Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = thermal creep flow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2672 KB  
Communication
CFD and Thermal Simulations of Molten Salt Thermal Storage Heat Exchanger System
by Alon Davidy
Energy Storage Appl. 2025, 2(4), 17; https://doi.org/10.3390/esa2040017 - 9 Dec 2025
Viewed by 171
Abstract
Molten salt heat exchangers are crucial components in systems requiring high-temperature heat transfer and energy storage, especially in renewable energy and advanced nuclear technologies. Their ability to operate efficiently at high temperatures while offering significant energy storage capacity makes them highly valuable in [...] Read more.
Molten salt heat exchangers are crucial components in systems requiring high-temperature heat transfer and energy storage, especially in renewable energy and advanced nuclear technologies. Their ability to operate efficiently at high temperatures while offering significant energy storage capacity makes them highly valuable in modern energy systems. They have high thermal stability. In the framework of this research, a computational fluid dynamics (CFD) simulation model of the HITEC molten salt cooling system has been developed. HITEC molten salt is a specialized heat transfer and thermal energy storage medium primarily used in industrial processes and solar thermal power plants. It is a eutectic blend of sodium nitrate, sodium nitrite, and potassium nitrate. COMSOL multi-physics code has been employed in this research. It simultaneously solves the fluid flow, energy, and heat conduction transport equations. Two cases have been investigated in this paper: a water flowing velocity of 1 [m/s] and a water flowing velocity of 10 [m/s]. The results indicate that the maximal surface temperature of the Crofer®22 H reached 441.2 °C in the first case. The maximal surface temperature of the Crofer®22 H reached 500 °C in the second case. Crofer®22 H alloy provides excellent steam oxidation, high corrosion resistance, and thermal creep resistance. The proposed HITEC molten thermal system may be applied in the oil and gas industries and in power plants (such as the Organic Rankine Cycle). Full article
Show Figures

Figure 1

14 pages, 1476 KB  
Article
Magnetic Field-Driven Transport Properties of an Oxygen-Deficient Rectangular YBa2Cu3O7-δ Superconducting Structure
by Artūras Jukna
Materials 2025, 18(16), 3890; https://doi.org/10.3390/ma18163890 - 20 Aug 2025
Viewed by 760
Abstract
The transport properties of biased type II superconductors are strongly influenced by external magnetic fields, which play a crucial role in optimizing the stability and performance of low-noise superconducting electronic devices. A major challenge is the stochastic behavior of Abrikosov vortices, which emerge [...] Read more.
The transport properties of biased type II superconductors are strongly influenced by external magnetic fields, which play a crucial role in optimizing the stability and performance of low-noise superconducting electronic devices. A major challenge is the stochastic behavior of Abrikosov vortices, which emerge in the mixed state and lead to energy dissipation through their nucleation, motion, and annihilation. Uncontrolled vortex dynamics can introduce electronic noise in low-power systems and trigger thermal breakdown in high-power applications. This study examines the effect of a perpendicular external magnetic field on vortex pinning in biased YBa2Cu3O7-δ devices containing laser-written, rectangular-shaped, partially deoxygenated regions (δ ≈ 0.2). The results show that increasing the magnetic field amplitude induces an asymmetry in the concentration of vortices and antivortices, shifting the annihilation line toward a region of lower flux density and altering the flux pinning characteristics. Oxygen-deficient segments aligned parallel to the current flow act as barriers to vortex motion, enhancing the net pinning force by preventing vortex–antivortex pairs from reaching their annihilation zone. The current–voltage characteristics reveal periodic voltage steps corresponding to the onset and suppression of thermally activated flux flow and flux creep. These features indicate magnetic field–tunable transport behavior within a narrow range of temperatures from 0.94·Tc to 0.98·Tc, where Tc is the critical temperature of the superconductor. These findings offer new insights into the design of vortex-motion-controlled superconducting electronics that utilize engineered pinning structures. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

