Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (249)

Search Parameters:
Keywords = thermal contribution profile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3602 KB  
Article
Study on the Short-Term High-Temperature Response Mechanisms and Ethanolamine Metabolic Regulation in Desert Chlorella
by Nuerbiye Yisimayi, Liping Yang, Mingyang Sun, Xinyue Tang, Lingna Chen, Aisajiang Tuheti, Shanjiang Ai and Yongkun Chen
Phycology 2026, 6(1), 13; https://doi.org/10.3390/phycology6010013 - 8 Jan 2026
Viewed by 177
Abstract
Understanding the molecular basis of heat tolerance in microalgae is crucial for developing resilient strains for industrial biotechnology. This study identified two desert Chlorella strains, XDA024 (thermotolerant) and XDA121 (heat-sensitive), through short-term thermal screening. The thermotolerant strain XDA024 survived exposure to 50 °C [...] Read more.
Understanding the molecular basis of heat tolerance in microalgae is crucial for developing resilient strains for industrial biotechnology. This study identified two desert Chlorella strains, XDA024 (thermotolerant) and XDA121 (heat-sensitive), through short-term thermal screening. The thermotolerant strain XDA024 survived exposure to 50 °C for 3 h, whereas XDA121 succumbed within 1 h at 40 °C. Physiological analyses revealed that the superior heat resistance of XDA024 was associated with enhanced activities of key antioxidant enzymes, including superoxide dismutase, catalase, and peroxidase, which effectively mitigated oxidative damage, alongside an elevated proline content contributing to osmoregulation. Transcriptomic profiling under acute heat stress (45 °C, 3 h) revealed that the unique thermotolerance of XDA024 was underpinned by the upregulation of genes related to photosystem stability and lipid synthesis, processes supported by activated calcium signaling and antioxidant pathways. In contrast, XDA121 exhibited significant downregulation of photosynthesis-related genes and promoted lipid degradation, resulting in membrane instability. Exogenous application of phosphatidylethanolamine (PE) and monoethanolamine (MEA) markedly increased the survival rate of XDA121 by more than threefold, primarily by alleviating membrane damage through enhanced membrane integrity and modulated antioxidant enzyme activities. These findings indicate that thermotolerance in desert Chlorella (Chlorophyta) is governed by the integrated coordination of antioxidant defense mechanisms, lipid metabolism, and photosystem protection. This research provides crucial insights and practical strategies for engineering heat-resistant microalgal strains for sustainable biofuel and bioproduct production. Full article
(This article belongs to the Special Issue Development of Algal Biotechnology)
Show Figures

Figure 1

25 pages, 2932 KB  
Article
Pain Hypersensitivity in a Mouse Model of Marfan Syndrome
by Rebecca Kordikowski, Joana Coutinho, Ignacio Martínez-Martel, Clara Penas, Beatriz Martín-Mur, Belén Pérez, Francesc Jiménez-Altayó and Olga Pol
Antioxidants 2026, 15(1), 80; https://doi.org/10.3390/antiox15010080 - 8 Jan 2026
Viewed by 281
Abstract
Marfan syndrome (MFS) is a genetic disorder caused by mutations in the fibrillin-1 (Fbn1) gene, leading to structurally abnormal elastic fibers and diverse clinical manifestations. Aortic root dilation represents the most serious threat, often requiring prophylactic surgical repair. Emerging evidence suggests that MFS [...] Read more.
Marfan syndrome (MFS) is a genetic disorder caused by mutations in the fibrillin-1 (Fbn1) gene, leading to structurally abnormal elastic fibers and diverse clinical manifestations. Aortic root dilation represents the most serious threat, often requiring prophylactic surgical repair. Emerging evidence suggests that MFS patients experience increased pain sensitivity, contributing to functional impairment and reduced quality of life. Here, we used C57BL/6 wild-type and Fbn1C1041G/+ (MFS) mice to examine brain transcriptomics, aortic histology, nociceptive behaviors, grip strength, and spinal cord gene expression in both sexes at 2, 4, 6, 8, and 16 months of age. Transcriptomic analysis revealed reduced activation of pain-related pathways in young males and aged females, with a reversal in aged males, suggesting age- and sex-dependent differences in pain modulation. Behavioral testing showed progressive mechanical and thermal hypersensitivity in MFS mice, with cold allodynia as the earliest manifestation with late-onset muscle weakness. In the spinal cord of 16-month-old MFS mice, increased expression of key excitatory and nociceptive markers was observed, consistent with the pain hypersensitivity phenotype. In addition, aged female MFS mice exhibited elevated spinal expression of pro-inflammatory cytokines, inducible nitric oxide synthase, and Nox4, whereas males showed increased transforming growth factor-β1 and Nox1, reflecting distinct inflammatory and oxidative stress profiles. These findings demonstrate that Fbn1C1041G/+ mice reproduce pain hypersensitivity and muscle deficits observed in MFS patients, supporting their use as a preclinical model. Our results suggest that enhanced spinal excitatory/nociceptive signaling, together with neuroinflammation and oxidative stress, contributes to sex- and age-specific pain mechanisms in MFS. Full article
(This article belongs to the Special Issue Chronic Pain and Oxidative Stress)
Show Figures

