Vacuum-Assisted MonoTrapTM Extraction for Volatile Organic Compounds (VOCs) Profiling from Hot Mix Asphalt
Abstract
1. Introduction
2. Results and Discussion
2.1. Heat Transfer Theory
2.2. Choice of the MonoTrapTM Adsorbent Phase Through a Chemometric Approach
2.3. Vacuum Effect on HS-MMSE-MonoTrapTM Sampling
3. Materials and Methods
3.1. Reagents
3.2. Vac-HS-MMSE-MonotrapTM TD Procedure
3.3. Sample and Sampling
3.4. Three-Axis Autosampler and Multi-Mode GC Inlet Systems
3.5. GC–MS/O
3.6. Chemometric Tool
3.7. Identification of VOCs by LTPRI
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polvara, E.; Roveda, L.; Invernizzi, M.; Capelli, L.; Sironi, S. Estimation of Emission Factors for Hazardous Air Pollutants from Petroleum Refineries. J. Atmos. 2021, 12, 1531. [Google Scholar] [CrossRef]
- Wojnarowska, M.; Plichta, G.; Sagan, A.; Plichta, J.; Stobiecka, J.; Sołtysik, M. Odour nuisance and urban residents quality of life: A case study in Kraków’s Plaszow district. Urban Clim. 2020, 34, 100704. [Google Scholar] [CrossRef]
- Milad, A.; Babalghaith, A.M.; Al-Sabaeei, A.M.; Dulaimi, A.; Ali, A.; Reddy, S.S.; Bilema, M.; Yusoff, N.I.M. A Comparative Review of Hot and Warm Mix Asphalt Technologies from Environmental and Economic Perspectives: Towards a Sustainable Asphalt Pavement. Int. J. Environ. Res. Public Health 2022, 19, 14863. [Google Scholar] [CrossRef]
- Heidari, M.; Bahrami, A.; Ghiasvand, A.R.; Shahna, F.G.; Soltanian, A.R. A novel needle trap device with single wall carbon nanotubes sol–gel sorbent packed for sampling and analysis of volatile organohalogen compounds in air. Talanta 2012, 101, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.K.; Pereira, N.C.; Hung, Y.-T. Air Pollution Control Engineering; Humana Press Inc.: Totowa, NJ, USA, 2004. [Google Scholar]
- Demeestere, K.; Dewulf, J.; De Witte, B.; Van Langenhove, H. Sample preparation for the analysis of volatile organic compounds in air and water matrices. J. Chromatogr. A 2007, 1153, 130–144. [Google Scholar] [CrossRef]
- Technical Overview of Volatile Organic Compounds. EPA. 3 May 2024. Available online: https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds#definition (accessed on 3 July 2024).
- Site Remediation and Waste Management Program and Department of Environmental Protection. Capping of Volatile Contaminants for the Impact to Ground Water Pathway. 2019. Available online: https://www.nj.gov/dep/srp/guidance/rs/igw_vo_capping.pdf (accessed on 3 July 2024).
- Health Canada. Government of Canada. Available online: https://www.canada.ca/en/health-canada.html (accessed on 3 July 2024).
- Bokowa, A.; Diaz, C.; Koziel, J.A.; McGinley, M.; Barclay, J.; Schauberger, G.; Guillot, J.-M.; Sneath, R.; Capelli, L.; Zorich, V.; et al. Summary and Overview of the Odour Regulations Worldwide. Atmosphere 2021, 12, 206. [Google Scholar] [CrossRef]
- Li, J.; Zou, K.; Li, W.; Wang, G.; Yang, W. Olfactory Characterization of Typical Odorous Pollutants Part I: Relationship Between the Hedonic Tone and Odor Concentration. Atmosphere 2019, 10, 524. [Google Scholar] [CrossRef]
- Ministero dell’Ambiente e della Sicurezza Energetica. Decreto Direttoriale MinAmbiente 28 Giugno 2023, n. 309. Rete Ambiente: Osservatorio Normativa Ambientale. Available online: https://www.reteambiente.it/normativa/51893/decreto-direttoriale-minambiente-28-giugno-2023-n-309/ (accessed on 3 July 2024).
