Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (87)

Search Parameters:
Keywords = thermal desorption (TD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 961 KiB  
Article
Analysis of Chemical Composition and Odor Characteristics in Particleboards Decorated by Resin-Impregnated Paper, Polypropylene Film and Polyvinyl Chloride Film
by Liming Zhu, Minghui Yang, Lina Tang, Qian Chen, Xiaorui Liu, Xianwu Zou, Yuejin Fu and Bo Liu
Polymers 2025, 17(15), 2145; https://doi.org/10.3390/polym17152145 - 5 Aug 2025
Abstract
Analysis of changes in TVOC and VOCs chemical composition or odor characteristics of particleboard before and after decoration treatment with resin-impregnated paper (RIP), polypropylene (PP) film and polyvinyl chloride (PVC) film were studied. The effects of these three decoration treatments on masking or [...] Read more.
Analysis of changes in TVOC and VOCs chemical composition or odor characteristics of particleboard before and after decoration treatment with resin-impregnated paper (RIP), polypropylene (PP) film and polyvinyl chloride (PVC) film were studied. The effects of these three decoration treatments on masking or suppressing the release of VOCs and odorants from particleboard were explored. The substances that were covered or suppressed and newly introduced before and after processing were identified to provide a basis for reducing the odor emissions of PVC-, PP- and RIP-decorated particleboard. Taking undecorated particleboard and particleboard treated by three types of decorative materials as research subjects, the air permeability of the three decorative materials was tested using the Gurley Permeability Tester. TVOC emissions from the boards were evaluated using the 1 m3 environmental chamber method. Qualitative and quantitative analyses of the samples were conducted via thermal desorption–gas chromatography–mass spectrometry (TD-GCMS). The contribution of odor substances was determined using odor activity value (OAV). The results indicated that the permeability from high to low was PVC film, PP film and RIP. Compared with undecorated particleboard, the TVOC emissions of PVC-decorated boards decreased by 93%, PP-decorated particleboard by 83% but the TVOC emissions of RIP-decorated particleboard increased by 67%. PP decoration treatment masked or suppressed the release of 20 odor substances but introduced xylene, which can increase potentially the health risks for PP-decorated particleboard. PVC decoration treatment masked or suppressed 19 odor substances, but it introduced 12 new compounds, resulting in an overall increase in TVOC emissions. RIP treatment did not introduce new odor substances. After PP film and RIP treatments, both the variety of VOCs released and the number of key odor-contributing compounds and modifying odorants decreased. In contrast, the number of modifying odorants and potential odorants increased after PVC treatment. VOC emissions were effectively masked or suppressed by three decoration treatments, same as the release of substances contributing to overall odor of particleboard was reduced. Among them, PP and RIP decorative materials demonstrate better effects. Full article
(This article belongs to the Special Issue Eco-Friendly Supramolecular Polymeric Materials, 2nd Edition)
Show Figures

Figure 1

16 pages, 7177 KiB  
Article
Analysis of Volatile Organic Compounds from Compost
by Shastine K. Berger, Rosario C. Morales, Katherine A. McCown, Kylie C. Wilson, Bertram T. Jobson and Nancy A. C. Johnston
Atmosphere 2025, 16(5), 591; https://doi.org/10.3390/atmos16050591 - 14 May 2025
Cited by 1 | Viewed by 523
Abstract
Many US states have adopted regulations to divert food waste from landfills to composts. While this may lower greenhouse emissions from landfills, volatile organic compound (VOC) emissions from compost may contain hazardous air pollutants or produce odors, posing potential public health concerns. Effective [...] Read more.
Many US states have adopted regulations to divert food waste from landfills to composts. While this may lower greenhouse emissions from landfills, volatile organic compound (VOC) emissions from compost may contain hazardous air pollutants or produce odors, posing potential public health concerns. Effective methods to analyze speciated VOCs in compost are needed to better understand VOC source generation. Here, a two-component compost sampling method was developed and employed consisting of a chilled impinger and pump apparatus to trap water-soluble VOCs, and dual sorbent tubes to capture hydrophobic VOCs in yard and food/yard waste compost. VOCs were measured via headspace gas chromatography with flame ionization detection (HS-GC-FID) and thermal desorption–gas chromatography–mass spectrometry (TD-GC-MS). Overall, there was higher VOC generation within higher-temperature compost piles, with concentrations ranging up to 27,000 ppm for ethanol and 3500 ppm for methanol. Alpha-pinene and D-limonene were seen in these piles with concentrations over 1600 ppb. Methanol and ethanol were more than one thousand times as concentrated in mixed food/yard waste than yard waste alone, while terpenes were seen in slightly higher concentrations for yard waste than the mixed food/yard waste. Methanol was observed to be higher than permissible indoor levels and may pose potential health risks. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