Figure 1

16 pages, 968 KB  
Article
Odor-Active Compound Stability in Mango Peel Side-Streams: Insights for Valorization and Waste Minimization
by Rodrigo Oliver-Simancas, María Consuelo Díaz-Maroto, Álvaro Fernández-Ochoa, María Soledad Pérez-Coello and María Elena Alañón
Foods 2026, 15(2), 215; https://doi.org/10.3390/foods15020215 - 8 Jan 2026
Viewed by 157
Abstract
Comprehensive characterization of the mango peel volatilome is essential to revealing its aromatic potential and enabling its revalorization as a natural flavoring. The volatile profile of Mangifera indica L. var. Osteen peels at three ripening stages (green, ripe, overripe) was analyzed before and [...] Read more.
Comprehensive characterization of the mango peel volatilome is essential to revealing its aromatic potential and enabling its revalorization as a natural flavoring. The volatile profile of Mangifera indica L. var. Osteen peels at three ripening stages (green, ripe, overripe) was analyzed before and after thermal drying (45 °C, 18 h): an unavoidable stabilization step for valorization applications. HS–SPME/GC–MS enabled the identification of 76 volatile compounds across different key aroma-contributing families: monoterpenes, sesquiterpenes, alcohols, aldehydes, ketones, esters, furanics and norisoprenoids. The ripening stage significantly influenced the qualitative and quantitative volatilome in fresh samples but drying heavily reduced those differences. Multivariate analyses confirmed that the drying process is the dominant factor shaping the stabilized peels’ volatilome. These findings underscore the industrial relevance of this side-stream: regardless of ripening stage, mango peels can be uniformly stabilized to be upcycled into aroma-rich ingredients. It simplifies raw material sourcing and supports food waste revalorization strategies in flavor and fragrance developments. Full article
Show Figures

Graphical abstract

18 pages, 5216 KB  
Article
Elastic Energy Storage in Al–Al4C3 Composites: Effects of Dislocation Character and Interfacial Graphite Formation
by Audel Santos Beltrán, Verónica Gallegos Orozco, Hansel Manuel Medrano Prieto, Ivanovich Estrada Guel, Carlos Gamaliel Garay Reyes, Miriam Santos Beltrán, Diana Verónica Santos Gallegos, Carmen Gallegos Orozco and Roberto Martínez Sánchez
Materials 2026, 19(1), 181; https://doi.org/10.3390/ma19010181 - 4 Jan 2026
Viewed by 272
Abstract
Al–Al4C3 composites exhibit promising mechanical properties including high specific strength, high specific stiffness. However, high reinforcement contents often promote brittle behavior, making it necessary to understand the mechanisms governing their limited toughness. In this work, a microstructural and mechanical study [...] Read more.
Al–Al4C3 composites exhibit promising mechanical properties including high specific strength, high specific stiffness. However, high reinforcement contents often promote brittle behavior, making it necessary to understand the mechanisms governing their limited toughness. In this work, a microstructural and mechanical study was carried out to evaluate the energy storage capacity in Al–Al4C3 composites fabricated by mechanical milling followed by heat treatment using X-ray diffraction (XRD) and Convolutional Multiple Whole Profile (CMWP) fitting method, the microstructural parameters governing the initial stored energy after fabrication were determined: dislocation density (ρ), dislocation character (q), and effective outer cut-off radius (Re). Compression tests were carried out to quantify the elastic energy stored during loading (Es). The energy absorption efficiency (EAE) in the elastic region of the stress–strain curve was evaluated with respect to the elastic energy density per unit volume stored (Ee), obtained from microstructural parameters (ρ, q, and Re) present in the samples after fabrication and determined by XRD. A predictive model is proposed that expresses Es as a function of Ee and q, where the parameter q is critical for achieving quantitative agreement between both energy states. In general, samples with high EAE exhibited microstructures dominated by screw-character dislocations. High-resolution transmission electron microscopy (HRTEM) analyses revealed graphite regions near Al4C3 nanorods—formed during prolonged sintering—which, together with the thermal mismatch between Al and graphite during cooling, promote the formation of screw dislocations, their dissociation into extended partials, and the development of stacking faults. These mechanisms enhance the redistribution of stored energy and contribute to improved toughness of the composite. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