15 pages, 1989 KB  
Article
Dynamic Crosslinking of LDPE by Nitroxide Radical Coupling of a Dicyclopentadiene Dicarboxylic Acid and Its Dynamic Properties
by Alojz Anžlovar, Mohor Mihelčič, Iztok Švab, David Pahovnik and Ema Žagar
Polymers 2025, 17(11), 1536; https://doi.org/10.3390/polym17111536 - 31 May 2025
Viewed by 859
Abstract
LDPE was crosslinked with novel dynamic or conventional crosslinking agents during melt processing. Both crosslinkers were synthesized by the esterification of Thiele’s acid or adipic acid with 4-hydroxy-TEMPO. 1H-NMR showed that a temperature of 170 °C and a reaction time of 24 [...] Read more.
LDPE was crosslinked with novel dynamic or conventional crosslinking agents during melt processing. Both crosslinkers were synthesized by the esterification of Thiele’s acid or adipic acid with 4-hydroxy-TEMPO. 1H-NMR showed that a temperature of 170 °C and a reaction time of 24 min are required for a successful crosslinking. The concentrations of crosslinking agents were 1.45, 2.9, and 5.8 mol%. Conventionally crosslinked LDPEs show a decrease in soluble content in hot xylene with increased crosslinker concentrations, while dynamically crosslinked LDPEs show no change after thermal treatment, indicating the scission of dynamic crosslinks. The rheology of both crosslinked LDPEs at 130 °C shows that the stress release is slower than that of neat LDPE, confirming crosslinking, while at 170 °C a shift in the stress release and also a shift in the flow properties of dynamically crosslinked LDPE towards those of neat LDPE are observed, both indicating the cleavage of dynamic crosslinks. Compared to neat LDPE, the mechanical properties of both crosslinked LDPEs show an increase in Young’s modulus and tensile strength and a decrease in elongation and creep when the concentration of both crosslinkers is increased. By increasing the processing temperature to 170 °C, the crystallinity index decreases, leading to a rather small improvement in the mechanical properties. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

16 pages, 11150 KB  
Article
Study on the Long-Term Influence of Proppant Optimization on the Production of Deep Shale Gas Fractured Horizontal Well
by Siyuan Chen, Shiming Wei, Yan Jin and Yang Xia
Appl. Sci. 2025, 15(5), 2365; https://doi.org/10.3390/app15052365 - 22 Feb 2025
Cited by 1 | Viewed by 1143
Abstract
As shale gas development gradually advances to a deeper level, the economic exploitation of deep shale gas has become one of the key technologies for sustainable development. Large-scale, long-term and effective hydraulic fracturing fracture networks are the core technology for achieving economic exploitation [...] Read more.
As shale gas development gradually advances to a deeper level, the economic exploitation of deep shale gas has become one of the key technologies for sustainable development. Large-scale, long-term and effective hydraulic fracturing fracture networks are the core technology for achieving economic exploitation of deep shale gas. Due to the high-pressure and high-temperature characteristics of deep shale gas reservoirs, traditional seepage models cannot effectively simulate gas flow in such environments. Therefore, this paper constructs a fluid–solid–thermal coupling model, considering the creep characteristics of deep shale, the effects of proppant embedment and deformation on fracture closure, and deeply analyzes the effects of proppant parameters on the shale gas production process. The results show that factors such as proppant concentration, placement, mechanical properties and particle size have a significant effect on fracture width, fracture surface seepage characteristics and final gas production. Specifically, an increase in proppant concentration can expand the fracture width but has limited effect on increasing gas production; uneven proppant placement will significantly reduce the fracture conductivity, resulting in a significant decrease in gas production; proppants with smaller sizes are more suitable for deep shale gas fracturing construction, which not only reduces construction costs but also improves gas seepage capacity. This study provides theoretical guidance for proppant optimization in deep shale gas fracturing construction. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