15 pages, 3161 KiB  
Article
Characterisation of Cork Volatile Organic Compounds Using TD-GC-MS: Effects of Origin, Washing Process, and Thermal Processing of Cork Stoppers
by Patricia Jové, Raquel de Nadal, Maria Verdum and Núria Fiol
Processes 2025, 13(5), 1505; https://doi.org/10.3390/pr13051505 - 14 May 2025
Viewed by 437
Abstract
This study presents a green and solvent-free methodology based on thermal desorption coupled to gas chromatography-mass spectrometry (TD-GC-MS) to characterise cork’s volatile aromatic (VOC) profile. Samples from three geographical origins—Catalonia, Extremadura, and Sardinia—were analysed at different extraction temperatures. Cork stoppers from Sardinia were [...] Read more.
This study presents a green and solvent-free methodology based on thermal desorption coupled to gas chromatography-mass spectrometry (TD-GC-MS) to characterise cork’s volatile aromatic (VOC) profile. Samples from three geographical origins—Catalonia, Extremadura, and Sardinia—were analysed at different extraction temperatures. Cork stoppers from Sardinia were also analysed after two washing procedures (immersion and spray) and thermal treatment. The results showed that temperature and geographical origin significantly influenced the quantity and intensity of extracted VOCs, with higher extraction temperatures yielding a more comprehensive volatile profile. Vanillin was the most abundant compound in all samples. A multivariate analysis showed that cork from Extremadura was associated with carboxylic acids, Catalonia with furan derivatives and sugar-related compounds, and Sardinia with phenolic compounds linked to lignin degradation. Immersion-washed stoppers retained more lignin-derived and phenolic compounds, while spray-washed samples were characterised by a higher alkane content. Thermal treatment notably altered the VOC profile, increasing ketones such as acetophenone and 2-nonadecanone and reducing alkanes and fatty acids. These findings highlight the influence of the geographical origin and manufacturing process on the aromatic composition of cork, with potential applications in industries seeking natural active compounds. Full article
Show Figures

Figure 1

15 pages, 4911 KiB  
Article
TD-ESI-MS/MS for High-Throughput Screening of 13 Common Drugs and 4 Etomidate Analogs in Hair: Method Validation and Forensic Applications
by Meng Li, Jinbo Li and Binling Zhu
Toxics 2025, 13(5), 329; https://doi.org/10.3390/toxics13050329 - 23 Apr 2025
Viewed by 637
Abstract
This study established a dual analytical workflow integrating thermal desorption–electrospray ionization–tandem mass spectrometry (TD-ESI-MS/MS) for rapid qualitative screening and ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) for confirmatory quantification of 17 psychoactive substances and metabolites across six classes (opioids, amphetamine-type stimulants, cocaine, ketamine-type drugs, [...] Read more.
This study established a dual analytical workflow integrating thermal desorption–electrospray ionization–tandem mass spectrometry (TD-ESI-MS/MS) for rapid qualitative screening and ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) for confirmatory quantification of 17 psychoactive substances and metabolites across six classes (opioids, amphetamine-type stimulants, cocaine, ketamine-type drugs, cannabinoids, and etomidate analogs) in hair matrices. Validation of the TD-ESI-MS/MS method demonstrated its sensitivity (limits of detection: 0.1–0.2 ng/mg) and precision (<19.3%), with matrix effects controlled to <19.6%. The TD-ESI-MS/MS method achieved an analysis time of 1 min per sample, enabling high-throughput screening with a sensitivity >85.7% and a specificity >89.7% for the 17 analytes. UPLC-MS/MS confirmation validated the screening results with accuracy rates of 89.7–99.8%. An analysis of specimens confirmed positive identified etomidate analogs as the predominant psychoactive substances (73.6%), with a lower prevalence of amphetamine-type stimulants (12.5%), ketamine-type drugs (9.0%), and opioids (2.8%). The polydrug use patterns identified concurrent etomidate–amphetamine consumption (n = 5) and complex analog combinations (etomidate–isopropoxate–metomidate, n = 13), suggesting evolving abuse trends. Despite limitations in the temporal resolution and representativeness of the cohort, this study demonstrated the viability of TD-ESI-MS/MS for bridging forensic and public health priorities. Future work should focus on optimizing the durability of the ion source for TD-ESI and validating this method across diverse populations to enhance its generalizability. Full article
(This article belongs to the Special Issue Current Issues and Research Perspectives in Forensic Toxicology)
Show Figures

