Uncovering Non-Invasive Biomarkers in Paediatric Severe Acute Asthma Using Targeted Exhaled Breath Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Systematic Literature Review to Select VOCs
2.2. Clinical Study Design
2.3. Study Population
2.4. Exhaled Breath Collection for Metabolic Profiling
2.5. VOC Analysis by Thermal Desorption Gas Chromatograph–Mass Spectrometry
2.6. Data Analysis
2.7. Statistical Analysis
2.8. Longitudinal Comparison of PICU Cases
3. Results
3.1. Systematic Review
3.2. Study Participants
3.3. Targeted VOC Analysis in Cases vs. Controls
3.4. Longitudinal Analysis of Metabolic Breath Profiles of Cases
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SAA | Severe Acute Asthma |
PICU | Paediatric Intensive Care Unit |
TD-GC-MS | Thermal Desorption Gas Chromatography–Mass Spectrometry |
VOC | Volatile Organic Compound |
COPD | Chronic Obstructive Pulmonary Disease |
MACU-PICU | Multisystem phenotyping in severe acute asthma at the PICU |
PANDA | Paediatric Asthma Non-Invasive Diagnostic Approaches |
IV | Intravenously |
GINA | Global Initiative for Asthma |
ACT | Asthma Control Test |
ERS | European Respiratory Society |
AMDIS | Automatic Mass Spectral Deconvolution and Identification System |
MS-NIST | National Institute of Standards and Technology Mass Spectral Library |
RT | Retention Time |
PC | Principal Components |
References
- Zhou, W.; Tang, J. Prevalence and risk factors for childhood asthma: A systematic review and meta-analysis. BMC Pediatr. 2025, 25, 50. [Google Scholar] [CrossRef] [PubMed]
- Boeschoten, S.A.; Buysse, C.M.P.; Merkus, P.; van Wijngaarden, J.M.C.; Heisterkamp, S.G.J.; de Jongste, J.C.; van Rosmalen, J.; Cochius-den Otter, S.C.M.; Boehmer, A.L.M.; de Hoog, M.; et al. Children with severe acute asthma admitted to Dutch PICUs: A changing landscape. Pediatr. Pulmonol. 2018, 53, 857–865. [Google Scholar] [CrossRef]
- Hartman, M.E.; Linde-Zwirble, W.T.; Angus, D.C.; Watson, R.S. Trends in admissions for pediatric status asthmaticus in New Jersey over a 15-year period. Pediatrics 2010, 126, e904–e911. [Google Scholar] [CrossRef] [PubMed]
- Al-Eyadhy, A.A.; Temsah, M.H.; Alhaboob, A.A.; Aldubayan, A.K.; Almousa, N.A.; Alsharidah, A.M.; Alangari, M.I.; Alshaya, A.M. Asthma changes at a pediatric intensive care unit after 10 years: Observational study. Ann. Thorac. Med. 2015, 10, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.F. Asthma phenotyping: A necessity for improved therapeutic precision and new targeted therapies. J. Intern. Med. 2016, 279, 192–204. [Google Scholar] [CrossRef]
- Lopes-Junior, L.C.; Rosa, M.; Lima, R.A.G. Psychological and Psychiatric Outcomes Following PICU Admission: A Systematic Review of Cohort Studies. Pediatr. Crit. Care Med. 2018, 19, e58–e67. [Google Scholar] [CrossRef]
- Johnson, C.C.; Havstad, S.L.; Ownby, D.R.; Joseph, C.L.M.; Sitarik, A.R.; Biagini Myers, J.; Gebretsadik, T.; Hartert, T.V.; Khurana Hershey, G.K.; Jackson, D.J.; et al. Pediatric asthma incidence rates in the United States from 1980 to 2017. J. Allergy Clin. Immunol. 2021, 148, 1270–1280. [Google Scholar] [CrossRef]