22 pages, 1888 KB  
Article
Application of Gaseous Ozone to Enhance Quality and Microbiological Safety of Strawberries
by Miłosz Zardzewiały, Oskar Basara, Ireneusz Kapusta, Maciej Balawejder and Józef Gorzelany
Molecules 2026, 31(1), 42; https://doi.org/10.3390/molecules31010042 - 22 Dec 2025
Viewed by 389
Abstract
Ozonation represents one of the most promising non-thermal methods for enhancing the quality and storage safety of fresh fruits. In this study, the effects of gaseous ozone fumigation at different concentrations (10 and 50 ppm) and exposure times (10 and 20 min) on [...] Read more.
Ozonation represents one of the most promising non-thermal methods for enhancing the quality and storage safety of fresh fruits. In this study, the effects of gaseous ozone fumigation at different concentrations (10 and 50 ppm) and exposure times (10 and 20 min) on selected physicochemical and microbiological properties of strawberries during 7-day refrigerated storage were evaluated. Water content, mechanical properties, the profile and content of bioactive compounds (polyphenols, vitamin C), and antioxidant activity, as well as microbial counts and the dynamics of CO2 and ethylene production, were assessed. The results demonstrated that ozonation reduced water loss and slowed metabolic processes and fruit ripening, as indicated by lower CO2 and ethylene levels compared to the control. The application of ozone, particularly at the higher dose (50 ppm), contributed to maintaining higher vitamin C content and antioxidant activity and significantly reduced the number of mesophilic bacteria, yeasts, and molds, achieving reductions of approximately 1.86 log and 0.97 log on Day 7 compared with the untreated control, respectively. No adverse effects of ozonation on the mechanical properties of the fruit were observed. The findings confirm the relevance of gaseous ozone as a quality-enhancing elicitor and an effective tool for reducing microbiological contamination of fresh strawberries without compromising their properties. Full article
Show Figures

Figure 1

27 pages, 640 KB  
Article
Effect of Magnetic Field Inclination on Radiative MHD Casson Fluid Flow over a Tilted Plate in a Porous Medium Using a Caputo Fractional Model
by Mehari Fentahun Endalew and Xiaoming John Zhang
Fractal Fract. 2025, 9(12), 809; https://doi.org/10.3390/fractalfract9120809 - 10 Dec 2025
Viewed by 1040
Abstract
This research employs a Caputo fractional-derivative model to investigate the effects of magnetic field inclination and thermal radiation on the unsteady flow of a Casson fluid over an inclined plate in a porous medium. The model incorporates memory effects to generalize the classical [...] Read more.
This research employs a Caputo fractional-derivative model to investigate the effects of magnetic field inclination and thermal radiation on the unsteady flow of a Casson fluid over an inclined plate in a porous medium. The model incorporates memory effects to generalize the classical formulation, while also accounting for internal heat generation and a chemical reaction. The governing equations are solved analytically using the Laplace transform, yielding power-series solutions in the time domain. Convergence analysis and benchmarking confirm the reliability and accuracy of the derived solutions. Key physical parameters are analyzed, and their impacts on the system are presented both graphically and in tabular form. The results indicate that increasing the inclination of the plate and magnetic field significantly suppresses the velocity distribution and reduces the associated boundary-layer thickness. Conversely, a higher fractional-order parameter enhances the velocity, temperature, and species concentration profiles by reducing memory effects. This study makes a significant contribution to the fractional modeling of unsteady heat and mass transfer in complex non-Newtonian fluids and provides valuable insights for the precise control of transport processes in industrial, chemical, and biomedical applications. Full article
Show Figures

