Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,258)

Search Parameters:
Keywords = thermal boundary conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2920 KB  
Article
Advancing Energy Flexibility Protocols for Multi-Energy System Integration
by Haihang Chen, Fadi Assad and Konstantinos Salonitis
Energies 2026, 19(3), 588; https://doi.org/10.3390/en19030588 - 23 Jan 2026
Viewed by 20
Abstract
This study investigates the incorporation of a standardised flexibility protocol within a physics-based models to enable controllable demand-side flexibility in residential energy systems. A heating subsystem is developed using MATLAB/Simulink and Simscape, serving as a testbed for protocol-driven control within a Multi-Energy System [...] Read more.
This study investigates the incorporation of a standardised flexibility protocol within a physics-based models to enable controllable demand-side flexibility in residential energy systems. A heating subsystem is developed using MATLAB/Simulink and Simscape, serving as a testbed for protocol-driven control within a Multi-Energy System (MES). A conventional thermostat controller is first established, followed by the implementation of an OpenADR event engine in Stateflow. Simulations conducted under consistent boundary conditions reveal that protocol-enabled control enhances system performance in several respects. It maintains a more stable and pronounced indoor–outdoor temperature differential, thereby improving thermal comfort. It also reduces fuel consumption by curtailing or shifting heat output during demand-response events, while remaining within acceptable comfort limits. Additionally, it improves operational stability by dampening high-frequency fluctuations in mdot_fuel. The resulting co-simulation pipeline offers a modular and reproducible framework for analysing the propagation of grid-level signals to device-level actions. The research contributes a simulation-ready architecture that couples standardised demand-response signalling with a physics-based MES model, alongside quantitative evidence that protocol-compliant actuation can deliver comfort-preserving flexibility in residential heating. The framework is readily extensible to other energy assets, such as cooling systems, electric vehicle charging, and combined heat and power (CHP), and is adaptable to additional protocols, thereby supporting future cross-vector investigations into digitally enabled energy flexibility. Full article
Show Figures

Figure 1

44 pages, 2107 KB  
Review
A Review of Thermal Management Techniques Adopted for High-Power-Density GaN-Based Converters
by Mohamed Belguith, Sonia Eloued, Moncef Kadi, Jaleleddine Ben Hadj Slama and Mahmoud Hamouda
Chips 2026, 5(1), 4; https://doi.org/10.3390/chips5010004 - 22 Jan 2026
Viewed by 4
Abstract
Power converters based on gallium nitride (GaN) are progressing swiftly owing to their exceptional efficiency and tiny dimensions, boosted by high power density and fast switching capabilities. Nevertheless, these benefits are accompanied by considerable thermal management issues that impact reliability, performance, and operational [...] Read more.
Power converters based on gallium nitride (GaN) are progressing swiftly owing to their exceptional efficiency and tiny dimensions, boosted by high power density and fast switching capabilities. Nevertheless, these benefits are accompanied by considerable thermal management issues that impact reliability, performance, and operational lifespan. This review examines advanced thermal management approaches for high-power-density GaN power converters, including active and passive cooling technologies, sophisticated packaging designs, and the use of novel materials like graphene and diamond to improve heat dissipation. The impacts of thermal boundary resistance, self-heating phenomena, and substrate selection on thermal performance are thoroughly analyzed. Strategies for enhancing printed circuit board (PCB) layouts, thermal vias, and the use of thermal interface materials (TIMs) are also emphasized. The study highlights co-design approaches that optimize thermal resistance and layout efficiency, supporting GaN operation under high-frequency conditions. This thorough investigation offers insights into addressing the thermal challenges linked to GaN technology, promoting its adoption in forthcoming power devices. Full article
27 pages, 12510 KB  
Article
The Prediction and Safety Control of the CO2 Phase Migration Path During the Shutdown Process of Supercritical Carbon Dioxide Pipelines
by Xinze Li, Jianye Li and Yifan Yin
Energies 2026, 19(2), 531; https://doi.org/10.3390/en19020531 - 20 Jan 2026
Viewed by 176
Abstract
CO2 pipeline transportation is a core link in the CCUS (Carbon Capture, Utilization, and Storage Technology) industry. Ensuring the flow safety of CO2 pipelines under transient conditions is currently a key and challenging issue in industry research. This paper focuses on [...] Read more.
CO2 pipeline transportation is a core link in the CCUS (Carbon Capture, Utilization, and Storage Technology) industry. Ensuring the flow safety of CO2 pipelines under transient conditions is currently a key and challenging issue in industry research. This paper focuses on the phase migration and safety control during the shutdown process of supercritical carbon dioxide pipelines. Taking a supercritical carbon dioxide transportation pipeline in Xinjiang Oilfield, China, as the research object, a hydro-thermal coupling model of the pipeline is established to simulate the pipeline and elucidate the coordinated variation patterns of temperature, pressure, density, and phase state. It was found that there were significant differences in the migration paths of the CO2 phase at different positions. The accuracy of the simulation results was verified through the self-built high-pressure visual reactor experimental system, and the influences of the initial temperature, initial pressure, and ambient temperature before pipeline shutdown on the slope of the phase migration path were explored. The phase migration line slope prediction model was established by using the least squares method and ridge regression method, the process boundary ranges and allowable shutdown time ranges for pipeline safety shutdowns in both summer and winter were further established. The research results show that when the pipeline operates under the low-pressure and high-temperature boundary, the CO2 in the pipeline vaporizes earlier from the starting point after the pipeline is shut down, and the safe shutdown time of the pipeline is shorter. There is a clear safety operation window in summer, while vaporization risks are widespread in winter. The phase migration path prediction formula and the safety zone division method proposed in this paper provide a theoretical basis and engineering guidance for the safe shutdown control of supercritical carbon dioxide pipelines, which can help reduce operational risks and lower maintenance costs. Full article
(This article belongs to the Special Issue New Advances in Carbon Capture, Utilization and Storage (CCUS))
Show Figures