- Kuruvilla, M.E.; Lee, F.E.; Lee, G.B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin. Rev. Allergy Immunol. 2019, 56, 219–233. [Google Scholar] [CrossRef]
- Quirt, J.; Hildebrand, K.J.; Mazza, J.; Noya, F.; Kim, H. Asthma. Allergy Asthma Clin. Immunol. 2018, 14, 50. [Google Scholar] [CrossRef]
- van den Berg, S.; Hashimoto, S.; Golebski, K.; Vijverberg, S.J.H.; Kapitein, B. Severe acute asthma at the pediatric intensive care unit: Can we link the clinical phenotypes to immunological endotypes? Expert. Rev. Respir. Med. 2022, 16, 25–34. [Google Scholar] [CrossRef]
- Schleich, F.N.; Zanella, D.; Stefanuto, P.H.; Bessonov, K.; Smolinska, A.; Dallinga, J.W.; Henket, M.; Paulus, V.; Guissard, F.; Graff, S.; et al. Exhaled Volatile Organic Compounds Are Able to Discriminate between Neutrophilic and Eosinophilic Asthma. Am. J. Respir. Crit. Care Med. 2019, 200, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Teague, W.G.; Phillips, B.R.; Fahy, J.V.; Wenzel, S.E.; Fitzpatrick, A.M.; Moore, W.C.; Hastie, A.T.; Bleecker, E.R.; Meyers, D.A.; Peters, S.P.; et al. Baseline Features of the Severe Asthma Research Program (SARP III) Cohort: Differences with Age. J. Allergy Clin. Immunol. Pract. 2018, 6, 545–554.E4. [Google Scholar] [CrossRef] [PubMed]
- van der Schee, M.P.; Paff, T.; Brinkman, P.; van Aalderen, W.M.C.; Haarman, E.G.; Sterk, P.J. Breathomics in lung disease. Chest 2015, 147, 224–231. [Google Scholar] [CrossRef]
- Neerincx, A.H.; Vijverberg, S.J.H.; Bos, L.D.J.; Brinkman, P.; van der Schee, M.P.; de Vries, R.; Sterk, P.J.; Maitland-van der Zee, A.H. Breathomics from exhaled volatile organic compounds in pediatric asthma. Pediatr. Pulmonol. 2017, 52, 1616–1627. [Google Scholar] [CrossRef]
- van de Kant, K.D.; van der Sande, L.J.; Jobsis, Q.; van Schayck, O.C.; Dompeling, E. Clinical use of exhaled volatile organic compounds in pulmonary diseases: A systematic review. Respir. Res. 2012, 13, 117. [Google Scholar] [CrossRef]
- Rufo, J.C.; Madureira, J.; Fernandes, E.O.; Moreira, A. Volatile organic compounds in asthma diagnosis: A systematic review and meta-analysis. Allergy 2016, 71, 175–188. [Google Scholar] [CrossRef] [PubMed]
- van Vliet, D.; Smolinska, A.; Jobsis, Q.; Rosias, P.; Muris, J.; Dallinga, J.; Dompeling, E.; van Schooten, F.J. Can exhaled volatile organic compounds predict asthma exacerbations in children? J. Breath. Res. 2017, 11, 016016. [Google Scholar] [CrossRef]
- Robroeks, C.M.; van Berkel, J.J.; Jobsis, Q.; van Schooten, F.J.; Dallinga, J.W.; Wouters, E.F.; Dompeling, E. Exhaled volatile organic compounds predict exacerbations of childhood asthma in a 1-year prospective study. Eur. Respir. J. 2013, 42, 98–106. [Google Scholar] [CrossRef]
- Shahbazi Khamas, S.; Van Dijk, Y.; Abdel-Aziz, M.I.; Neerincx, A.H.; Maarten Blankestijn, J.; Vijverberg, S.J.H.; Hashimoto, S.; Bush, A.; Kraneveld, A.D.; Hedman, A.M.; et al. Exhaled Volatile Organic Compounds for Asthma Control Classification in Children with Moderate to Severe Asthma: Results from the SysPharmPediA Study. Am. J. Respir. Crit. Care Med. 2024, 210, 1091–1100. [Google Scholar] [CrossRef]