30 pages, 3561 KB  
Review
Physical and Mechanical Properties and Constitutive Model of Rock Mass Under THMC Coupling: A Comprehensive Review
by Jianxiu Wang, Bilal Ahmed, Jian Huang, Xingzhong Nong, Rui Xiao, Naveed Sarwar Abbasi, Sharif Nyanzi Alidekyi and Huboqiang Li
Appl. Sci. 2025, 15(4), 2230; https://doi.org/10.3390/app15042230 - 19 Feb 2025
Cited by 3 | Viewed by 3276
Abstract
Research on the multi-field coupling effects in rocks has been ongoing for several decades, encompassing studies on single physical fields as well as two-field (TH, TM, HM) and three-field (THM) couplings. However, the environmental conditions of rock masses in deep resource extraction and [...] Read more.
Research on the multi-field coupling effects in rocks has been ongoing for several decades, encompassing studies on single physical fields as well as two-field (TH, TM, HM) and three-field (THM) couplings. However, the environmental conditions of rock masses in deep resource extraction and underground space development are highly complex. In such settings, rocks are put through thermal-hydrological-mechanical-chemical (THMC) coupling effects under peak temperatures, strong osmotic pressures, extreme stress, and chemically reactive environments. The interaction between these fields is not a simple additive process but rather a dynamic interplay where each field influences the others. This paper provides a comprehensive analysis of fragmentation evolution, deformation mechanics, mechanical constitutive models, and the construction of coupling models under multi-field interactions. Based on rock strength theory, the constitutive models for both multi-field coupling and creep behavior in rocks are developed. The research focus on multi-field coupling varies across industries, reflecting the diverse needs of sectors such as mineral resource extraction, oil and gas production, geothermal energy, water conservancy, hydropower engineering, permafrost engineering, subsurface construction, nuclear waste disposal, and deep energy storage. The coupling of intense stress, fluid flow, temperature, and chemical factors not only triggers interactions between these fields but also alters the physical and mechanical properties of the rocks themselves. Investigating the mechanical behavior of rocks under these conditions is essential for averting accidents and assuring the soundness of engineering projects. Eventually, we discuss vital challenges and future directions in multi-field coupling research, providing valuable insights for engineering applications and addressing allied issues. Full article
(This article belongs to the Special Issue Earthquake Engineering and Seismic Risk)
Show Figures

Figure 1

20 pages, 18539 KB  
Article
Comparative Irradiated Dimensional Change Strain Analyses of Two Types of Graphite Components in a Thorium Molten Salt Reactor
by Yu Zhong, Chunyan Zou, Qi Wang, Guifeng Zhu, Wei Guo and Zhichao Wang
Energies 2024, 17(11), 2469; https://doi.org/10.3390/en17112469 - 22 May 2024
Viewed by 1679
Abstract
Nuclear graphite plays a crucial role in thermal-spectrum thorium molten salt reactors (TMSRs) as both the neutron moderator and the construct for the coolant flowing channel. When subjected to irradiation and elevated temperatures, graphite components experience considerable deformation due to a combination of [...] Read more.
Nuclear graphite plays a crucial role in thermal-spectrum thorium molten salt reactors (TMSRs) as both the neutron moderator and the construct for the coolant flowing channel. When subjected to irradiation and elevated temperatures, graphite components experience considerable deformation due to a combination of dimensional changes, thermal expansion, irradiation creep, elastic deformation, and changes in thermomechanical characteristics. The lifespan of the graphite component is a limiting factor in TMSR designs as it strongly correlates with the dimensional changes of the graphite. To evaluate the thermal and mechanical reactions of graphite component under TMSR core conditions, it is necessary to couple models of thermal-hydraulics, neutronics, and thermal-mechanics. This paper presents an enhanced methodology for analyzing the deformation of graphite components using the finite element method. Then, this method was applied to analyze a 10-year deformation history of a hexagonal prism assembly (HPA) and it was compared with the traditional hexagonal round channel assembly (RCA). The results demonstrate that the stress–strain field of both types of graphite components undergo significant variations with the increasing neutron fluence from irradiation. HPA graphite exhibits a slower deformation as compared to RCA graphite when subjected to identical operating conditions. In this case, HPA graphite has a lifespan of approximately 10 years, while RCA graphite lasts only 8.8 years. Full article
(This article belongs to the Special Issue Studies on Nuclear Reactors)
Show Figures