- Emissioni da Sorgente Fissa—Determinazione della Concentrazione di Odore Mediante Olfattometria Dinamica e della Portata di Odore. UNI EN 13725: 2022. Available online: https://store.uni.com/uni-en-13725-2022 (accessed on 7 August 2024).
- Brattoli, M.; Cisternino, E.; Dambruoso, P.R.; De Gennaro, G.; Giungato, P.; Mazzone, A.; Palmisani, J.; Tutino, M. Gas Chromatography Analysis with Olfactometric Detection (GC-O) as a Useful Methodology for Chemical Characterization of Odorous Compounds. Sensors 2013, 13, 16759–16800. [Google Scholar] [CrossRef]
- Kurowska-Susdorf, A.; Zwierżdżyński, M.; Bevanda, A.M.; Talić, S.; Ivanković, A.; Płotka-Wasylka, J. Green analytical chemistry: Social dimension and teaching. TrAC Trends Anal. Chem. 2019, 111, 185–196. [Google Scholar] [CrossRef]
- Dugheri, S.; Bonari, A.; Gentili, M.; Cappelli, G.; Pompilio, I.; Bossi, C.; Arcangeli, G.; Campagna, M.; Mucci, N. High-Throughput Analysis of Selected Urinary Hydroxy Polycyclic Aromatic Hydrocarbons by an Innovative Automated Solid-Phase Microextraction. Molecules 2018, 23, 1869. [Google Scholar] [CrossRef]
- Dugheri, S.; Mucci, N.; Bonari, A.; Marrubini, G.; Cappelli, G.; Ubiali, D.; Campagna, M.; Montalti, M.; Arcangeli, G. Solid Phase Microextraction Techniques Used for Gas Chromatography: A Review. Acta Chromatogr. 2020, 32, 1–9. [Google Scholar] [CrossRef]
- Dugheri, S.; Mucci, N.; Cappelli, G.; Trevisani, L.; Bonari, A.; Bucaletti, E.; Squillaci, D.; Arcangeli, G. Advanced Solid-Phase Microextraction Techniques and Related Automation: A Review of Commercially Available Technologies. J. Anal. Methods Chem. 2022, 2022, 8690569. [Google Scholar] [CrossRef] [PubMed]
- Hjertén, S.; Liao, J.-L.; Zhang, R. High-Performance Liquid Chromatography on Continuous Polymer Beds. J. Chromatogr. A 1989, 473, 273–275. [Google Scholar] [CrossRef]
- China-Japan-Korea Symposium on Analytical Chemistry: Novel Approach for Aroma Components Analysis Using Monolithic Material Sorptive Extraction Method. In Proceedings of the JAIMA Conference at Makuhari, Chiba, Japan, 31 August–2 September 2009. Available online: https://www.jsac.or.jp/~gc/pdf/2009CJK/2009CJKsymposiumabstract.pdf (accessed on 3 June 2024).
- Hashi, Y.; Son, H.H.; Cha, E.J.; Lee, D.S. China-Japan-Korea Symposium on Analytical Chemistry. In Proceedings of the JAIMA Conference: New Approach of Simple Pretreatment for GCMS Analysis by Using Monolithic Material Sorption Extraction for Determination of 16 PAHs, Chiba, Japan, 31 August–2 September 2009; Available online: http://www.jsac.or.jp/~gc/pdf/2009CJK/2009CJKProgramtable_oral.pdf (accessed on 3 June 2024).
- Sato, A.; Terashima, H.; Takei, Y. Monolith Adsorbent and Method and Apparatus for Adsorbing Samples with the Same—EP2161573A1. European Patent Office. 2008. Available online: https://patents.google.com/patent/EP2161573A1/en (accessed on 3 June 2024).