- Kos, R.; Brinkman, P.; Neerincx, A.H.; Paff, T.; Gerritsen, M.G.; Lammers, A.; Kraneveld, A.D.; Heijerman, H.G.M.; Janssens, H.M.; Davies, J.C.; et al. Targeted exhaled breath analysis for detection of Pseudomonas aeruginosa in cystic fibrosis patients. J. Cyst. Fibros. 2022, 21, e28–e34. [Google Scholar] [CrossRef]
- Mager, D.J.; van Dijk, Y.E.; Varan, Ö.; Vijverberg, S.J.H.; Terheggen-Lagro, S.W.J.; Maitland-van der Zee, A.-H.; Janssens, H.M.; Brinkman, P. Characterization of the SPIRITAS: A Disposable Sampling Setup for Volatile Organic Compound Collection and Analysis. Separations 2024, 11, 150. [Google Scholar] [CrossRef]
- van Dijk, Y.E.; Brandsen, M.A.; Hashimoto, S.; Rutjes, N.W.; Golebski, K.; Vermeulen, F.; Terheggen-Lagro, S.W.J.; van Ewijk, B.E.; der Zee, A.M.; Vijverberg, S.J.H. Factors influencing the initiation of biologic therapy in children with severe asthma: Results of the pediatric asthma noninvasive diagnostic approaches (PANDA) study. Pediatr. Pulmonol. 2024, 59, 2875–2884. [Google Scholar] [CrossRef] [PubMed]
- Bekhof, J.; Reimink, R.; Brand, P.L. Systematic review: Insufficient validation of clinical scores for the assessment of acute dyspnoea in wheezing children. Paediatr. Respir. Rev. 2014, 15, 98–112. [Google Scholar] [CrossRef] [PubMed]
- Chipps, B.E.; Murphy, K.R.; Oppenheimer, J. 2020 NAEPP Guidelines Update and GINA 2021-Asthma Care Differences, Overlap, and Challenges. J Allergy Clin Immunol Pract 2022, 10, S19–S30. [Google Scholar] [CrossRef]
- Horvath, I.; Barnes, P.J.; Loukides, S.; Sterk, P.J.; Hogman, M.; Olin, A.C.; Amann, A.; Antus, B.; Baraldi, E.; Bikov, A.; et al. A European Respiratory Society technical standard: Exhaled biomarkers in lung disease. Eur. Respir. J. 2017, 49, 00965-2016. [Google Scholar] [CrossRef]
- Ghimenti, S.; Lomonaco, T.; Bellagambi, F.G.; Tabucchi, S.; Onor, M.; Trivella, M.G.; Ceccarini, A.; Fuoco, R.; Di Francesco, F. Comparison of sampling bags for the analysis of volatile organic compounds in breath. J. Breath. Res. 2015, 9, 047110. [Google Scholar] [CrossRef]
- Harshman, S.W.; Mani, N.; Geier, B.A.; Kwak, J.; Shepard, P.; Fan, M.; Sudberry, G.L.; Mayes, R.S.; Ott, D.K.; Martin, J.A.; et al. Storage stability of exhaled breath on Tenax TA. J. Breath. Res. 2016, 10, 046008. [Google Scholar] [CrossRef]
- Albuterol. Available online: https://go.drugbank.com/drugs/DB01001 (accessed on 25 March 2025).
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Brinkman, P.; van de Pol, M.A.; Gerritsen, M.G.; Bos, L.D.; Dekker, T.; Smids, B.S.; Sinha, A.; Majoor, C.J.; Sneeboer, M.M.; Knobel, H.H.; et al. Exhaled breath profiles in the monitoring of loss of control and clinical recovery in asthma. Clin. Exp. Allergy 2017, 47, 1159–1169. [Google Scholar] [CrossRef]
- Delfino, R.J.; Gong, H.; Linn, W.S.; Hu, Y.; Pellizzari, E.D. Respiratory symptoms and peak expiratory flow in children with asthma in relation to volatile organic compounds in exhaled breath and ambient air. J. Expo. Anal. Environ. Epidemiol. 2003, 13, 348–363. [Google Scholar] [CrossRef]