Figure 1

16 pages, 652 KiB  
Article
Uncovering Non-Invasive Biomarkers in Paediatric Severe Acute Asthma Using Targeted Exhaled Breath Analysis
by Sarah van den Berg, Annabel S. Zaat, Isabel F. van der Poel, Yoni E. van Dijk, Simone Hashimoto, Niels W. P. Rutjes, Suzanne W. J. Terheggen-Largo, Bart E. van Ewijk, Claudia Gagliani, Fleur L. Sondaal, Job B. M. van Woensel, Anke-Hilse Maitland-van der Zee, Paul Brinkman, Susanne J. H. Vijverberg and Berber Kapitein
Metabolites 2025, 15(4), 247; https://doi.org/10.3390/metabo15040247 - 3 Apr 2025
Viewed by 830
Abstract
Background: Severe acute asthma (SAA) in children can be life-threatening. There has been a significant rise in paediatric intensive care unit (PICU) admissions due to SAA over the past two decades. While asthma is a heterogeneous disease, its underlying pathophysiological pathways remain underexplored. [...] Read more.
Background: Severe acute asthma (SAA) in children can be life-threatening. There has been a significant rise in paediatric intensive care unit (PICU) admissions due to SAA over the past two decades. While asthma is a heterogeneous disease, its underlying pathophysiological pathways remain underexplored. This study aimed to assess the value of non-invasive targeted exhaled breath metabolomics analysis to better characterise SAA. Methods: Breath samples from 17 children admitted to the PICU with SAA (cases) and 27 children with controlled severe asthma (controls) were analysed using thermal desorption gas chromatography–mass spectrometry (TD-GC-MS). Results: A targeted volatile organic compound (VOC) analysis identified 25 compounds, of which 16 were shared between groups. Four VOCs were significantly more often present in SAA, and nine VOCs exhibited higher concentrations in SAA. Longitudinal analysis of VOCs from follow-up samples of 10 cases showed no significant temporal differences, reinforcing the reproducibility of identified biomarkers. Conclusions: This study exemplifies the potential of exhaled breath analysis to provide insights into the molecular background of SAA. Breath metabolomics may enable early recognition of severe asthma attacks and preventive therapeutic interventions in children with severe asthma. Full article
(This article belongs to the Special Issue Mass Spectrometry-Based Technology for Metabolic Profiling)
Show Figures

Figure 1

15 pages, 22054 KiB  
Article
A Selective and Fast Approach for Volatile Metalorganics Assaying in Wastewater
by Krzysztof Jankowski, Monika Truskolaska, Magdalena Borowska, Jacek Giersz and Edward Reszke
Molecules 2025, 30(5), 1111; https://doi.org/10.3390/molecules30051111 - 28 Feb 2025
Viewed by 446
Abstract
A fast and green approach for the non-chromatographic assaying of volatile metalorganic compounds (VMOCs) is presented, involving the use of thermal desorption microwave-induced plasma optical emission spectrometry for the multi-species simultaneous determination of VMOCs in wastewater plant samples after headspace solid-phase microextraction (HSSPME-TD-MIP-OES), [...] Read more.
A fast and green approach for the non-chromatographic assaying of volatile metalorganic compounds (VMOCs) is presented, involving the use of thermal desorption microwave-induced plasma optical emission spectrometry for the multi-species simultaneous determination of VMOCs in wastewater plant samples after headspace solid-phase microextraction (HSSPME-TD-MIP-OES), and optimized as a tool for the assessment of ambient exposure to hazardous VMOC pollutants. With the aim of VMOC monitoring, all species are separated and quantified within 10 s in comparison with about 10–20 min required by conventional GC-based procedures. Calibration against aqueous standards was carried out for several metalorganic species. The method was successfully applied for the quantitative extraction of As, Bi, Hg, Sb, Si and Sn compounds. Limits of detection ranging from 5 to 30 ng L−1 and relative standard deviations lower than 4% were obtained. The method is appropriate for high-sample-throughput measurements, and it proved to be suitable for the analysis of wastewater and sewage sludge samples. Full article
Show Figures