- Brunton, N.P.; Cronin, D.A.; Monahan, F.J. The Effects of Temperature and Pressure on the Performance of Carboxen/PDMS Fibres During Solid Phase Microextraction (SPME) of Headspace Volatiles from Cooked and Raw Turkey Breast. Flavour Fragr. J. 2001, 16, 294–302. [Google Scholar] [CrossRef]
- Psillakis, E.; Yiantzi, E.; Sanchez-Prado, L.; Kalogerakis, N. Vacuum-Assisted Headspace Solid Phase Microextraction: Improved Extraction of Semivolatiles by Non-Equilibrium Headspace Sampling Under Reduced Pressure Conditions. Anal. Chim. Acta 2012, 742, 30–36. [Google Scholar] [CrossRef]
- Psillakis, E. The Effect of Vacuum: An Emerging Experimental Parameter to Consider During Headspace Microextraction Sampling. Anal. Bioanal. Chem. 2020, 412, 5989–5997. [Google Scholar] [CrossRef]
- Trujillo-Rodríguez, M.J.; Pino, V.; Psillakis, E.; Anderson, J.L.; Ayala, J.H.; Yiantzi, E.; Afonso, A.M. Vacuum-Assisted Headspace-Solid Phase Microextraction for Determining Volatile Free Fatty Acids and Phenols. Investigations on the Effect of Pressure on Competitive Adsorption Phenomena in a Multicomponent System. Anal. Chim. Acta 2017, 962, 41–51. [Google Scholar] [CrossRef]
- Thomas, S.L.; Myers, C.; Herrington, J.S.; Schug, K.A. Investigation of Operational Fundamentals for Vacuum-Assisted Headspace High-Capacity Solid-Phase Microextraction and Gas Chromatographic Analysis of Semivolatile Compounds from a Model Solid Sample. J. SeSci. 2024, 47, 2300779. [Google Scholar] [CrossRef]
- Sýkora, M.; Vítová, E.; Jeleń, H.H. Application of Vacuum Solid-Phase Microextraction for the Analysis of Semi-Hard Cheese Volatiles. Eur. Food Res. Technol. 2020, 246, 573–580. [Google Scholar] [CrossRef]
- Autelitano, F.; Bianchi, F.; Giuliani, F. Airborne Emissions of Asphalt/Wax Blends for Warm Mix Asphalt Production. J. Clean. Prod. 2017, 164, 749–756. [Google Scholar] [CrossRef]
- Autelitano, F.; Giuliani, F. Analytical Assessment of Asphalt Odor Patterns in Hot Mix Asphalt Production. J. Clean. Prod. 2018, 172, 1212–1223. [Google Scholar] [CrossRef]
- Chlebnikovas, A.; Marčiulaitienė, E.; Šernas, O.; Škulteckė, J.; Januševičius, T. Research on Air Pollutants and Odour Emissions from Paving Hot-Mix Asphalt with End-of-Life Tyre Rubber. Environ. Int. 2023, 181, 108281. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qin, Y.; Zhang, X.; Shan, B.; Liu, C. Emission Characteristics, Environmental Impacts, and Health Risks of Volatile Organic Compounds from Asphalt Materials: A State-of-the-Art Review. Energy Fuels 2024, 38, 4787–4802. [Google Scholar] [CrossRef]
- International Labour Office. International Chemical Control Toolkit-Draft Guidelines. Available online: https://webapps.ilo.org/static/english/protection/safework/ctrl_banding/toolkit/icct/guide.pdf (accessed on 3 July 2024).
- Yoko, Y.; Eiichiro, N. Measurement of Odor Threshold by Triangular Odor Bag Method. 2003. Available online: https://www.env.go.jp/en/air/odor/measure/02_3_2.pdf (accessed on 3 July 2024).
- Royal Society of Chemistry. ChemSpider—Search and Share Chemistry. Available online: https://www.chemspider.com/ (accessed on 3 July 2024).
