
Abstract
The Visible Infrared Imaging Radiometer Suite (VIIRS) instruments on board both the Suomi National Polar-orbiting Partnership (S-NPP) and the first Joint Polar Satellite System (JPSS-1) spacecraft provides calibrated reflectance, radiance, and brightness temperature products for weather and climate applications. It has 22 bands [...] Read more.
The Visible Infrared Imaging Radiometer Suite (VIIRS) instruments on board both the Suomi National Polar-orbiting Partnership (S-NPP) and the first Joint Polar Satellite System (JPSS-1) spacecraft provides calibrated reflectance, radiance, and brightness temperature products for weather and climate applications. It has 22 bands with resolutions of 375 and 750 m for imaging and moderate bands, respectively, on 4 focal planes covering a spectral range of 400–12,490 nm. The bands are stratified into reflective solar bands (RSBs), thermal emissive bands (TEBs), and the Day/Night Band (DNB). VIIRS has three on-board calibration sectors: the solar diffuser (SD), on-board calibrator blackbody (OBCBB), and space view (SV). The on-board calibrator targets are used to track on-orbit degradation and background offset drift. Extensive prelaunch radiometric testing of the RSB, TEB, and DNB detector’s radiometric sensitivity and noise was performed for both S-NPP and JPSS-1 VIIRS. The combination of prelaunch testing and on-orbit calibrators is used to produce calibrated sensor data record (SDR) reflectance, radiance, and brightness temperatures for use in environmental data record (EDR) products. This paper will discuss the prelaunch radiometric calibration activities for the RSBs only and includes the dynamic range, calibration coefficients, detector noise, and radiometric uncertainties for JPSS-1 VIIRS. Full article
Show Figures

Figure 1

22 pages, 4240 KiB  
Article
Low-Power and Eco-Friendly Temperature Sensor Based on Gelatin Nanocomposite
by Giovanni Landi, Veronica Granata, Roberto Germano, Sergio Pagano and Carlo Barone
Nanomaterials 2022, 12(13), 2227; https://doi.org/10.3390/nano12132227 - 29 Jun 2022
Cited by 19 | Viewed by 2645
Abstract
An environmentally-friendly temperature sensor has been fabricated by using a low-cost water-processable nanocomposite material based on gelatin and graphene. The temperature dependence of the electrochemical properties has been investigated by using cyclic voltammetry, chronopotentiometry and impedance spectroscopy measurements. The simple symmetric device, composed [...] Read more.
An environmentally-friendly temperature sensor has been fabricated by using a low-cost water-processable nanocomposite material based on gelatin and graphene. The temperature dependence of the electrochemical properties has been investigated by using cyclic voltammetry, chronopotentiometry and impedance spectroscopy measurements. The simple symmetric device, composed of a sandwich structure between two metal foils and a printable graphene–gelatin blend, exhibits a dependence on the open-circuit voltage in a range between 260 and 310 K. Additionally, at subzero temperature, the device is able to detect the ice/frost formation. The thermally-induced phenomena occur at the electrode/gel interface with a bias current of a few tens of μA. The occurrence of dissociation reactions within the sensor causes limiting-current phenomena in the gelatin electrolyte. A detailed model describing the charge carrier accumulation, the faradaic charge transfer and diffusion processes within the device under the current-controlled has been proposed. In order to increase the cycle stability of the temperature sensor and reduce its voltage drift and offset of the output electrical signal, a driving circuit has been designed. The eco-friendly sensor shows a temperature sensitivity of about −19 mV/K, long-term stability, fast response and low-power consumption in the range of microwatts suitable for environmental monitoring for indoor applications. Full article
Show Figures