Figure 1

20 pages, 6530 KiB  
Article
Electron Beam Irradiation Modified UiO-66 Supported Pt Catalysts for Low-Temperature Ethyl Acetate Catalytic Degradation
by Jiani Chen, Yanxuan Wang, Jianghua Huang, Shuting Ma, Yiyang Zhang, Fukun Bi and Xiaodong Zhang
Catalysts 2025, 15(3), 220; https://doi.org/10.3390/catal15030220 - 26 Feb 2025
Cited by 10 | Viewed by 848
Abstract
Nowadays, volatile organic compounds (VOCs) increasingly jeopardize ecosystem sustainability and human well-being. In this study, UiO-66 and its different electron beam (EB) irradiation doses (100, 300, 500 kGy) modified materials supported Pt catalysts, Pt/UiO-66 and Pt/UiO-66-X (X = 100, 300, and 500, representing [...] Read more.
Nowadays, volatile organic compounds (VOCs) increasingly jeopardize ecosystem sustainability and human well-being. In this study, UiO-66 and its different electron beam (EB) irradiation doses (100, 300, 500 kGy) modified materials supported Pt catalysts, Pt/UiO-66 and Pt/UiO-66-X (X = 100, 300, and 500, representing the irradiation doses), were synthesized, and a series of characterizations were conducted on the samples. On this basis, the effectiveness of these catalysts was evaluated through the degradation of ethyl acetate. The study findings indicated that the sample irradiated at 100 kGy demonstrated superior catalytic performance. Thereafter, extensive tests with regard to water resistance, stability, and cycle performance indicated that the Pt/UiO-66-100 catalyst was characterized by satisfactory reusability and catalytic stability, even when faced with high heat and humidity. Further work with in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and thermal desorption–gas chromatography–mass spectrometry (TD-GC–MS) uncovered the process of degradation of ethyl acetate. This research provides a guideline for the design of high-performance VOC degradation catalysts through EB modification. Full article
(This article belongs to the Special Issue Insight into Catalysis for Air Pollution Control)
Show Figures

Figure 1

12 pages, 3318 KiB  
Article
Carbon Fiber Recycling from Waste CFRPs via Microwave Pyrolysis: Gas Emissions Monitoring and Mechanical Properties of Recovered Carbon Fiber
by Kai-Yen Chin, Angus Shiue, Jhu-Lin You, Yi-Jing Wu, Kai-Yi Cheng, Shu-Mei Chang, Yeou-Fong Li, Chao-Heng Tseng and Graham Leggett
Fibers 2024, 12(12), 106; https://doi.org/10.3390/fib12120106 - 5 Dec 2024
Cited by 1 | Viewed by 2858
Abstract
Disposing of carbon fiber-reinforced polymers (CFRPs) has become a pressing issue due to their increasing application across various industries. Previous work has focused on removing silane coupling agent residues on recovered carbon fibers via microwave pyrolysis, making them suitable for use in new [...] Read more.
Disposing of carbon fiber-reinforced polymers (CFRPs) has become a pressing issue due to their increasing application across various industries. Previous work has focused on removing silane coupling agent residues on recovered carbon fibers via microwave pyrolysis, making them suitable for use in new materials. However, the mechanical performance and structural characteristics of these fibers have not been fully reported. This study investigates the time–temperature curves of CFRPs treated through microwave pyrolysis and analyzes the mechanical and structural properties of silane-controllable recovered carbon fibers. Additionally, emissions—including carbon monoxide, carbon dioxide, and particulate aerosols—were measured using handheld monitors and thermal desorption–gas chromatography/mass spectrometry to determine the composition of fugitive gases around the microwave pyrolysis system. The pyrolysis process at 950 °C, with an additional 1 h holding time, reduced the crystallite size from 0.297 Å to 0.222 Å, significantly enhancing tensile strength (3804 ± 713 MPa) and tensile modulus (200 ± 13 GPa). This study contributes to more sustainable CFRP waste treatment and highlights the potential for reusing high-quality carbon fibers in new applications, enhancing both environmental and worker safety. Full article
Show Figures