- Shahbazi Khamas, S.; Alizadeh Bahmani, A.H.; Vijverberg, S.J.H.; Brinkman, P.; Maitland-van der Zee, A.H. Exhaled volatile organic compounds associated with risk factors for obstructive pulmonary diseases: A systematic review. ERJ Open Res. 2023, 9, 00143–2023. [Google Scholar] [CrossRef] [PubMed]
- Corradi, M.; Folesani, G.; Andreoli, R.; Manini, P.; Bodini, A.; Piacentini, G.; Carraro, S.; Zanconato, S.; Baraldi, E. Aldehydes and glutathione in exhaled breath condensate of children with asthma exacerbation. Am. J. Respir. Crit. Care Med. 2003, 167, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, A.M.; Teague, W.G.; Holguin, F.; Yeh, M.; Brown, L.A.; Severe Asthma Research, P. Airway glutathione homeostasis is altered in children with severe asthma: Evidence for oxidant stress. J. Allergy Clin. Immunol. 2009, 123, 146–152.E8. [Google Scholar] [CrossRef]
- Fenn, D.; Lilien, T.A.; Hagens, L.A.; Smit, M.R.; Heijnen, N.F.L.; Tuip-de Boer, A.M.; Neerincx, A.H.; Golebski, K.; Bergmans, D.; Schnabel, R.M.; et al. Validation of volatile metabolites of pulmonary oxidative injury: A bench to bedside study. ERJ Open Res. 2023, 9, 00427-2022. [Google Scholar] [CrossRef] [PubMed]
- Lilien, T.A.; Fenn, D.W.; Brinkman, P.; Hagens, L.A.; Smit, M.R.; Heijnen, N.F.L.; van Woensel, J.B.M.; Bos, L.D.J.; Bem, R.A.; group, D.S. HS-GC-MS analysis of volatile organic compounds after hyperoxia-induced oxidative stress: A validation study. Intensive Care Med. Exp. 2024, 12, 14. [Google Scholar] [CrossRef]
- Chin, J.Y.; Godwin, C.; Parker, E.; Robins, T.; Lewis, T.; Harbin, P.; Batterman, S. Levels and sources of volatile organic compounds in homes of children with asthma. Indoor Air 2014, 24, 403–415. [Google Scholar] [CrossRef]
- Paciencia, I.; Cavaleiro Rufo, J.; Silva, D.; Martins, C.; Mendes, F.; Farraia, M.; Delgado, L.; de Oliveira Fernandes, E.; Padrao, P.; Moreira, P.; et al. Exposure to indoor endocrine-disrupting chemicals and childhood asthma and obesity. Allergy 2019, 74, 1277–1291. [Google Scholar] [CrossRef]
- Weisel, C.P. Assessing exposure to air toxics relative to asthma. Environ. Health Perspect. 2002, 110 (Suppl. 4), 527–537. [Google Scholar] [CrossRef]
- Cordiano, R.; Papa, V.; Cicero, N.; Spatari, G.; Allegra, A.; Gangemi, S. Effects of Benzene: Hematological and Hypersensitivity Manifestations in Resident Living in Oil Refinery Areas. Toxics 2022, 10, 678. [Google Scholar] [CrossRef]
- Shakerkhatibi, M.; Benis, K.Z.; Asghari-Jafarabadi, M.; Sadeghi-Bazarghani, H.; Allahverdipour, H.; Oskouei, D.S.; Fatehifar, E.; Farajzadeh, M.; Yadeghari, A.; Ansarin, K.; et al. Air pollution-related asthma profiles among children/adolescents: A multi-group latent class analysis. Ecotoxicol. Environ. Saf. 2021, 219, 112344. [Google Scholar] [CrossRef]
- Noh, S.R.; Kim, J.A.; Cheong, H.K.; Ha, M.; Jee, Y.K.; Park, M.S.; Choi, K.H.; Kim, H.; Cho, S.I.; Choi, K.; et al. Hebei Spirit oil spill and its long-term effect on children’s asthma symptoms. Environ. Pollut. 2019, 248, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, F.A.; Muller, A.; Busi, L.E.; Cianni, N.; Massolo, L.; Schlink, U.; Porta, A.; Sly, P.D. Increased asthma and respiratory symptoms in children exposed to petrochemical pollution. J. Allergy Clin. Immunol. 