- Giri, A.; Osako, K.; Okamoto, A.; Ohshima, T. Olfactometric Characterization of Aroma Active Compounds in Fermented Fish Paste in Comparison with Fish Sauce, Fermented Soy Paste and Sauce Products. Food Res. Int. 2010, 43, 1027–1040. [Google Scholar] [CrossRef]
- Jeleń, H.; Gracka, A. Characterization of Aroma Compounds: Structure, Physico-Chemical and Sensory Properties. In Flavour, 1st ed.; Guichard, E., Salles, C., Morzel, M., Le Bon, A., Eds.; Wiley: Hoboken, NJ, USA, 2016; pp. 126–153. [Google Scholar] [CrossRef]
- O’Brien, P.J.; Siraki, A.G.; Shangari, N. Aldehyde Sources, Metabolism, Molecular Toxicity Mechanisms, and Possible Effects on Human Health. Crit. Rev. Toxicol. 2005, 35, 609–662. [Google Scholar] [CrossRef]
- LoPachin, R.M.; Gavin, T. Molecular Mechanisms of Aldehyde Toxicity: A Chemical Perspective. Chem. Res. Toxicol. 2014, 27, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids; Clarendon Press: Oxford, UK, 1959. [Google Scholar]
- Incropera, F.P.; Dewitt, D.P.; Bergman, T.L.; Lavine, A.S. Fundamentals of Heat and Mass Transfer, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007; Available online: https://hyominsite.wordpress.com/wp-content/uploads/2015/03/fundamentals-of-heat-and-mass-transfer-6th-edition.pdf (accessed on 1 July 2024).
- Koziel, J.; Jia, M.; Pawliszyn, J. Air Sampling with Porous Solid-Phase Microextraction Fibers. Anal. Chem. 2000, 72, 5178–5186. [Google Scholar] [CrossRef] [PubMed]
- Marrubini, G.; Dugheri, S.; Cappelli, G.; Arcangeli, G.; Mucci, N.; Appelblad, P.; Melzi, C.; Speltini, A. Experimental Designs for Solid-Phase Microextraction Method Development in Bioanalysis: A Review. Anal. Chim. Acta 2020, 1119, 77–100. [Google Scholar] [CrossRef]
- Leardi, R. Experimental Design in Chemistry: A Tutorial. Anal. Chim. Acta 2009, 652, 161–172. [Google Scholar] [CrossRef]
- Marrubini, G.; Melzi, C. Trattamento dei Dati e Progettazione degli Esperimenti per le Scienze Chimiche e Farmaceutiche; McGraw-Hill: New York, NY, USA, 2024; Volume 1, Available online: https://www.mheducation.it/trattamento-dei-dati-e-progettazione-degli-esperimenti-per-le-scienze-chimiche-e-farmaceutiche-9788838613463-italy (accessed on 1 July 2024).
- Psillakis, E. Vacuum-Assisted Headspace Solid-Phase Microextraction: A Tutorial Review. Anal. Chim. Acta 2017, 986, 12–24. [Google Scholar] [CrossRef]
- Psillakis, E.; Yiantzi, E.; Kalogerakis, N. Downsizing Vacuum-Assisted Headspace Solid Phase Microextraction. J. Chromatogr. A 2013, 1300, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Vakinti, M.; Mela, S.-M.; Fernández, E.; Psillakis, E. Room Temperature and Sensitive Determination of Haloanisoles in Wine Using Vacuum-Assisted Headspace Solid-Phase Microextraction. J. Chromatogr. A 2019, 1602, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Glykioti, M.-L.; Yiantzi, E.; Psillakis, E. Room Temperature Determination of Earthy-Musty Odor Compounds in Water Using Vacuum-Assisted Headspace Solid-Phase Microextraction. Anal. Methods 2016, 8, 8065–8071. [Google Scholar] [CrossRef]
- Fatima, S.; Govardhan, B.; Kalyani, S.; Sridhar, S. Extraction of Volatile Organic Compounds from Water and Wastewater by Vacuum-Driven Membrane Process: A Comprehensive Review. Chem. Eng. J. 2022, 434, 134664. [Google Scholar] [CrossRef]
- Jury, W.A.; Russo, D.; Streile, G.; El Abd, H. Evaluation of Volatilization by Organic Chemicals Residing Below the Soil Surface. Water Resour. Res. 1990, 26, 13–20. [Google Scholar] [CrossRef]
- Yiantzi, E.; Kalogerakis, N.; Psillakis, E. Vacuum-Assisted Headspace Solid Phase Microextraction of Polycyclic Aromatic Hydrocarbons in Solid Samples. Anal. Chim. Acta 2015, 890, 108–116. [Google Scholar] [CrossRef]
- Solomou, N.; Bicchi, C.; Sgorbini, B.; Psillakis, E. Vacuum-Assisted Headspace Sorptive Extraction: Theoretical Considerations and Proof-of-Concept Extraction of Polycyclic Aromatic Hydrocarbons from Water Samples. Anal. Chim. Acta 2020, 1096, 100–107. [Google Scholar] [CrossRef]
- Pollien, P.; Ott, A.; Montigon, F.; Baumgartner, M.; Muñoz-Box, R.; Chaintreau, A. Hyphenated Headspace-Gas Chromatography-Sniffing Technique: Screening of Impact Odorants and Quantitative Aromagram Comparisons. J. Agric. Food Chem. 1997, 45, 2630–2637. [Google Scholar] [CrossRef]
- Leardi, R.; Melzi, C.; Polotti, G. CAT (Chemometric Agile Tool). Available online: http://gruppochemiometria.it/index.php/software (accessed on 20 June 2024).