Figure 1

15 pages, 3825 KiB  
Article
Rapid Screening of Etomidate and Its Analogs in Seized e-Liquids Using Thermal Desorption Electrospray Ionization Coupled with Triple Quadrupole Mass Spectrometry
by Meng Li, Bicheng Lin and Binling Zhu
Toxics 2024, 12(12), 884; https://doi.org/10.3390/toxics12120884 - 5 Dec 2024
Cited by 3 | Viewed by 1441
Abstract
The growing popularity of e-cigarettes has raised significant concerns about the safety and potential abuse of these products. Compounds originally used in the medical field, such as etomidate, metomidate, and isopropoxate, have been illegally added to e-liquids, posing substantial risks to consumer health, [...] Read more.
The growing popularity of e-cigarettes has raised significant concerns about the safety and potential abuse of these products. Compounds originally used in the medical field, such as etomidate, metomidate, and isopropoxate, have been illegally added to e-liquids, posing substantial risks to consumer health, and facilitating the misuse of illicit drugs. To address these concerns, this study developed a rapid and efficient method for detecting etomidate, metomidate, and isopropoxate in e-liquids using thermal desorption electrospray ionization coupling triple quadrupole mass spectrometry (TD-ESI/MS/MS). The TD-ESI/MS/MS method exhibits high sensitivity, with detection limits for etomidate, metomidate, and isopropoxate reaching 3 ng/mL. Screening of 70 seized e-liquid samples from 12 cases using TD-ESI/MS/MS revealed that 46 samples contained only etomidate, 13 samples contained only isopropoxate, and 11 samples contained both etomidate and metomidate. The qualitative results obtained from TD-ESI/MS/MS were in complete agreement with those of GC-MS. Moreover, the TD-ESI/MS/MS method requires no pre-treatment steps and has a detection time of only 1 min, thereby saving experimental consumables and significantly reducing detection time. The method demonstrated high sensitivity, accuracy, and reproducibility, making it suitable for high-throughput screening in forensic and regulatory settings. Full article
Show Figures

Graphical abstract

13 pages, 3896 KiB  
Article
Enhancing Permanence of Corrosion Inhibitors Within Acrylic Protective Coatings for Outdoor Bronze Using Green Nanocontainers
by Giulia Pellis, Fabrizio Caldera, Francesco Trotta, Thais Biazioli de Oliveira, Paola Rizzi, Tommaso Poli and Dominique Scalarone
Molecules 2024, 29(23), 5702; https://doi.org/10.3390/molecules29235702 - 3 Dec 2024
Viewed by 1042
Abstract
Outdoor bronze statues are constantly exposed to weather conditions and reactive compounds in the atmosphere that can interact with their surfaces. To avoid these interactions, a commonly used method is the application of coatings with corrosion inhibitors. However, a significant limitation of these [...] Read more.
Outdoor bronze statues are constantly exposed to weather conditions and reactive compounds in the atmosphere that can interact with their surfaces. To avoid these interactions, a commonly used method is the application of coatings with corrosion inhibitors. However, a significant limitation of these inhibitors is their gradual loss over time. In this study, we aimed to improve the durability of 5-ethyl-1,3,4-thiadiazol-2-amine (AEDTA), the inhibitor chosen to formulate new acrylic coatings for outdoor bronzes. Methyl-β-cyclodextrin (Me-β-CD) was selected to host the inhibitor due to the capability of cyclodextrins to form complexes incorporating small organic molecules. The complexes of Me-β-CD and AEDTA were prepared and the inclusion of AEDTA was proved by Fourier-transform infrared spectroscopy, X-ray diffraction and nuclear magnetic resonance spectroscopy. Then, acrylic coatings were prepared at different concentrations of the Me-β-CD/AEDTA system. They were thermally aged and monitored every 24 h. To evaluate the volatilization of the corrosion inhibitor, solid phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS) and thermal desorption-GC/MS (TD-GC/MS) analyses were performed during the first 72 h. The results were compared to those of pure AEDTA films and Incralac®. The outcomes showed that Me-β-CD/AEDTA complexes are promising candidates for developing coatings with improved stability and longer retention of AEDTA. Full article
Show Figures