Figure 1

17 pages, 2628 KB  
Article
Deep Physics-Informed Neural Networks for Stratified Forced Convection Heat Transfer in Plane Couette Flow: Toward Sustainable Climate Projections in Atmospheric and Oceanic Boundary Layers
by Youssef Haddout and Soufiane Haddout
Fluids 2025, 10(12), 322; https://doi.org/10.3390/fluids10120322 - 4 Dec 2025
Viewed by 443
Abstract
We use deep Physics-Informed Neural Networks (PINNs) to simulate stratified forced convection in plane Couette flow. This process is critical for atmospheric boundary layers (ABLs) and oceanic thermoclines under global warming. The buoyancy-augmented energy equation is solved under two boundary conditions: Isolated-Flux (single-wall [...] Read more.
We use deep Physics-Informed Neural Networks (PINNs) to simulate stratified forced convection in plane Couette flow. This process is critical for atmospheric boundary layers (ABLs) and oceanic thermoclines under global warming. The buoyancy-augmented energy equation is solved under two boundary conditions: Isolated-Flux (single-wall heating) and Flux–Flux (symmetric dual-wall heating). Stratification is parameterized by the Richardson number (Ri [1,1]), representing ±2 °C thermal perturbations. We employ a decoupled model (linear velocity profile) valid for low-Re, shear-dominated flow. Consequently, this approach does not capture the full coupled dynamics where buoyancy modifies the velocity field, limiting the results to the laminar regime. Novel contribution: This is the first deep PINN to robustly converge in stiff, buoyancy-coupled flows (Ri1) using residual connections, adaptive collocation, and curriculum learning—overcoming standard PINN divergence (errors >28%). The model is validated against analytical (Ri=0) and RK4 numerical (Ri0) solutions, achieving L2 errors 0.009% and L errors 0.023%. Results show that stable stratification (Ri>0) suppresses convective transport, significantly reduces local Nusselt number (Nu) by up to 100% (driving Nu towards zero at both boundaries), and induces sign reversals and gradient inversions in thermally developing regions. Conversely, destabilizing buoyancy (Ri<0) enhances vertical mixing, resulting in an asymmetric response: Nu increases markedly (by up to 140%) at the lower wall but decreases at the upper wall compared to neutral forced convection. At 510× lower computational cost than DNS or RK4, this mesh-free PINN framework offers a scalable and energy-efficient tool for subgrid-scale parameterization in general circulation models (GCMs), supporting SDG 13 (Climate Action). Full article
Show Figures

Figure 1

13 pages, 2658 KB  
Article
Development of Biodegradable Bioplastic from Banana Pseudostem Cellulose
by David A. Servellón, Fabrizzio R. Pérez, Enrique Posada-Granados, Marlon Enrique López and Marvin J. Núñez
J 2025, 8(4), 46; https://doi.org/10.3390/j8040046 - 2 Dec 2025
Viewed by 2700
Abstract
Banana pseudostem is an abundant lignocellulosic residue with potential for value-added applications. This study evaluated five banana varieties to determine their suitability for bioplastic production, with Williams showing the highest cellulose yield (26.99% ± 0.23). Cellulose extracted from this variety was combined with [...] Read more.
Banana pseudostem is an abundant lignocellulosic residue with potential for value-added applications. This study evaluated five banana varieties to determine their suitability for bioplastic production, with Williams showing the highest cellulose yield (26.99% ± 0.23). Cellulose extracted from this variety was combined with corn-starch (1:1 w/w) to synthesize a bioplastic through gelatinization and lyophilization. FTIR confirmed effective removal of lignin and hemicellulose from the pseudostem and evidenced new hydrogen-bond interactions between cellulose and starch through O–H band shifts (3335 → 3282 cm−1). SEM revealed a porous laminar morphology with cellulose particles (40–52 µm) embedded within the starch matrix. DSC analysis showed that the bioplastic exhibits an intermediate thermal profile between its components, while mechanical compression increased the endothermic transition temperature (from 69 °C to 85 °C) and reduced molecular mobility. Tensile testing demonstrated that compression markedly improved mechanical performance, increasing tensile strength from 0.094 MPa to 0.69 MPa and density from 110 to 638.7 kg/m3. These findings indicate that cellulose–starch bioplastics derived from banana pseudostem possess favorable structural, thermal, and mechanical characteristics for short-use applications. The approach also contributes to the valorization of agricultural waste through biodegradable material development. Full article
Show Figures