Figure 1

9 pages, 5089 KB  
Article
Thermal Transpiration Flow: Molecular Dynamics Study from Dense to Dilute Gas
by Hiroki Yamaguchi and Gota Kikugawa
Fluids 2024, 9(1), 12; https://doi.org/10.3390/fluids9010012 - 30 Dec 2023
Cited by 1 | Viewed by 2537
Abstract
Thermal transpiration flow, a flow from cold to hot, driven by a temperature gradient along a wall under a high Knudsen number condition, was studied using the molecular dynamics method with a two-dimensional channel consisting of infinite parallel plates with nanoscale clearance based [...] Read more.
Thermal transpiration flow, a flow from cold to hot, driven by a temperature gradient along a wall under a high Knudsen number condition, was studied using the molecular dynamics method with a two-dimensional channel consisting of infinite parallel plates with nanoscale clearance based on our previous study. To accelerate the numerical analysis, a dense gas was employed in our previous study. In this study, the influence of the number density of gas was investigated by varying the height of the channel while keeping the number of molecules to achieve the flow ranging from dense to dilute gas while maintaining a constant Knudsen number. From the flow velocity profile compared to the number density profile, the thermal transpiration flow was observed for all number density conditions from dense to dilute gas. A similar flow structure was exhibited regardless of the number density. Thus, the numerical analysis in a dense gas condition is considered to be valid and useful for analyzing the thermal transpiration flow. Full article
(This article belongs to the Special Issue Rarefied Gas Flows: From Micro-Nano Scale to Hypersonic Regime)
Show Figures

Figure 1

20 pages, 2711 KB  
Article
Fuel Performance Analysis of Fast Flux Test Facility MFF-3 and -5 Fuel Pins Using BISON with Post Irradiation Examination Data
by Kyle M. Paaren, Micah Gale, David Wootan, Pavel Medvedev and Douglas Porter
Energies 2023, 16(22), 7600; https://doi.org/10.3390/en16227600 - 16 Nov 2023
Cited by 4 | Viewed by 1861
Abstract
Using the BISON fuel-performance code, simulations were conducted of an automated process to read initial and operating conditions from the Pacific Northwest National Laboratory (PNNL) database and reports, which contain metallic-fuel data from the Fast Flux Test Facility (FFTF) MFF Experiments. This work [...] Read more.
Using the BISON fuel-performance code, simulations were conducted of an automated process to read initial and operating conditions from the Pacific Northwest National Laboratory (PNNL) database and reports, which contain metallic-fuel data from the Fast Flux Test Facility (FFTF) MFF Experiments. This work builds on previous modeling efforts involving 1977 EBR-II metallic fuel pins from experiments. Coupling the FFTF PNNL reports to BISON allowed for all 338 pins from MFF-3 and MFF-5 campaigns to be simulated. Each BISON simulation contains unique power and flux histories, axial power and flux profiles, and coolant-channel flow rates. Fission-gas release (FGR), fuel axial swelling, cladding profilometry, and burnup were all simulated in BISON and compared to available post-irradiation examination (PIE) data. Cladding profilometry, FGR, and fuel axial swelling simulation results for full-length MFF metallic pins were found to be in agreement with PIE measurements using FFTF physics and models used previously for EBR-II simulations. The main two peaks observed within the cladding profilometry were able to be simulated, with fuel-cladding mechanical interaction (FCMI), fuel-cladding chemical interaction (FCCI), and thermal and irradiation-induced creep being the cause. A U-Pu-Zr hot-pressing model was included in this work to allow pore collapse within the fuel matrix. This allowed better agreement between BISON-simulated cladding profilometry and PIE measurements for the peak caused by FCMI. This work shows that metallic fuel models used to accurately represent fuel performance for smaller EBR-II pins may be used for full-length metallic fuel, such as FFTF MFF assemblies and the Versatile Test Reactor (VTR). As new material models and PIE measurements become available, FFTF MFF assessment cases will be reassessed to further BISON model development. Full article
Show Figures

Figure 1

13 pages, 2535 KB  
Article
On Transformation Form-Invariance in Thermal Convection
by Gaole Dai and Jun Wang
Materials 2023, 16(1), 376; https://doi.org/10.3390/ma16010376 - 30 Dec 2022
Cited by 4 | Viewed by 1767
Abstract
Over the past two decades, effective control of physical fields, such as light fields or acoustics fields, has greatly benefited from transforming media. One of these rapidly growing research areas is transformation thermotics, especially embodied in the thermal conductive and radiative modes. On [...] Read more.
Over the past two decades, effective control of physical fields, such as light fields or acoustics fields, has greatly benefited from transforming media. One of these rapidly growing research areas is transformation thermotics, especially embodied in the thermal conductive and radiative modes. On the other hand, transformation media in thermal convection has seldom been studied due to the complicated governing equations involving both fluid motion and heat transfer terms. The difficulty lies in the robustness of form invariance in the Navier–Stokes equations or their simplified forms under coordinate transformations, which determines whether the transformation operations can be executed on thermal convection to simultaneously regulate the flow and thermal fields. In this work, we show that thermal convection in two-dimensional Hele–Shaw cells keeps form-invariance, while its counterpart in general creeping flows or general laminar flows does not. This conclusion is numerically verified by checking the performances of invisible devices made of transformation media in convective environments. We further exploit multilayered structures constituted of isotropic homogeneous natural materials to realize the anisotropic inhomogeneous properties required for transformation media. Our results clarify the long-term confusion about the validation of the transformation method in thermal convection and provide a rigorous foundation and classical paradigm on inspiring various fascinating metadevices in both thermal and flow fields. Full article
(This article belongs to the Special Issue Thermal Metamaterials and Thermal Functional Devices)
Show Figures