Figure 1

13 pages, 2892 KiB  
Article
Analysis of In Vivo Plant Volatiles Using Active Sampling and TD-GC×GC-TOFMS
by Sheri A. Schmidt, Ewenet Yemane Mesfin, Chaminda De Silva Weeraddana, A. Paulina de la Mata, Alejandro C. Costamagna and James J. Harynuk
Metabolites 2024, 14(11), 623; https://doi.org/10.3390/metabo14110623 - 14 Nov 2024
Cited by 1 | Viewed by 1398
Abstract
Background: Plants constantly produce primary and secondary metabolites, and a significant fraction of these are volatile organic compounds (VOCs). Factors including the life stage of the plant, temperature, environment, and stress influence the abundance and types of VOCs emitted. The analysis of VOCs [...] Read more.
Background: Plants constantly produce primary and secondary metabolites, and a significant fraction of these are volatile organic compounds (VOCs). Factors including the life stage of the plant, temperature, environment, and stress influence the abundance and types of VOCs emitted. The analysis of VOCs released by plants during different stages or with different conditions provides insight into plant metabolism and stress responses. Collecting the VOC profiles of plants in vivo makes it possible to obtain a representative sample of the entire plant volatilome under controlled conditions with minimal invasiveness. In addition, in vivo sampling can also be used to compare the impacts of different environmental conditions or stressors on plants, i.e., the presence/absence of a pest or amount of nitrogen in soil. Methods: In this study, an in vivo plant sampling technique is introduced and validated using active sampling and thermal desorption (TD) tubes with comprehensive two-dimensional gas chromatography coupled to a time-of-flight mass spectrometer (TD-GC×GC-TOFMS). The purpose of this work is to highlight a novel technique to analyze headspace secondary plant metabolites with a minimal invasiveness. Results: It was concluded that in vivo active sampling onto TD tubes provides a wider global coverage of compounds and larger peak areas when compared to extraction by solid-phase microextraction (SPME). Additionally, the Horwitz ratio of active sampling onto TD tubes was 0.893, demonstrating this technique to be a reliable and reproducible method. Lastly, a variety of plants were sampled to assess the versatility of this technique across various plant species with different sizes and volatile profiles. Hundreds of compounds were measured with this analysis, including terpenes, aldehydes, ketones, terpenoids, and alcohols. Conclusions: This novel in vivo active sampling method provides an additional technique for extracting and analyzing volatile secondary plant metabolites. Full article
(This article belongs to the Special Issue Method Development in Metabolomics and Exposomics)
Show Figures