Figure 1

25 pages, 4207 KB  
Article
SiC MOSFET Switching Dynamics and Power Conversion Loss Characterization Under Parametric Variations
by Jamlick M. Kinyua and Mutsumi Aoki
Energies 2025, 18(23), 6264; https://doi.org/10.3390/en18236264 - 28 Nov 2025
Cited by 1 | Viewed by 766
Abstract
In pursuit of enhancing the performance of power converters, high-frequency power devices have become indispensable due to their superior switching capabilities, reduced conduction loss, and enhanced thermal performance. However, optimizing their efficiency requires a profound comprehension of the interplay between various parameters (the [...] Read more.
In pursuit of enhancing the performance of power converters, high-frequency power devices have become indispensable due to their superior switching capabilities, reduced conduction loss, and enhanced thermal performance. However, optimizing their efficiency requires a profound comprehension of the interplay between various parameters (the current, voltage, and gate resistance) on switching dynamics and power losses. This study presents a comprehensive framework of loss characterization with multi-parametric variations. The influence of drain-source current (Ids), DC voltage (Vdc), and gate resistor (Rg) on switching and conduction losses are explicitly quantified. A significant contribution of this study lies in the comprehensive analytical and empirical characterization of the turn-on and turn-off power dissipation dynamics in SiC MOSFETs, emphasizing the intricate interplay between parameters and efficiency. Conventional studies primarily focus on empirical loss characterization, yet this work advances the field by introducing a predictive loss model that systematically correlates Rg, Ids, and Vdc variations with induced switching dynamics, and EMI mitigation strategies. Increasing Rg effectively suppresses voltage overshoots and mitigates ringing effects, concurrently prolonging switching events, thereby broadening the power dissipation profile and influencing system-level performance. Furthermore, this study rigorously evaluates the commutation behavior of the SiC MOSFET/SBD pair, providing an in-depth examination of its dynamic loss characterization under varying conditions. This novel insight establishes a crucial framework for efficiency drive optimization. Full article
(This article belongs to the Special Issue Advancements in Power Electronics for Power System Applications)
Show Figures

Figure 1

30 pages, 2551 KB  
Article
Magnetohydrodynamic Flow and Transport Behaviors of Blood-Based Ternary Nanofluids in Stenosed Arteries with Axial Symmetry: Effects of Thermal Radiation and Caputo Fractional Derivatives
by Ji-Huan He, Magaji Yunbunga Adamu, Isah Abdullahi, Nuo Xu and Chun-Hui He
Symmetry 2025, 17(12), 2024; https://doi.org/10.3390/sym17122024 - 25 Nov 2025
Cited by 1 | Viewed by 401
Abstract
The present study investigates the magnetohydrodynamic (MHD) flow characteristics of a blood-based ternary nanofluid (Au/Cu/Al2O3-blood) in stenosed arteries, with a focus on symmetry-inspired modeling rooted in the axial symmetry of arterial geometry and the symmetric distribution of external physical [...] Read more.
The present study investigates the magnetohydrodynamic (MHD) flow characteristics of a blood-based ternary nanofluid (Au/Cu/Al2O3-blood) in stenosed arteries, with a focus on symmetry-inspired modeling rooted in the axial symmetry of arterial geometry and the symmetric distribution of external physical fields (magnetic field, thermal radiation). The findings offer significant insights into the realm of hyperthermia therapy and targeted drug delivery within the domain of biomedical engineering. A mathematical model is established under a cylindrical coordinate system (consistent with arterial axial symmetry), integrating key physical effects (thermal radiation, chemical reactions, viscous dissipation, body acceleration) and fractional-order dynamics via Caputo derivatives—while ensuring the symmetry of governing equations in time and space. The numerical solutions for velocity and temperature profiles are obtained using the Laplace transform and Concentrated Matrix-Exponential (CME) method, a technique that preserves symmetric properties during the solution process. The results of the study indicate the following: The Hartmann number, which is increased, has been shown to reduce axial velocity due to the Lorentz force, thereby maintaining radial symmetry. Furthermore, thermal radiation has been demonstrated to raise fluid temperature, a critical factor in heat-based therapies, with the temperature field evolving symmetrically. In addition, it has been observed that ternary nanoparticles outperform single and binary systems in heat and mass transfer via symmetric dispersion. This work contributes to the existing body of knowledge by integrating symmetry principles into the study of fractional dynamics, electromagnetic fields, and body acceleration modeling. It establishes a comprehensive biomedical flow framework. It is imperative that future research explore pulsatile flow under symmetric boundaries and validate the model through experimental means. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