Figure 1

26 pages, 5392 KB  
Article
Numerical Modeling of Hydrothermal System Circulation Beneath Asal Rift, Republic of Djibouti
by Abdek Hassan Aden, Jasmin Raymond and Bernard Giroux
Energies 2022, 15(24), 9310; https://doi.org/10.3390/en15249310 - 8 Dec 2022
Cited by 3 | Viewed by 2924
Abstract
Asal rift is an aerial rift segment resulting from the westward propagation of the Aden ridge into the Afar Depression. Geothermal manifestations such as hot springs and fumaroles, fault creep, conductivity anomaly, and high geothermal gradient were observed both at the surface and [...] Read more.
Asal rift is an aerial rift segment resulting from the westward propagation of the Aden ridge into the Afar Depression. Geothermal manifestations such as hot springs and fumaroles, fault creep, conductivity anomaly, and high geothermal gradient were observed both at the surface and in the subsurface. Despite many scientific works conducted in Asal to understand the rifting mechanisms, the hydrothermal fluid circulation still needs to be evaluated since it is based on simplified conceptual models. To further contribute and progress toward a quantitative evaluation of fluid circulation, a 2D numerical model perpendicular to the rift axis was developed with the objective of better understanding the role of subsurface anisotropy in fluid flow and heat transfer in the Asal rift. Numerical modeling of multiphase flow and heat transfer was carried out with an equivalent porous medium intersected by fault zones having greater permeability. Horizontal anisotropic permeability and magmatic fluid release were taken into account with different simulation scenarios. The results indicate that fault zones act as recharge/discharge areas depending on their location, permeability, and number. Simulations considering horizontal anisotropic permeability allowed the reproduction of the thermal state observed in geothermal wells with the expected general pattern of fluid circulation in the Asal rift. Comparing our result with a recent study made with a 2D numerical modeling parallel to the rift axis, we suggest the presence of a saddle point where fluid flow is both to the northeast and to the southwest direction of the rift. Moreover, magmatic fluid release assumed in two simulation scenarios showed to have an impact on the hydrological behavior of fault zones and facilitate the development of super-critical flow at the center of the rift. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

20 pages, 4099 KB  
Article
Evolution Characteristics through Thermo-Rheological Lithosphere of the Liaonan Metamorphic Core Complex, Eastern North China Craton
by Haonan Gan, Junlai Liu, Guiling Wang and Wei Zhang
Minerals 2022, 12(12), 1570; https://doi.org/10.3390/min12121570 - 6 Dec 2022
Cited by 1 | Viewed by 2028
Abstract
Metamorphic core complexes are developed in crustal activity belts at the continental margins or within continents, and their main tectonic feature is that the ductile middle crust is exhumed at the surface. The deformation properties are closely related to the geodynamic process affecting [...] Read more.
Metamorphic core complexes are developed in crustal activity belts at the continental margins or within continents, and their main tectonic feature is that the ductile middle crust is exhumed at the surface. The deformation properties are closely related to the geodynamic process affecting the continental crust. However, the evolution of the metamorphic core complexes after their formation is still unclear. The Cretaceous Liaonan metamorphic core complex developed in the eastern North China craton provides an ideal environment to study its evolution. In this study, we estimate the paleo-temperature and paleo-stress at the time of formation of the metamorphic core complex dynamical recrystallization of quartz and calculate the thermo-rheological structure of the present Liaonan metamorphic core complex by one-dimensional steady-state heat conduction equation and power-creep law. The results show that compared with the Cretaceous period, the geothermal heat flow value of the present Liaonan metamorphic core complex decreases from 70–80 mW/m2 to 49.4 mW/m2, the thermal lithosphere thickness increases from 59–75 km to 173 km, and the brittle transition depth increases from 10–13 km to about 70 km, showing coupling of the crust–mantle rheological structure. We speculate that the evolution of the thermo-rheological structure of the Liaonan metamorphic core complex is possibly caused by rapid heat loss or lithospheric mantle flow in the Bohai Bay Basin. Full article
(This article belongs to the Special Issue Mineral Resources in North China Craton)
Show Figures