- Kováts, E. Gas-Chromatographische Charakterisierung Organischer Verbindungen. Teil 1: Retentionsindices Aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv. Chim. Acta 1958, 41, 1915–1932. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P.D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas—Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Pacenti, M.; Dugheri, S.; Gagliano-Candela, R.; Strisciullo, G.; Franchi, E.; Degli Esposti, F.; Perchiazzi, N.; Boccalon, P.; Arcangeli, G.; Cupelli, V. Analysis of 2-Chloroacetophenone in Air by Multi-Fiber Solid-Phase Microextraction and Fast Gas Chromatography-Mass Spectrometry. Acta Chromatogr. 2009, 21, 379–397. [Google Scholar] [CrossRef]
- Ji, S.; Gu, S.; Wang, X.; Wu, N. Comparison of Olfactometrically Detected Compounds and Aroma Properties of Four Different Edible Parts of Chinese Mitten Crab. Fish. Sci. 2015, 81, 1157–1167. [Google Scholar] [CrossRef]
- Wu, N.; Gu, S.; Tao, N.; Wang, X.; Ji, S. Characterization of Important Odorants in Steamed Male Chinese Mitten Crab (Eriocheir sinensis) Using Gas Chromatography-Mass Spectrometry-Olfactometry. J. Food Sci. 2014, 79, C1250–C1259. [Google Scholar] [CrossRef] [PubMed]
- Pacenti, M.; Dugheri, S.; Traldi, P.; Degli Esposti, F.; Perchiazzi, N.; Franchi, E.; Calamante, M.; Kikic, I.; Alessi, P.; Bonacchi, A.; et al. New Automated and High-Throughput Quantitative Analysis of Urinary Ketones by Multifiber Exchange-Solid Phase Microextraction Coupled to Fast Gas Chromatography/Negative Chemical-Electron Ionization/Mass Spectrometry. J. Autom. Methods Manag. Chem. 2010, 2010, 972926. [Google Scholar] [CrossRef]
- Lee, M.L.; Vassilaros, D.L.; White, C.M. Retention Indices for Programmed-Temperature Capillary-Column Gas Chromatography of Polycyclic Aromatic Hydrocarbons. Anal. Chem. 1979, 51, 768–773. [Google Scholar] [CrossRef]
Num. | Compound ** (Name/ Formula) | CAS n. | MW Da | BP a,d,e °C | VP a,d,e Pa | RVD *,a Air = 1 | LTPRI b Estimated | Retention Times (RTs) | Peak Area Score Units f | Odor Smell | OT c ppb |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Acetaldehyde/C2H4O | 75-07-0 | 44 | 20 | 101,000 | 1.5 | 412 | 8.342 | + | Pungent, fruity | 1.5 |
2 | Ethanol/C2H6O | 64-17-5 | 46 | 78 | 5800 | 1.6 | 458 | 8.501 | + | Weak | 520 |
3 | Propanal/C3H6O | 123-38-6 | 58 | 49 | 31,000 | 2.0 | 471 | 9.117 | +++ | Pungent, choking | 1.0 |