Figure 1

25 pages, 7380 KiB  
Article
High-Precision Low-Temperature Drift LDO Regulator Tailored for Time-Domain Temperature Sensors
by Cristian Răducan, Marius Neag, Alina Grăjdeanu, Marina Țopa and Andrei Negoiță
Sensors 2022, 22(4), 1518; https://doi.org/10.3390/s22041518 - 16 Feb 2022
Cited by 3 | Viewed by 3656
Abstract
This paper proposes a high-precision LDO with low-temperature drift suitable for sensitive time-domain temperature sensors. Its topology is based on multiple feedback loops and a novel approach to frequency compensation, that allows the LDO to maintain a large DC gain while handling capacitive [...] Read more.
This paper proposes a high-precision LDO with low-temperature drift suitable for sensitive time-domain temperature sensors. Its topology is based on multiple feedback loops and a novel approach to frequency compensation, that allows the LDO to maintain a large DC gain while handling capacitive loads that vary over a wide range. The key design constraints are derived by using a simplified, yet intuitive and effective, small-signal analysis devised for LDOs with multiple feedback loops. Simulation and measurement results are presented for implementation in a standard 130 nm CMOS process: the LDO outputs a stable 1 V voltage, when the input voltage varies between 1.25 V to 1.5 V, the load current between 0 and 100 mA, and the load capacitor between zero and 400 pF. It exhibits a DC load regulation of 1 µV/mA, a 288 µV output offset with a standard deviation of 9.5 mV. A key feature for the envisaged application is the very low thermal drift of the output offset: only 14.4 mV across the temperature range of −40 °C to +150 °C. Overall, the LDO output voltage stays within +/−3.5% of the nominal DC value over the entire line voltage, load, and temperature ranges, without trimming. The LDO requires only 1.4µA quiescent current, yet it provides excellent responses to load transients. The output voltage undershoot and overshoot caused by the load current jumping between 0 and 100 mA in 1 µs are: 10%/22% for CL = 0 and 12%/16% for CL = 400 pF, respectively. A comparative analysis against seven LDOs published in the last decade, designed for similar levels of supply voltage and output voltage and current, shows that the LDO presented here is the best option for supplying sensitive time-domain temperature sensors. The smallest thermal drift of the output offset, smaller than +/−15 mV, that is, 6.7 times smaller than its closest competitor, and the best overall performance when PSR up to 1 kHz, was considered. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

12 pages, 2344 KiB  
Article
Sources of Thermal Power Generation and Their Influence on the Operating Temperature of Organic Solar Cells
by Hooman Mehdizadeh-Rad, Kiran Sreedhar Ram, Farhad Mehdizadeh-Rad, David Ompong, Daniel Dodzi Yao Setsoafia, Naveen Kumar Elumalai, Furong Zhu and Jai Singh
Nanomaterials 2022, 12(3), 420; https://doi.org/10.3390/nano12030420 - 27 Jan 2022
Cited by 4 | Viewed by 3103
Abstract
Thermal stability, closely associated with the operating temperature, is one of the desired properties for practical applications of organic solar cells (OSCs). In this paper, an OSC of the structure of ITO/PEDOT:PSS/P3HT:PCBM/ZnO/Ag was fabricated, and its current-voltage (J-V [...] Read more.
Thermal stability, closely associated with the operating temperature, is one of the desired properties for practical applications of organic solar cells (OSCs). In this paper, an OSC of the structure of ITO/PEDOT:PSS/P3HT:PCBM/ZnO/Ag was fabricated, and its current-voltage (J-V) characteristics and operating temperature were measured. The operating temperature of the same OSC was simulated using an analytical model, taking into consideration the heat transfer, charge carrier drift-diffusion and different thermal generation processes. The simulated results agreed well with the experimental ones. It was found that the thermalization of charge carriers above the band gap had the highest influence on the operating temperature of the OSCs. The energy off-set at the donor/acceptor interface in the bulk heterojunction (BHJ) was shown to have a negligible impact on the thermal stability of the OSCs. However, the energy off-sets at the electrode/charge-transporting layer and BHJ/charge-transporting layer interfaces had greater impacts on the operating temperature of OSCs at the short circuit current and maximum power point conditions. Our results revealed that a variation over the energy off-set range from 0.1 to 0.9 eV would induce an almost 10-time increase in the corresponding thermal power generation, e.g., from 0.001 to 0.01 W, in the cells operated at the short circuit current condition, contributing to about 16.7% of the total solar power absorbed in the OSC. Full article
Show Figures