25 pages, 8524 KB  
Article
Genome-Wide Analysis of the LEA Gene Family in Pineapple (Ananas comosus L.) Reveals Its Potential Roles in Cold Stress Response and Reproductive Development
by Zhimin Hou, Xinkai Cai, Denghang Wu, Haichao Gong, Jing Wang, Yinan Zhang, Qinglong Yao, Lulu Wang, Yuqin Liang, Yangmei Zhang, Yuan Qin, Xiaomei Wang and Ping Zheng
Biology 2025, 14(12), 1655; https://doi.org/10.3390/biology14121655 - 24 Nov 2025
Viewed by 570
Abstract
Late Embryogenesis Abundant (LEA) proteins play vital roles in plant responses to abiotic stress and developmental regulation. Pineapple (Ananas comosus L.) is a major tropical fruit crop with high economic value, but its production is often threatened by cold stress, particularly in [...] Read more.
Late Embryogenesis Abundant (LEA) proteins play vital roles in plant responses to abiotic stress and developmental regulation. Pineapple (Ananas comosus L.) is a major tropical fruit crop with high economic value, but its production is often threatened by cold stress, particularly in regions at the northern margin of its cultivation. Despite the recognized importance of LEA proteins in stress adaptation, their genomic landscape and functional characteristics in pineapple remain largely unexplored. In this study, 37 AcLEA genes were identified in the pineapple (Ananas comosus L.) genome and classified into six subfamilies, with LEA_2 being the largest. Most AcLEA proteins were predicted to be hydrophilic, thermally stable, and intrinsically disordered, consistent with typical LEA protein characteristics. Phylogenetic and collinearity analyses revealed species-specific expansion patterns, primarily driven by segmental duplication events. Most duplicated gene pairs shared similar exon–intron structures, motif compositions, and expression profiles, although several displayed signs of functional divergence based on distinct expression patterns, Ka/Ks ratios > 1, and motif differences. Promoter cis-element, transcription factor, and miRNA network predictions indicated that AcLEA genes are widely involved in stress responses as well as growth and development. Expression profiling showed that many AcLEA genes including AcLEA32, AcLEA7, AcLEA9, AcLEA30, AcLEA29, AcLEA33, and AcLEA18 were significantly upregulated under cold stress and declined upon stress removal, indicating a potential role in cold tolerance. Some AcLEA genes, such as AcLEA32 and AcLEA33, showed faster and stronger induction under cold stress in the cold-tolerant cultivar “Comte de Paris” (BL) compared to the sensitive cultivar “Tainong No. 20” (NN), suggesting that differential gene responsiveness may contribute to cultivar-specific cold tolerance. Additionally, most AcLEA genes exhibited distinct spatiotemporal expression patterns across floral organs and fruit at various developmental stages, suggesting their involvement in reproductive development. These findings provide a foundation for future functional studies and highlight candidate genes for improving cold resilience and developmental traits in pineapple through molecular breeding. Full article
Show Figures