Figure 1

24 pages, 7881 KB  
Article
On the Rarefied Thermally-Driven Flows in Cavities and Bends
by Mostafa Mousivand and Ehsan Roohi
Fluids 2022, 7(11), 354; https://doi.org/10.3390/fluids7110354 - 18 Nov 2022
Cited by 3 | Viewed by 2301
Abstract
This study examined rarefied thermally-driven flow in a square cavity (Case 1) and rectangular bend (Case 2), with various uniform wall temperatures in two dimensions. We employed the direct simulation Monte Carlo (DSMC) to solve problems with a wide range of Knudsen numbers [...] Read more.
This study examined rarefied thermally-driven flow in a square cavity (Case 1) and rectangular bend (Case 2), with various uniform wall temperatures in two dimensions. We employed the direct simulation Monte Carlo (DSMC) to solve problems with a wide range of Knudsen numbers Kn = 0.01 to 10, and the discrete unified gas kinetic scheme (DUGKS) solver was used at Kn = 0.01. The scenario was that, in case 1, the bottom side and its opposite were set hot, and the other sides were set cold. Diffuse reflector boundary conditions were set for all walls. The imposed temperature differences created four primary vortices. The results of the continuum set of equations of the slow non-isothermal flow (SNIT) solver proved that the primary vortices in the square cavity were caused by nonlinear thermal stress effects, and other smaller vortices appearing at Kn = 0.01, 0.1 were brought about by thermal creep processes. As the Kn increased, vortices generated by thermal creep disappeared, and eddies created by nonlinear thermal stress occupied the cavity. In case 2, i.e., a rectangular bend, two sides were set cold, and the others were hot. Two primary vortices were formed, which were caused by nonlinear thermal stress effects. The direction of streamlines in the two main vortices was opposite, from the warm to the cold zone, as some eddies on the left were counterclockwise, and others were clockwise. Full article
Show Figures

Figure 1

18 pages, 9807 KB  
Article
Performance Improvement of Glass Microfiber Based Thermal Transpiration Pump Using TPMS
by Pitipat Parittothok, Chanon Poolwech, Tanawit Tanteng and Jakrapop Wongwiwat
Micromachines 2022, 13(10), 1632; https://doi.org/10.3390/mi13101632 - 29 Sep 2022
Cited by 10 | Viewed by 3063
Abstract
The Knudsen pump, known as a thermal transpiration membrane, is an air inducer that has been mostly studied for small-scale power generation devices. It is a porous medium that does not require any mechanically moving component, but rather uses the temperature gradient across [...] Read more.
The Knudsen pump, known as a thermal transpiration membrane, is an air inducer that has been mostly studied for small-scale power generation devices. It is a porous medium that does not require any mechanically moving component, but rather uses the temperature gradient across two surfaces of the membrane to induce air from the colder side to the hotter side. If the temperature on the colder side of the membrane is reduced by a thermal guard, the pumping performance of the membrane seems to be improved. Therefore, the membrane integrating with TPMS structures as thermal guards for both experiment and simulation were conducted in this study. The results of flow rate and temperature distribution on the membrane surface were compared. Three characteristic parameters of the membrane, i.e., area factor, pore radius and permeability, were found and can be used in an equation to estimate the air flow rate through the membrane. Diamond was found to be the highest flow improvement while Primitive was the lowest flow improvement. The simulation results with varying %RD also supported that the contact area between the TPMS structure and the membrane inlet surface made Diamond conduct more heat out from the membrane surface than other TPMS structures. Full article
Show Figures