Figure 1

17 pages, 2415 KiB  
Article
Vacuum-Assisted MonoTrapTM Extraction for Volatile Organic Compounds (VOCs) Profiling from Hot Mix Asphalt
by Stefano Dugheri, Giovanni Cappelli, Niccolò Fanfani, Donato Squillaci, Ilaria Rapi, Lorenzo Venturini, Chiara Vita, Riccardo Gori, Piero Sirini, Domenico Cipriano, Mieczyslaw Sajewicz and Nicola Mucci
Molecules 2024, 29(20), 4943; https://doi.org/10.3390/molecules29204943 - 18 Oct 2024
Cited by 1 | Viewed by 1047
Abstract
MonoTrapTM was introduced in 2009 as a novel miniaturized configuration for sorptive sampling. The method for the characterization of volatile organic compound (VOC) emission profiles from hot mix asphalt (HMA) consisted of a two-step procedure: the analytes, initially adsorbed into the coating [...] Read more.
MonoTrapTM was introduced in 2009 as a novel miniaturized configuration for sorptive sampling. The method for the characterization of volatile organic compound (VOC) emission profiles from hot mix asphalt (HMA) consisted of a two-step procedure: the analytes, initially adsorbed into the coating in no vacuum- or vacuum-assistance mode, were then analyzed following an automated thermal desorption (TD) step. We took advantage of the theoretical formulation to reach some conclusions on the relationship between the physical characteristics of the monolithic material and uptake rates. A total of 35 odor-active volatile compounds, determined by gas chromatography-mass spectrometry/olfactometry analysis, contributed as key odor compounds for HMA, consisting mainly of aldehydes, alcohols, and ketones. Chemometric analysis revealed that MonoTrapTM RGC18-TD was the better coating in terms of peak area and equilibrium time. A comparison of performance showed that Vac/no-Vac ratios increased, about an order of magnitude, as the boiling point of target analytes increased. The innovative hybrid adsorbent of silica and graphite carbon monolith technology, having a large surface area bonded with octadecylsilane, showed effective adsorption capability, especially to polar compounds. Full article
(This article belongs to the Special Issue Applications of Solid-Phase Microextraction and Related Techniques)
Show Figures

Figure 1

20 pages, 2238 KiB  
Article
Detection and Validation of Organic Metabolites in Urine for Clear Cell Renal Cell Carcinoma Diagnosis
by Kiana L. Holbrook, George E. Quaye, Elizabeth Noriega Landa, Xiaogang Su, Qin Gao, Heinric Williams, Ryan Young, Sabur Badmos, Ahsan Habib, Angelica A. Chacon and Wen-Yee Lee
Metabolites 2024, 14(10), 546; https://doi.org/10.3390/metabo14100546 - 13 Oct 2024
Cited by 5 | Viewed by 1922
Abstract
Background: Clear cell renal cell carcinoma (ccRCC) comprises the majority, approximately 70–80%, of renal cancer cases and often remains asymptomatic until incidentally detected during unrelated abdominal imaging or at advanced stages. Currently, standardized screening tests for renal cancer are lacking, which presents challenges [...] Read more.
Background: Clear cell renal cell carcinoma (ccRCC) comprises the majority, approximately 70–80%, of renal cancer cases and often remains asymptomatic until incidentally detected during unrelated abdominal imaging or at advanced stages. Currently, standardized screening tests for renal cancer are lacking, which presents challenges in disease management and improving patient outcomes. This study aimed to identify ccRCC-specific volatile organic compounds (VOCs) in the urine of ccRCC-positive patients and develop a urinary VOC-based diagnostic model. Methods: This study involved 233 pretreatment ccRCC patients and 43 healthy individuals. VOC analysis utilized stir-bar sorptive extraction coupled with thermal desorption gas chromatography/mass spectrometry (SBSE-TD-GC/MS). A ccRCC diagnostic model was established via logistic regression, trained on 163 ccRCC cases versus 31 controls, and validated with 70 ccRCC cases versus 12 controls, resulting in a ccRCC diagnostic model involving 24 VOC markers. Results: The findings demonstrated promising diagnostic efficacy, with an Area Under the Curve (AUC) of 0.94, 86% sensitivity, and 92% specificity. Conclusions: This study highlights the feasibility of using urine as a reliable biospecimen for identifying VOC biomarkers in ccRCC. While further validation in larger cohorts is necessary, this study’s capability to differentiate between ccRCC and control groups, despite sample size limitations, holds significant promise. Full article
(This article belongs to the Special Issue Emerging Applications of Urinary Metabolomics in Cancer)
Show Figures