Figure 1

28 pages, 5358 KB  
Article
Exploring the Effects of Palm Tocotrienol-Rich Fraction in Diabetic Peripheral Neuropathy Rat’s Model: An Untargeted Metabolomic Profiling and Correlation Study
by Noradliyanti Rusli, Jen Kit Tan, Suzana Makpol, Isma Liza Mohd Isa, Nur Haleeda Hakimi, Nazirah Ab Rani and Rabani Remli
Int. J. Mol. Sci. 2025, 26(23), 11247; https://doi.org/10.3390/ijms262311247 - 21 Nov 2025
Viewed by 504
Abstract
Persistent and chronic hyperglycaemia in Type II diabetic mellitus (DM) is known to cause oxidative stress, which exacerbates underlying metabolic disorders, contributing to the progression of complications such as diabetic peripheral neuropathy (DPN). Palm tocotrienol-rich fraction (TRF) is renowned for its potent antioxidative [...] Read more.
Persistent and chronic hyperglycaemia in Type II diabetic mellitus (DM) is known to cause oxidative stress, which exacerbates underlying metabolic disorders, contributing to the progression of complications such as diabetic peripheral neuropathy (DPN). Palm tocotrienol-rich fraction (TRF) is renowned for its potent antioxidative and neuroprotective properties and might have the potential to halt or mitigate the severity of DPN. This study aimed to investigate the effects of palm TRF on diabetic rats with peripheral neuropathy and to identify the correlation between plasma metabolomic alterations and DPN parameters. Male Sprague Dawley (SD) rats were randomly divided into normal control and DM groups in which Type II DM was induced using a high-fat diet and a low-dose streptozotocin (STZ) (35 mg/kg). Successful diabetic rats were randomly divided and received daily oral treatments of palm olein (vehicle), metformin (70 mg/kg), TRF (60 mg/kg), or a combination of TRF and metformin for 12 weeks. Behavioural parameters, serum biomarkers, and plasma metabolomic profiling were assessed at 0 (baseline) and 12 weeks of intervention. From the behavioural parameters, improvement in the symptoms of thermal hyperalgesia and mechanical allodynia was seen with TRF interventions, either alone or in combination with metformin. A significant reduction in the neurofilament light (NEFL) chain, accompanied by a notable increase in nerve growth factor (NGF) levels in the serum of treatment groups, was also observed. From the plasma samples, findings reveal that TRF increases metabolites related to neurotransmitter pathways (acetylcholine, choline, phenylalanine, tryptophan) and decreases inflammatory metabolites (kynurenine, prostaglandin) compared to untreated diabetic rats. These metabolites, except for prostaglandin, showed positive correlations with pain sensitivity. In contrast, prostaglandin showed opposite correlations with pain and nerve damage markers, suggesting its potential role in inflammation and axonal injury. Full article
(This article belongs to the Special Issue Advanced Research in Antioxidant Activity)
Show Figures

Figure 1

19 pages, 3106 KB  
Article
A Multi-Physics Coupled Model for Elucidating Expansion in Si–C Composite Anode Lithium-Ion Batteries
by Hao-Teng Li, Xue Li, Xiao-Ying Ma, Kai Yang, Jintao Shi, Xingcun Fan, Zifeng Cong, Xiaolong Feng, Keliang Wang and Xiao-Guang Yang
Batteries 2025, 11(11), 423; https://doi.org/10.3390/batteries11110423 - 17 Nov 2025
Viewed by 1388
Abstract
Silicon–carbon (Si–C) composite anodes are a promising pathway to enhance the energy density of lithium-ion batteries (LIBs), yet the substantial volume changes of silicon during (de)lithiation cause mechanical degradation, capacity fading, and safety risks that hinder practical use. To address these challenges, we [...] Read more.
Silicon–carbon (Si–C) composite anodes are a promising pathway to enhance the energy density of lithium-ion batteries (LIBs), yet the substantial volume changes of silicon during (de)lithiation cause mechanical degradation, capacity fading, and safety risks that hinder practical use. To address these challenges, we develop an electrochemical–thermal–mechanical coupled model tailored for LIBs with Si–C anodes. Built upon the Newman pseudo-two-dimensional framework, the multi-scale model integrates particle-, electrode-, and cell-level submodels. Electrochemical–mechanical coupling is captured through intercalation-induced particle expansion and cell-level thermal expansion, while bidirectional electrochemical–thermal coupling is introduced via a lumped thermal model with temperature-dependent electrochemical kinetics. The model is validated against experimental data, accurately reproducing current–voltage profiles, temperature rise, and displacement under various operating conditions. Simulations further reveal the distinct contributions of silicon and graphite: although silicon accounts for only a small fraction of anode mass, it can contribute 30% to the capacity of the cell owing to the high specific capacity of Si. At the same time, while silicon particles undergo volume changes exceeding 300%, the overall cell expansion remains below 7.5% due to structural dilution effects from other components. These findings establish a quantitative link between silicon content, electrochemical behavior, and cell expansion, providing theoretical guidance for the rational design of high-energy-density LIBs. Full article
(This article belongs to the Special Issue Advances in Lithium-Ion Battery Safety and Fire: 2nd Edition)
Show Figures