4 | tert-Butyl alcohol/C4H10O | 75-65-0 | 74 | 83 | 4100 | 2.6 | 476 | 9.304 | + | Camphorous | 4500 |
5 | Acetone/C3H6O | 67-64-1 | 58 | 56 | 24,000 | 2.0 | 478 | 9.398 | + | Fruity | 42,000 |
6 | 1-Propanol/C3H8O | 71-23-8 | 60 | 97 | 2000 | 2.1 | 533 | 10.087 | + | Weak | 94 |
7 | Acetic acid/C2H4O2 | 64-19-7 | 60 | 118 | 1500 | 2.1 | 543 | 10.228 | + | Strong, vinegar-like | 6 |
8 | 2-Butanone/C4H8O | 78-93-3 | 72 | 79 | 10,500 | 2.41 | 548 | 10.431 | ++ | Mint | 440 |
9 | Butanal/C4H8O | 123-72-8 | 72 | 75 | 12,200 | 2.5 | 556 | 10.535 | +++ | Pungent | 0.6 |
10 | Butanedione/C4H6O2 | 431-03-8 | 86 | 88 | 7600 | 3.0 | 567 | 11.079 | ++ | Chlorine-like | 0.05 |
11 | Butanol/C4H10O | 71-36-3 | 74 | 117 | 580 | 2.6 | 607 | 11.187 | + | Harsh | 38 |
12 | 2-Pentanone/C5H10O | 107-87-9 | 86 | 101 | 1600 | 3.0 | 647 | 11.328 | +++ | Aceton-like | 28 |
13 | n-Pentanal/C5H10O | 110-62-3 | 86 | 103 | 3400 | 3.0 | 664 | 11.488 | ++++ | Acrid, pungent | 0.41 |
14 | 1-Pentanol/C5H12O | 71-41-0 | 88 | 138 | 600 | 3.0 | 742 | 12.136 | + | Fusel-like | 100 |
15 | 2-Ethylfuran/C6H8O | 3208-16-0 | 96 | 92 | 6666 | - | 756 | 12.375 | ++ | Smoky burn | - |
16 | 2-Ethylbutanal/C6H12O | 97-96-1 | 100 | 116 | 2000 | - | 762 | 13.108 | ++ | Pungent | - |
17 | 2-Hexanone/C6H12O | 591-78-6 | 100 | 126 | 360 | 3.5 | 770 | 13.247 | +++ | Sharp | 24 |
18 | 1-Hexanal/C6H12O | 66-25-1 | 100 | 129 | 1100 | - | 780 | 13.378 | ++++ | Strong, green grass | 0.28 |
19 | 2-Hexanol/C6H14O | 626-93-7 | 102 | 136 | 2300 | 3.5 | 795 | 14.087 | + | Sweet | 6 |
20 | 2-Heptanone/C7H14O | 110-43-0 | 114 | 151 | 200 | 3.9 | 859 | 14.252 | ++ | Penetrating-spicy | 6.8 |
21 | Heptanal/C7H14O | 111-71-7 | 114 | 153 | 3500 | - | 878 | 15.143 | ++++ | Pungent, fatty | 0.18 |
22 | Cyclohexanone/C6H10O | 108-94-1 | 98 | 156 | 500 | 3.4 | 891 | 15.369 | ++ | Peppermint-like | - |
23 | 1-Heptanol/C7H16O | 111-70-6 | 116 | 175 | 15 | 4.01 | 920 | 16.065 | + | Aromatic | 4.8 |
24 | 6-Methyl-2-heptanone/C8H16O | 928-68-7 | 128 | 168 | 173 | - | 941 | 16.297 | ++ | Camphorous | - |
25 | 3-Octanone/C8H16O | 106-68-3 | 128 | 168 | 503 | - | 951 | 16.386 | +++ | Sharp, mild fruit | - |
26 | Octanal/C8H16O | 124-13-0 | 128 | 171 | 206 | - | 965 | 16.584 | ++++ | Pungent citrus-like | 0.01 |
27 | 1-Octanol/C8H18O | 111-87-5 | 130 | 194 | 10 | 4.5 | 984 | 17.308 | ++ | Strong, aromatic | 2.7 |
28 | 2-Nonanone/C9H18O | 821-55-6 | 142 | 192 | 63 | - | 1038 | 18.131 | ++ | Herbaceous | - |