2009, 123, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Boeschoten, S.A.; Boehmer, A.L.; Merkus, P.J.; van Rosmalen, J.; de Jongste, J.C.; Fraaij, P.L.A.; Molenkamp, R.; Heisterkamp, S.G.; van Woensel, J.B.; Kapitein, B.; et al. Risk factors for intensive care admission in children with severe acute asthma in the Netherlands: A prospective multicentre study. ERJ Open Res. 2020, 6, 00126-2020. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Bai, C.H.; Chuang, K.J.; Fan, Y.C.; Chang, T.P.; Yim, S.H.; Ho, K.F. Association of ambient non-methane hydrocarbons exposure with respiratory hospitalizations: A time series study in Taipei, Taiwan. Sci. Total Environ. 2020, 729, 139010. [Google Scholar] [CrossRef]
- Wilkinson, M.; Maidstone, R.; Loudon, A.; Blaikley, J.; White, I.R.; Singh, D.; Ray, D.W.; Goodacre, R.; Fowler, S.J.; Durrington, H.J. Circadian rhythm of exhaled biomarkers in health and asthma. Eur. Respir. J. 2019, 54, 01068-2019. [Google Scholar] [CrossRef]
- Kang, S.; Paul Thomas, C.L. How long may a breath sample be stored for at -80 degrees C? A study of the stability of volatile organic compounds trapped onto a mixed Tenax: Carbograph trap adsorbent bed from exhaled breath. J. Breath. Res. 2016, 10, 026011. [Google Scholar] [CrossRef]
Included VOCs Reported by Study | Study Population (Number of Patients) | General Aim | Main Results |
---|---|---|---|
Van Vliet et al. [17] 1, 2-dimethylcyclohexane 2-ethylhexanal Octanal 6, 10-dimethyl-5, 9-undecadien-2-one Nonanal 2-methylfuran 3-methylfuran | Children with asthma (96) | Discriminate children with persistently controlled and uncontrolled asthma and predict an exacerbation | Sensitivity and specificity of predicting an asthma exacerbation 14 days after sampling were 88% and 75% based on 7 VOCs |
Shahbazi Khamas, S et al. [19] 2,4,4-trimethyl pentene 1-phenylethanone Benzaldehyde Styrene methyl-ethyl-1-benzene Ethylbenzene | Children with asthma (40) | Identify different VOCs between severe, uncontrolled asthma and controlled asthma | 7 VOCs were able to discriminate between uncontrolled asthma AUC 0.812 95% CI [0.657–0.968] |
Robroeks et al. [18] P-xylene 3-methylpentane 2-ethyl-4-methyltrimol but-1-enylbenzene 4,6,9-nonadecatriene 3-methylidenepent-1-ene Cyclohexane 2-octen-1-ol Benzene | Children with asthma | Prediction of asthma exacerbation | 6 VOCs resulted in the most optimal model to predict exacerbation (correct classification 96%, sensitivity 79% and specificity 100%) |
Brinkman et al. [30] Methanol Acetonitrile 4-methylbicyclo [2.2.2]octan-1-ol | Adolescents and adults with asthma (23) | To discriminate between clinical stable and unstable asthma | 3 VOCs discriminated correctly between loss of control and controlled asthma with accuracies of 68% and 77% |
Delfino et al. [31] Benzene | Children with asthma (21) | Environmental factors and their effect on asthma exacerbation | Non-significant association between benzene and severe asthma symptoms (OR 2.03, 95% CI, [0.80–5.11]) |
Cases Severe Acute Asthma (n = 17) | Controls Controlled Severe Asthma (n = 27) | |
---|---|---|
Age (mean) | 2–17 (9.3) | 6–17 (12.2) |
Sex, male (%) | 8 (47.1%) | 21 (77.8%) |