Graphical abstract

22 pages, 11707 KB  
Article
Numerical Simulation and Experimental Study the Effects of Process Parameters on Filament Morphology and Mechanical Properties of FDM 3D Printed PLA/GNPs Nanocomposite
by Mingju Lei, Qinghua Wei, Mingyang Li, Juan Zhang, Rongbin Yang and Yanen Wang
Polymers 2022, 14(15), 3081; https://doi.org/10.3390/polym14153081 - 29 Jul 2022
Cited by 35 | Viewed by 4993
Abstract
The selection of optimal process parameters has a decisive effect on the quality of 3D printing. In this work, the numerical and experimental methods were employed to investigate the FDM printing deposition process of PLA/GNPs nanocomposite. The effect of process parameters on cross-sectional [...] Read more.
The selection of optimal process parameters has a decisive effect on the quality of 3D printing. In this work, the numerical and experimental methods were employed to investigate the FDM printing deposition process of PLA/GNPs nanocomposite. The effect of process parameters on cross-sectional morphology and dimension of the deposited filament, as well as the mechanical property of the FDM printed specimens were studied. The extrusion and the deposition process of the molten PLA/GNPs nanocomposite was simulated as a fluid flow by the paradigm of CFD, the effects of printing temperature and shear rate on thermal-physical properties, such as viscosity and surface tension, were considered in models. Under the assumptions of non-Newtonian fluid and creep laminar flow, the deposition flow was controlled by two key parameters: the nozzle temperature and the nozzle velocity. The numerical model was verified by experiments from four aspects of thickness, width, area, and compactness of the deposited PLA/GNPs nanocomposite filament cross-section. Both the numerical simulation and experiment results show that with the increase of nozzle temperature and nozzle velocity, the thickness, area, and compactness of the deposited filament decreases. While the width of deposited filament increased with the increase of nozzle temperature and decrease of nozzle velocity. The decrease in thickness and the increase in width caused by the change of process parameters reached 10.5% and 24.7%, respectively. The tensile strength of the printed PLA/GNPs specimen was about 61.8 MPa under the higher nozzle temperatures and velocity condition, an improvement of 18.6% compared to specimen with the tensile strength of 52.1 MPa under the lower nozzle temperatures and velocity condition. In addition, the experimental results indicated that under the low nozzle velocity and nozzle temperature condition, dimensional standard deviation of the printed specimens decreased by 52.2%, 62.7%, and 68.3% in X, Y, and Z direction, respectively. Full article
(This article belongs to the Special Issue Advances in 3D Printing of Polymer Composites)
Show Figures

Figure 1

10 pages, 1551 KB  
Article
Study of Energy Dissipation in the Mixed-State YBa2Cu3O7-δ Superconductor with Partially Deoxygenated Structures
by Artūras Jukna
Materials 2022, 15(12), 4260; https://doi.org/10.3390/ma15124260 - 16 Jun 2022
Cited by 3 | Viewed by 1841
Abstract
Energy dissipation from vortex motion, which appears as a resistivity of the mixed-state superconductor, limits the range of type II superconductors in low- and high-power electronics and optoelectronics. The level of dissipation increases with the development of the vortex motion phase from that [...] Read more.
Energy dissipation from vortex motion, which appears as a resistivity of the mixed-state superconductor, limits the range of type II superconductors in low- and high-power electronics and optoelectronics. The level of dissipation increases with the development of the vortex motion phase from that of the thermally activated flux flow to that of the flux creep and finally to that of the flux flow. The vortex motion regimes depend on the balance between bias current-self-produced Lorentz force, accelerating vortices, and the pinning force, which, together with a magnetic drag force from pinned vortices, tends to stop the vortex motion. The current paper reports on energy dissipation in YBa2Cu3O7-δ (YBCO) devices provided with partially deoxygenated structures mutually interacting by magnetic force with one another. The shape of the structure and the magnetic interaction between the trapped and moving vortices, as well as the magnetic interaction between neighboring structures, can cause the appearance of voltage steps in the device’s current–voltage characteristics observed in temperature range 0.94 ≥ T/Tc ≥ 0.98 (here, Tc = 91.4 K is the temperature of the superconducting transition in the YBCO material). Current findings demonstrate the potential of artificial structures to control vortex motion in a mixed-state YBCO superconductor by means of a temperature, bias current, and a specific configuration of the structure itself and a profile of the oxygen distribution in it. Full article
Show Figures

Figure 1

Back to TopTop