29 | Nonanal/C9H18O | 124-19-6 | 142 | 195 | 37 | - | 1061 | 18.465 | ++++ | Orange–rose | 0.34 |
30 | 1-Nonanol/C9H20O | 143-08-8 | 144 | 213 | 10 | - | 1078 | 19.448 | ++ | Citronella oil-like | 0.9 |
31 | 2-Decanone/C10H20O | 693-54-9 | 156 | 210 | 25 | - | 1146 | 20.092 | +++ | Orange, fatty peach | - |
32 | Decanal/C10H20O | 112-31-2 | 156 | 212 | 10 | - | 1167 | 20.241 | ++++ | Penetrating waxy | 0.4 |
33 | 1-Decanol/C10H22O | 112-30-1 | 158 | 230 | 1 | 5.5 | 1254 | 20.462 | ++ | Fruity | 0.7 |
34 | 2-Undecanone/C11H22O | 112-12-9 | 170 | 231 | 10 | - | 1268 | 22.138 | + | Strong | - |
35 | Undecanal/C11H22O | 112-44-7 | 170 | 223 | 10 | - | 1276 | 23.087 | +++ | Penetrating orange | - |
Num. | Compound Name | Atmospheric Pressure | Vacuum | ||||
---|---|---|---|---|---|---|---|
Dg cm2/s | Uptake ng/s | SR mL/min | Dg cm2/s | Uptake ng/s | SR mL/min | ||
1 | Acetaldehyde | 0.13 | 0.08 | 9.10 | 12.10 | 1.26 | 151 |
2 | Ethanol | 0.12 | 0.07 | 8.66 | 11.40 | 1.21 | 146 |
3 | Propanal | 0.11 | 0.07 | 8.20 | 10.00 | 1.12 | 134 |
4 | tert-Butyl alcohol | 0.091 | 0.06 | 7.29 | 8.40 | 1.01 | 121 |
5 | Acetone | 0.11 | 0.07 | 8.20 | 10.00 | 1.12 | 134 |
6 | 1-Propanol | 0.1 | 0.06 | 7.73 | 9.50 | 1.08 | 130 |
7 | Acetic acid | 0.11 | 0.07 | 8.20 | 10.40 | 1.15 | 138 |
8 | 2-Butanone | 0.094 | 0.06 | 7.44 | 8.70 | 1.03 | 123 |
9 | Butanal | 0.094 | 0.06 | 7.44 | 8.70 | 1.03 | 123 |
10 | Butanedione | 0.092 | 0.06 | 7.34 | 8.40 | 1.01 | 121 |
11 | Butanol | 0.091 | 0.06 | 7.29 | 8.30 | 1.00 | 120 |
12 | 2-Pentanone | 0.084 | 0.06 | 6.94 | 7.70 | 0.95 | 114 |
13 | n-Pentanal | 0.084 | 0.06 | 6.94 | 7.70 | 0.95 | 114 |
14 | 1-Pentanol | 0.082 | 0.06 | 6.84 | 7.50 | 0.94 | 112 |
15 | 2-Ethylfuran | 0.08 | 0.06 | 6.73 | 7.40 | 0.93 | 112 |
16 | 2-Ethylbutanal | 0.077 | 0.05 | 6.58 | 7.10 | 0.91 | 109 |
17 | 2-Hexanone | 0.077 | 0.05 | 6.58 | 7.00 | 0.90 | 108 |
18 | 1-Hexanal | 0.077 | 0.05 | 6.58 | 7.00 | 0.90 | 108 |
19 | 2-Hexanol | 0.075 | 0.05 | 6.47 | 6.90 | 0.89 | 107 |
20 | 2-Heptanone | 0.071 | 0.05 | 6.25 | 6.50 | 0.86 | 103 |
21 | Heptanal | 0.071 | 0.05 | 6.25 | 6.50 | 0.86 | 103 |
22 | Cyclohexanone | 0.078 | 0.06 | 6.63 | 7.20 | 0.91 | 110 |
23 | 1-Heptanol | 0.069 | 0.05 | 6.14 | 6.30 | 0.84 | 101 |
24 | 6-Methyl-2-heptanone | 0.066 | 0.05 | 5.98 | 6.10 | 0.82 | 98.9 |
25 | 3-Octanone | 0.066 | 0.05 | 5.98 | 6.10 | 0.82 | 98.9 |