Ethnicity (%) | ||
Caucasian | 9 (52.9%) | 14 (51.8%) |
History of asthma (%) | ||
Yes | 12 (70.6%) | 27 (100%) |
Asthma admission (%) | ||
Yes | 7 (41.2%) | 15 (55.6%) |
Previous PICU admission (%) | ||
Yes | 3 (17.6%) | 11 (40.7%) |
Asthma treatment step (%) | ||
0 | 4 (23.5%) | 0 (0%) |
1 | 6 (35.3%) | 0 (0%) |
2 | 0 (0%) | 0 (0%) |
3 | 1 (5.9%) | 2 (7.4%) |
4 | 3 (17.6%) | 5 (18.5%) |
5 | 3 (17.6%) | 20 (74.1%) |
Atopy (%) | ||
Yes | 12 (70.6%) | 20 (74.1%) |
No | 5 (29.4%) | 7 (25.9%) |
Family history of asthma (%) | ||
Yes | 11 (64.7%) | 14 (51.9%) |
No | 6 (35.3%) | 13 (48.1%) |
Family history of atopy (%) | ||
Yes | 15 (88.2%) | 23 (85.2%) |
No | 2 (11.8%) | 4 (14.8%) |
Smoke exposure at home (self-reported) (%) | ||
Yes | 3 (17.6%) | 4 (14.8%) |
No | 14 (82.4%) | 23 (85.2%) |
Targeted VOCs | Adopted RT (min) | SAA (n = 17) (%) | CA (n = 27) (%) | Odds Ratio (95% CI) | p Value |
---|---|---|---|---|---|
Nonanal | 17.30 | 17 (100%) | 24 (89%) | ∞ [0.61, ∞] | p = 0.14 |
Methylethyl-1-benzene | 13.62 | 10 (59%) | 4 (15%) | 7.75 [1.63, 45.5] | p = 0.01 |
Styrene | 12.81 | 13 (76%) | 10 (37%) | 5.30 [1.21, 28.8] | p = 0.02 |
2-ethyl-4-methylpentan-1-ol | 15.76 | 17 (100%) | 25 (93%) | ∞ [0.12, ∞] | p = 0.51 |
Octanal | 15.23 | 16 (94%) | 23 (85%) | 2.73 [0.24, 145.35] | p = 0.63 |
p-xylene | 12.87 | 8 (47%) | 6 (22%) | 3.0, 14.23] | p = 0.11 |
Ethylbenzene | 12.19 | 14 (82%) | 14 (52%) | 4.19 [0.87, 27.96] | p = 0.06 |
Benzaldehyde | 14.48 | 14 (82%) | 14 (52%) | 4.19 [0.87, 27.96] | p = 0.06 |
2-octen-1-ol | 18.81 | 8 (47%) | 6 (22%) | 3.03 [0.69, 14.23] | p = 0.11 |
2,4,4-trimethyl pentene | 8.88 | 11 (65%) | 12 (44%) | 2.25 [0.56, 9.81] | p = 0.23 |
3-Methylpentane | 8.25 | 4 (24%) | 3 (11%) | 2.41 [0.35, 19.05] | p = 0.41 |
1-Phenylethanone | 16.77 | 4 (24%) | 4 (15%) | 1.74 [0.28, 11.13] | p = 0.69 |
2-Ethylhexanal | 14.22 | 11 (65%) | 14 (52%) | 1.68 [0.42, 7.29] | p= 0.54 |
Acetonitrile | 3.57 | 4 (24%) | 7 (26%) | 0.88 [0.16, 4.35] | p = 1.0 |
Benzene | 5.97 | 2 (12%) | 6 (22%) | 0.47 [0.04, 3.15] | p = 0.46 |
Cyclohexane | 3.72 | 13 (76%) | 22 (81%) | 0.74 [0.13, 4.46] | p = 0.72 |
1, 2-dimethylcyclohexane | - | - | - | - | - |
but-1-enylbenzene | - | - | - | - | - |
3-methylidenepent-1-ene | - | - | - | - | - |
2-methylfuran | - | - | - | - | - |
3-methylfuran | - | - | - | - | - |
4,6,9-nonadecatriene | - | - | - | - | - |
6, 10-dimethyl-5, 9-undecadien-2-one | - | - | - | - | - |
4-methylbicyclo[2.2.2]octan-1-ol | - | - | - | - | - |
Methanol | - | - | - | - | - |
Targeted VOCs | Median Peak Area SAA (×106) [1–3 IQR] | Median Peak Area CA (×106) [1–3 IQR] | p Value | Median Peak Area SAA (×106) [1–3 IQR] * | Median Peak Area CA (×106) [1–3 IQR] * | p Value * |
---|---|---|---|---|---|---|
Nonanal | 60 [32–87] | 18 [9.7–29] | p = 0.001 | 60 [32–87] | 14 [6.7–29] | p = 0.00 |
Methylethyl-1-benzene | 2.3 [1.5–3.7] | 12 [7.6–16] | p = 0.84 | 1.4 [0–2.6] | 0 [0–0] | p = 0.00 |
Styrene | 5.5 [2.4–31] | 5.7 [1.7–31] | p = 0.78 | 2.5 [1.2–12] | 0 [0–2.4] | p = 0.02 |
2-Ethyl-4-methylpentan-1-ol | 12 × 101 [89–19 × 101] | 42 [35–80] | p = 9.6 × 10−6 | 12 × 101 [89–19 × 101] | 42 [35–79] | p = 0.00 |