Figure 1

24 pages, 4071 KiB  
Article
Analysis of Aromatic Fraction of Sparkling Wine Manufactured by Second Fermentation and Aging in Bottles Using Different Types of Closures
by Patricia Jové, Glòria Mateu-Figueras, Jessica Bustillos and Josep Antoni Martín-Fernández
Processes 2024, 12(10), 2165; https://doi.org/10.3390/pr12102165 - 4 Oct 2024
Cited by 1 | Viewed by 1638
Abstract
This study aimed to evaluate the impact of different closures used in second fermentation on the aromatic fraction of sparkling wine. Six types of closures (cork stoppers and screw caps) and 94 months of aging in a bottle were investigated. Headspace solid-phase microextraction [...] Read more.
This study aimed to evaluate the impact of different closures used in second fermentation on the aromatic fraction of sparkling wine. Six types of closures (cork stoppers and screw caps) and 94 months of aging in a bottle were investigated. Headspace solid-phase microextraction (HS-SPME) and thermal desorption (TD) procedures coupled to gas chromatography-mass spectrometry (GCMSMS) analysis were applied. The vectors containing the relative abundance of the volatile compounds are compositional vectors. The statistical analysis of compositional data requires specific techniques that differ from standard techniques. Overall, 101 volatile compounds were identified. HS-SPME extracted the highest percentage of esters, ketones and other compounds, while TD was a useful tool for the obtention of alcohol, acid, ether and alkane compounds. Esters were the most abundant family of compounds. Compositional data analysis, which was applied to study the impact of different closures used in bottle aging after second fermentation on the volatile composition of sparkling wine, concluded that there are differences in the relative abundance of certain volatile compounds between cork stoppers and screw-cap closures. Overall, the most abundant part in screw-cap closures was ethyl hexanoate, and it was ethyl octanoate in cork stoppers. Also, the proportional amount of dimethylamine was higher in screw-cap closures than cork stoppers relative to the entire sample. Full article
Show Figures

Graphical abstract

17 pages, 5955 KiB  
Article
Effects of Wildfire Smoke on Volatile Organic Compound (VOC) and PM2.5 Composition in a United States Intermountain Western Valley and Estimation of Human Health Risk
by Damien T. Ketcherside, Dylan D. Miller, Dalynn R. Kenerson, Phillip S. Scott, John P. Andrew, Melanie A. Y. Bakker, Brandi A. Bundy, Brian K. Grimm, Jiahong Li, Laurel A. Nuñez, Dorian L. Pittman, Reece P. Uhlorn and Nancy A. C. Johnston
Atmosphere 2024, 15(10), 1172; https://doi.org/10.3390/atmos15101172 - 30 Sep 2024
Cited by 1 | Viewed by 2807
Abstract
With a warmer and drier climate, there has been an increase in wildfire events in the Northwest U.S., posing a potential health risk to downwind communities. The Lewis–Clark Valley (LCV), a small metropolitan area on the Washington/Idaho border in the United States Intermountain [...] Read more.
With a warmer and drier climate, there has been an increase in wildfire events in the Northwest U.S., posing a potential health risk to downwind communities. The Lewis–Clark Valley (LCV), a small metropolitan area on the Washington/Idaho border in the United States Intermountain West region, was studied over the time period of 2017–2018. The main objective was to determine the community’s exposure to particulate matter (PM2.5) and volatile organic compounds (VOCs) during wildfire smoke events and to estimate the associated health risk. VOCs were analyzed previously in the LCV using sorbent tube sampling and thermal-desorption gas-chromatography mass-spectrometry (TD-GC-MS) during several local smoke events in the 2017–2018 fire seasons. PM2.5 measurements were obtained from nearby agency monitors. PM2.5 reached up to 200 µg/m3 in 2017 and over 100 µg/m3 in 2018 in the LCV, and has been observed to be increasing at a rate of 0.10 µg m−3/yr over the past two decades. Benzene, a carcinogen and air toxic, was measured with concentrations up to 11 µg/m3, over ten times the normal level in some instances, in the LCV. The health risk in the LCV from benzene was calculated at seven extra cancers per million for lifetime exposure and thirteen extra cancers per million considering all air toxics measured. The other cities monitored showed similar lifetime cancer risk, due to benzene of about 6–7 extra cancers per million. This work is important, as it measures ground-level exposures of VOCs and demonstrates decreases in PM2.5 air quality over time in the region. Full article
(This article belongs to the Special Issue Outdoor Air Pollution and Human Health (3rd Edition))
Show Figures

Figure 1

Back to TopTop