Figure 1

17 pages, 6125 KiB  
Article
Fully Electrical Post-Fabrication Trimming of Resistive Sensors
by Ibrahim Shankhour, Jad Mohdad, Frédérick Mailly and Pascal Nouet
Sensors 2022, 22(3), 767; https://doi.org/10.3390/s22030767 - 20 Jan 2022
Cited by 2 | Viewed by 2683
Abstract
A compact and efficient IC architecture is presented as an alternative to laser-trimmed precision thin-film resistors or look-up tables. The objective is to keep the device, such as a four-terminal Wheatstone bridge, but to compensate for post-manufacturing offset and to avoid the so-induced [...] Read more.
A compact and efficient IC architecture is presented as an alternative to laser-trimmed precision thin-film resistors or look-up tables. The objective is to keep the device, such as a four-terminal Wheatstone bridge, but to compensate for post-manufacturing offset and to avoid the so-induced degradation of performances in terms of full-scale, non-linearity, power supply noise rejection and scale factor. Expected advantages are a reduced cost due to the electrical-only implementation and a possible on-field calibration of high-end sensors. Application of the proposed solution is illustrated on an example to demonstrate improvement factors on offset and sensitivity accuracy of 32 and 10, respectively. Additionally, the power supply rejection ratio is improved by 30 dB. The experimental results finally demonstrate both efficiency and versatility of the proposed solution thanks to a first silicon prototype, fabricated in a 0.35 μm Technology from AMS, connected to an off-the-shelf pressure sensor. Full article
(This article belongs to the Special Issue Design of Generic or Specific Interfaces for Smart Sensors)
Show Figures

Figure 1

13 pages, 4230 KiB  
Article
Precise Measurement of Gas Volumes by Means of Low-Offset MEMS Flow Sensors with μL/min Resolution
by Massimo Piotto, Simone Del Cesta and Paolo Bruschi
Sensors 2017, 17(11), 2497; https://doi.org/10.3390/s17112497 - 31 Oct 2017
Cited by 7 | Viewed by 4950
Abstract
Experiments devoted to evaluate the performance of a MEMS thermal flow sensor in measuring gas volumes are described. The sensor is a single-chip platform, including several sensing structures and a low-offset, low-noise readout interface. A recently proposed offset compensation approach is implemented obtaining [...] Read more.
Experiments devoted to evaluate the performance of a MEMS thermal flow sensor in measuring gas volumes are described. The sensor is a single-chip platform, including several sensing structures and a low-offset, low-noise readout interface. A recently proposed offset compensation approach is implemented obtaining low temperature drift and excellent long time stability. The sensor is fabricated by applying a simple micromachining procedure to a chip produced using the BCD6s process of STMicroelectronics. Application of a gas conveyor allowed inclusion of the sensing structure into a channel of sub-millimeter cross-section. The results of measurements performed by making controlled air volumes pass through the sensor channel in both directions at rates from 0.1 to 5 mL/min are described. Full article
(This article belongs to the Special Issue Integrated MEMS Sensors for the IoT Era)
Show Figures

Figure 1

11 pages, 2671 KiB  
Article
Material Viscoelasticity-Induced Drift of Micro-Accelerometers
by Wu Zhou, Peng Peng, Huijun Yu, Bei Peng and Xiaoping He
Materials 2017, 10(9), 1077; https://doi.org/10.3390/ma10091077 - 14 Sep 2017
Cited by 12 | Viewed by 5457
Abstract
Polymer-based materials are commonly used as an adhesion layer for bonding die chip and substrate in micro-system packaging. Their properties exhibit significant impact on the stability and reliability of micro-devices. The viscoelasticity, one of most important attributes of adhesive materials, is investigated for [...] Read more.
Polymer-based materials are commonly used as an adhesion layer for bonding die chip and substrate in micro-system packaging. Their properties exhibit significant impact on the stability and reliability of micro-devices. The viscoelasticity, one of most important attributes of adhesive materials, is investigated for the first time in this paper to evaluate the long-term drift of micro-accelerometers. The accelerometer was modeled by a finite element (FE) method to emulate the structure deformation and stress development induced by change of adhesive property. Furthermore, the viscoelastic property of the adhesive was obtained by a series of stress–relaxation experiments using dynamic mechanical analysis (DMA). The DMA curve was imported into the FE model to predict the drift of micro-accelerometers over time and temperature. The prediction results verified by experiments showed that the accelerometer experienced output drift due to the development of packaging stress induced by both the thermal mismatch and viscoelastic behaviors of the adhesive. The accelerometers stored at room temperature displayed a continuous drift of zero offset and sensitivity because of the material viscoelasticity. Moreover, the drift level of accelerometers experiencing high temperature load was relatively higher than those of lower temperature in the same period. Full article
Show Figures