Octanal | 24 [12–31] | 12 [6.4–16] | p = 0.03 | 23 [11–31] | 12 [4.3–18] | p = 0.02 |
p-xylene | 4.6 [3.4–7.6] | 4.8 [1.9–12] | p = 0.03 | 0 [0–4.2] | 0 [0–0] | p = 0.04 |
Ethylbenzene | 6.8 [2.7–13] | 3.2 [1.4–11] | p = 0.60 | 2.9 [1.8–9.5] | 0.49 [0–5] | p = 0.04 |
Benzaldehyde | 2.9 [1.4–20] | 1.4 [0.8–13] | p = 0.70 | 1.7 [0.6–10] | 0.21 [0–6.6] | p = 0.05 |
2-octen-1-ol | 16 [12–18] | 11 [2.9–24] | p = 0.95 | 0 [0–16] | 0 [0–0] | p = 0.09 |
2,4,4-trimethyl pentene | 8.4 [5.7–20] | 8.5 [7.1–11] | p = 0.53 | 5.3 [0–8.5] | 0 [0–7.5] | p = 0.15 |
3-Methylpentane | 0.50 [0.15–0.88] | 2.6 [1.5–3.7] | p = 0.06 | 0 [0–0] | 0 [0–0] | p = 0.41 |
1-phenylethanone | 3.5 [3.3–3.7] | 5.4 [4.0–7.3] | p = 1.0 | 0 [0–0] | 0 [0–0] | p = 0.48 |
2-Ethylhexanal | 3.3 [2.2–4.7] | 4.4 [2.1–9.8] | p = 0.69 | 2.1 [0–3.8] | 0.97 [0–3.6] | p = 0.59 |
Acetonitrile | 0.37 [0.072–2.8] | 0.23 [0.21–2.3] | p = 0.93 | 0 [0–0] | 0 [0–0.016] | p = 0.90 |
Benzene | 4.2 [2.9–5.5] | 0.81 [0.73–0.99] | p = 0.07 | 0 [0–0] | 0 [0–0] | p = 0.53 |
Cyclohexane | 14 [12–16] | 16 [6.2–24] | p = 0.53 | 13 [7.0–16] | 15 [1.8–23] | p = 0.47 |
1, 2-dimethylcyclohexane | - | - | - | - | - | - |
but-1-enylbenzene | - | - | - | - | - | - |
3-methylidenepent-1-ene | - | - | - | - | - | - |
2-methylfuran | - | - | - | - | - | - |
3-methylfuran | - | - | - | - | - | - |
4,6,9-nonadecatriene | - | - | - | - | - | - |
6, 10-dimethyl-5, 9- undecadien-2-one | - | - | - | - | - | - |
4-methylbicyclo[2.2.2]octan-1-ol | - | - | - | - | - | - |
Methanol | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van den Berg, S.; Zaat, A.S.; van der Poel, I.F.; van Dijk, Y.E.; Hashimoto, S.; Rutjes, N.W.P.; Terheggen-Largo, S.W.J.; van Ewijk, B.E.; Gagliani, C.; Sondaal, F.L.; et al. Uncovering Non-Invasive Biomarkers in Paediatric Severe Acute Asthma Using Targeted Exhaled Breath Analysis. Metabolites 2025, 15, 247. https://doi.org/10.3390/metabo15040247
van den Berg S, Zaat AS, van der Poel IF, van Dijk YE, Hashimoto S, Rutjes NWP, Terheggen-Largo SWJ, van Ewijk BE, Gagliani C, Sondaal FL, et al. Uncovering Non-Invasive Biomarkers in Paediatric Severe Acute Asthma Using Targeted Exhaled Breath Analysis. Metabolites. 2025; 15(4):247. https://doi.org/10.3390/metabo15040247
Chicago/Turabian Stylevan den Berg, Sarah, Annabel S. Zaat, Isabel F. van der Poel, Yoni E. van Dijk, Simone Hashimoto, Niels W. P. Rutjes, Suzanne W. J. Terheggen-Largo, Bart E. van Ewijk, Claudia Gagliani, Fleur L. Sondaal, and et al. 2025. "Uncovering Non-Invasive Biomarkers in Paediatric Severe Acute Asthma Using Targeted Exhaled Breath Analysis" Metabolites 15, no. 4: 247. https://doi.org/10.3390/metabo15040247
APA Stylevan den Berg, S., Zaat, A. S., van der Poel, I. F., van Dijk, Y. E., Hashimoto, S., Rutjes, N. W. P., Terheggen-Largo, S. W. J., van Ewijk, B. E., Gagliani, C., Sondaal, F. L., van Woensel, J. B. M., Maitland-van der Zee, A.-H., Brinkman, P., Vijverberg, S. J. H., & Kapitein, B. (2025). Uncovering Non-Invasive Biomarkers in Paediatric Severe Acute Asthma Using Targeted Exhaled Breath Analysis. Metabolites, 15(4), 247. https://doi.org/10.3390/metabo15040247