26 | Octanal | 0.066 | 0.05 | 5.98 | 6.10 | 0.82 | 98.9 |
27 | 1-Octanol | 0.065 | 0.05 | 5.92 | 5.90 | 0.81 | 96.9 |
28 | 2-Nonanone | 0.062 | 0.05 | 5.75 | 5.70 | 0.79 | 94.9 |
29 | Nonanal | 0.062 | 0.05 | 5.75 | 5.70 | 0.79 | 94.9 |
30 | 1-Nonanol | 0.061 | 0.05 | 5.69 | 5.60 | 0.78 | 93.8 |
31 | 2-Decanone | 0.058 | 0.05 | 5.52 | 5.40 | 0.76 | 91.7 |
32 | Decanal | 0.058 | 0.05 | 5.52 | 5.40 | 0.76 | 91.7 |
33 | 1-Decanol | 0.058 | 0.05 | 5.52 | 5.30 | 0.76 | 90.7 |
34 | 2-Undecanone | 0.056 | 0.04 | 5.40 | 5.10 | 0.74 | 88.5 |
35 | Undecanal | 0.056 | 0.04 | 5.40 | 5.10 | 0.74 | 88.5 |
Experimental Matrix | Experimental Plan | |||||
---|---|---|---|---|---|---|
Exp | x1 | x2 | x3 | MonoTrapTM | Vac | Equilibration min |
1 | −1 | −1 | −1 | RGPS TD | No | 8 |
2 | 1 | −1 | −1 | RGC18 TD | No | 8 |
3 | −1 | 1 | −1 | RGPS TD | Yes | 8 |
4 | 1 | 1 | −1 | RGC18 TD | Yes | 8 |
5 | −1 | −1 | 1 | RGPS TD | No | 4 |
6 | 1 | −1 | 1 | RGC18 TD | No | 4 |
7 | −1 | 1 | 1 | RGPS TD | Yes | 4 |
8 | 1 | 1 | 1 | RGC18 TD | Yes | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dugheri, S.; Cappelli, G.; Fanfani, N.; Squillaci, D.; Rapi, I.; Venturini, L.; Vita, C.; Gori, R.; Sirini, P.; Cipriano, D.; et al. Vacuum-Assisted MonoTrapTM Extraction for Volatile Organic Compounds (VOCs) Profiling from Hot Mix Asphalt. Molecules 2024, 29, 4943. https://doi.org/10.3390/molecules29204943
Dugheri S, Cappelli G, Fanfani N, Squillaci D, Rapi I, Venturini L, Vita C, Gori R, Sirini P, Cipriano D, et al. Vacuum-Assisted MonoTrapTM Extraction for Volatile Organic Compounds (VOCs) Profiling from Hot Mix Asphalt. Molecules. 2024; 29(20):4943. https://doi.org/10.3390/molecules29204943
Chicago/Turabian StyleDugheri, Stefano, Giovanni Cappelli, Niccolò Fanfani, Donato Squillaci, Ilaria Rapi, Lorenzo Venturini, Chiara Vita, Riccardo Gori, Piero Sirini, Domenico Cipriano, and et al. 2024. "Vacuum-Assisted MonoTrapTM Extraction for Volatile Organic Compounds (VOCs) Profiling from Hot Mix Asphalt" Molecules 29, no. 20: 4943. https://doi.org/10.3390/molecules29204943
APA StyleDugheri, S., Cappelli, G., Fanfani, N., Squillaci, D., Rapi, I., Venturini, L., Vita, C., Gori, R., Sirini, P., Cipriano, D., Sajewicz, M., & Mucci, N. (2024). Vacuum-Assisted MonoTrapTM Extraction for Volatile Organic Compounds (VOCs) Profiling from Hot Mix Asphalt. Molecules, 29(20), 4943. https://doi.org/10.3390/molecules29204943