Figure 1

24 pages, 6395 KiB  
Article
Improving the Precision and Speed of Euler Angles Computation from Low-Cost Rotation Sensor Data
by Aleš Janota, Vojtech Šimák, Dušan Nemec and Jozef Hrbček
Sensors 2015, 15(3), 7016-7039; https://doi.org/10.3390/s150307016 - 23 Mar 2015
Cited by 62 | Viewed by 16592
Abstract
This article compares three different algorithms used to compute Euler angles from data obtained by the angular rate sensor (e.g., MEMS gyroscope)—the algorithms based on a rotational matrix, on transforming angular velocity to time derivations of the Euler angles and on unit quaternion [...] Read more.
This article compares three different algorithms used to compute Euler angles from data obtained by the angular rate sensor (e.g., MEMS gyroscope)—the algorithms based on a rotational matrix, on transforming angular velocity to time derivations of the Euler angles and on unit quaternion expressing rotation. Algorithms are compared by their computational efficiency and accuracy of Euler angles estimation. If attitude of the object is computed only from data obtained by the gyroscope, the quaternion-based algorithm seems to be most suitable (having similar accuracy as the matrix-based algorithm, but taking approx. 30% less clock cycles on the 8-bit microcomputer). Integration of the Euler angles’ time derivations has a singularity, therefore is not accurate at full range of object’s attitude. Since the error in every real gyroscope system tends to increase with time due to its offset and thermal drift, we also propose some measures based on compensation by additional sensors (a magnetic compass and accelerometer). Vector data of mentioned secondary sensors has to be transformed into the inertial frame of reference. While transformation of the vector by the matrix is slightly faster than doing the same by quaternion, the compensated sensor system utilizing a matrix-based algorithm can be approximately 10% faster than the system utilizing quaternions (depending on implementation and hardware). Full article
(This article belongs to the Special Issue Modeling, Testing and Reliability Issues in MEMS Engineering)
Show Figures

Figure 1

13 pages, 4684 KiB  
Article
SU-8 Electrothermal Actuators: Optimization of Fabrication and Excitation for Long-Term Use
by Thomas Winterstein, Matthias Staab, Christian Nakic, Hans-Jürgen Feige, Jürgen Vogel and Helmut F. Schlaak
Micromachines 2014, 5(4), 1310-1322; https://doi.org/10.3390/mi5041310 - 2 Dec 2014
Cited by 17 | Viewed by 10233
Abstract
In this paper we examine the suitability of SU-8 2000 as a construction material for electrothermal actuators and the actuator stability for long-term operation. The fabrication of SU-8 was optimized for mechanical and thermal stability. Samples with different softbake duration, exposure dose and [...] Read more.
In this paper we examine the suitability of SU-8 2000 as a construction material for electrothermal actuators and the actuator stability for long-term operation. The fabrication of SU-8 was optimized for mechanical and thermal stability. Samples with different softbake duration, exposure dose and postbake temperature were evaluated using Fourier-Transform IR-spectroscopy and dynamic-mechanical analysis. The exposure dose and postbake temperature proved to have a strong influence on the cross-linking and the glass transition temperature. A final hardbake levels the effects of the process history. A high degree of crosslinking, a low drop of the dynamic modulus over temperature (30%) up to the glass transition temperature 100–140 °C were achieved for SU-8 with an exposure dose of 1500 mJ/cm², a postbake temperature of 95 °C and hardbake of 240 °C. Electrothermal actuators proved to be stable until the end of the experiment after 2400 duty cycles. Actuator deflections up to 55 μm were measured (actuator length: 4 mm) for input powers up to 160 mW and a maximum operating temperature of 120 °C. Higher temperatures led to permanent deformations and failure. An offset drift of up to 20% occurs during actuation, but converges after a burn-in phase of about two hours. Full article
(This article belongs to the Special Issue Microactuators)
Show Figures

Graphical abstract

Back to TopTop