Figure 1

18 pages, 3271 KB  
Article
The Technological Quality of New Wheat Varieties Grown in the Southern Region of the Central Andes in Perú
by Fredy Taipe-Pardo, Mirian E. Obregón-Yupanqui, Herson Arone-Palomino, Félix Terán-Hilares, Beatriz Núñez-Espinoza and Isaias Ramos-Quispe
Processes 2025, 13(11), 3577; https://doi.org/10.3390/pr13113577 - 6 Nov 2025
Viewed by 789
Abstract
The growing demand of the cereal market, which demands quality products at low cost, has driven the development of new, more accessible wheat varieties. This study evaluated the technological quality of flours obtained from three new wheat varieties produced in Andahuaylas: Espigón de [...] Read more.
The growing demand of the cereal market, which demands quality products at low cost, has driven the development of new, more accessible wheat varieties. This study evaluated the technological quality of flours obtained from three new wheat varieties produced in Andahuaylas: Espigón de Oro (EOVF), the Gavilón (GVF), and the Andino (AVF) varieties, comparing them with a widely used plain flour (PF). Their proximate parameters, rheological, thermal, and structural properties, elemental composition, and functional groups were analyzed. The local flours (EOVF, GVF, and AVF) presented similar carbohydrate and fat contents, but higher ash, and lower moisture and protein content than plain flour. The rheology and thermal stability showed limitations associated with a less consistent dough and a more fragile structure, indicating lower gluten quality. Differential scanning calorimetry found gelatinization temperatures between 53.42 °C and 57.12 °C, with energy requirements (ΔH) of 1.08 to 1.23 J/g, while thermographic analysis revealed that component degradation began at 150 °C. Scanning electron microscopy micrographs revealed starch granules with varied shapes and a trimodal distribution. Elemental analysis showed a good energy contribution, with 47.9–54.6% carbon and 45.2–51.5% OH. The FT-IR spectra showed similar functional profiles among all the flours. These results suggest that flours from new wheat varieties have a low energy requirement for cooking, making them ideal for extrusion processes and for products with a soft and light texture. They also represent an excellent alternative to commercial flour for developing functional, infant, and easily digestible foods. Full article
Show Figures

Figure 1

21 pages, 2221 KB  
Article
Staying Competitive in Clean Manufacturing: Insights on Barriers from Industry Interviews
by Paulomi Nandy, Thomas Wenning, Alex Botts and Harshal J. Kansara
Sustainability 2025, 17(20), 9233; https://doi.org/10.3390/su17209233 - 17 Oct 2025
Viewed by 664
Abstract
While industrial emissions research has historically focused on energy-intensive sectors like steel, cement, and chemicals, this study addresses a critical gap by examining barriers across all the manufacturing industry in the U.S. Sectors like food processing, retail, plastics, and transportation face unique challenges [...] Read more.
While industrial emissions research has historically focused on energy-intensive sectors like steel, cement, and chemicals, this study addresses a critical gap by examining barriers across all the manufacturing industry in the U.S. Sectors like food processing, retail, plastics, and transportation face unique challenges distinct from heavy industry, operating on thin margins with limited bargaining power while experiencing heightened consumer and stakeholder pressure for improved environmental responsibility. Through structured interview data collection process and using quantitative ratings and qualitative analysis, this research identifies and categorizes emission reduction barriers across four key themes: financial, technical, organizational, and regulatory. Unlike energy-intensive industries that may pursue hydrogen or carbon capture technologies, discrete manufacturing industry like automotive, electrical and electronics, and machine manufacturers typically focus on energy efficiency, electrification of thermal processes, and alternate fuel switching, solutions better aligned with their lower-temperature processes and distributed facility profiles. The study’s primary contribution lies in documenting specific barrier manifestations within organizations and identifying proven mitigation strategies that companies have successfully implemented or observed among peers. Full article
(This article belongs to the Topic Energy Economics and Sustainable Development)
Show Figures

Figure 1

Back to TopTop