Figure 1

24 pages, 12498 KB  
Article
Study on Surface Properties and Microstructural Evolution of LA103Z Mg-Li Alloy by Friction Stir Processing
by Jiqiang Zhai, Kai Hu, Zihan Kong and Xinzhen Fang
Metals 2026, 16(1), 108; https://doi.org/10.3390/met16010108 - 18 Jan 2026
Viewed by 212
Abstract
Magnesium–lithium alloys are the lightest structural metals and offer high specific strength, good damping capacity, and excellent thermal conductivity; however, their limited room-temperature strength restricts wider engineering applications. In this study, friction stir processing (FSP) was applied to LA103Z magnesium–lithium alloy to modify [...] Read more.
Magnesium–lithium alloys are the lightest structural metals and offer high specific strength, good damping capacity, and excellent thermal conductivity; however, their limited room-temperature strength restricts wider engineering applications. In this study, friction stir processing (FSP) was applied to LA103Z magnesium–lithium alloy to modify its surface microstructure and mechanical properties. The effects of tool rotational speed and travelling speed on dynamic recrystallization behavior, grain refinement, and phase evolution in the stirred zone (SZ) and thermomechanically affected zone (TMAZ) were systematically investigated. FSP induced significant grain refinement accompanied by the precipitation of a reticular α-Mg phase along β-Li grain boundaries, as well as Li3Mg7 and Li2MgAl phases within the stirred zone, leading to pronounced strengthening. Under optimized processing conditions, substantial improvements in hardness and tensile properties were achieved compared with the base material. The optimal condition was obtained at 600 rpm and 100 mm/min, yielding an average hardness of 79.17 HV0.2, a tensile strength of 243.6 MPa, and an elongation of 17.9%, corresponding to increases of 47.5% in hardness and 53.3% in tensile strength. Quantitative relationships between heat input, grain size, and mechanical properties further demonstrate that heat input governs microstructural evolution and strengthening behavior during FSP of LA103Z alloy. Full article
(This article belongs to the Special Issue Surface Modification and Characterization of Metals and Alloys)
Show Figures

Figure 1

23 pages, 3212 KB  
Article
On the Heat Transfer Process in a System of Two Convex Bodies Separated by a Vacuum—Mathematical Description and Solution Construction
by Rogério Pazetto Saldanha da Gama, Rogério Martins Saldanha da Gama and Maria Laura Martins-Costa
Thermo 2026, 6(1), 6; https://doi.org/10.3390/thermo6010006 - 16 Jan 2026
Viewed by 168
Abstract
This work presents a straightforward procedure for constructing the solution to the steady-state energy-transfer process in a system of two convex, opaque, gray bodies, with the aim of determining the temperature distribution within these bodies when separated by a vacuum. The methodology proposed [...] Read more.
This work presents a straightforward procedure for constructing the solution to the steady-state energy-transfer process in a system of two convex, opaque, gray bodies, with the aim of determining the temperature distribution within these bodies when separated by a vacuum. The methodology proposed in this work combines a sequence of elements that are functions obtained from the solution of uncomplicated, well-known linear, uncoupled heat transfer problems, thereby enabling solutions to be obtained using tools found in basic engineering textbooks. Specifically, these well-known problems resemble classical conduction-convection heat transfer problems, in which the boundary condition is described by the noteworthy Newton’s law of cooling. The limit of sequences of elements that are solutions to straightforward linear problems corresponds to the original, complex, coupled nonlinear problem. The convergence of these sequences is mathematically proven. The phenomenon (considered in this work) encompasses those involving black bodies. Since each element of the sequence arises from a well-known linear problem, numerical approximations can be used to obtain it, yielding a simple and powerful tool for simulations. Some presented results highlight the importance of considering thermal interaction between the two bodies, even in the absence of physical contact. In particular, the alterations in the temperature distributions of two separate gray bodies are explicitly shown to result from their thermal interaction. Full article
Show Figures

Figure 1

47 pages, 2718 KB  
Review
A Systematic Review of the Scalability of Building-Integrated Photovoltaics from a Multidisciplinary Perspective
by Baitong Li, Dian Zhou, Mengyuan Zhou, Duo Xu, Qian Zhang, Yingtao Qi, Zongzhou Zhu and Yujun Yang
Buildings 2026, 16(2), 332; https://doi.org/10.3390/buildings16020332 - 13 Jan 2026
Viewed by 146
Abstract
Over the past two decades, Building-Integrated Photovoltaics (BIPV) has become a core technology in the green building sector, driven by global carbon-neutrality goals and the growing demand for sustainable design. This review adopts a scalability-oriented perspective and systematically examines 82 peer-reviewed articles published [...] Read more.
Over the past two decades, Building-Integrated Photovoltaics (BIPV) has become a core technology in the green building sector, driven by global carbon-neutrality goals and the growing demand for sustainable design. This review adopts a scalability-oriented perspective and systematically examines 82 peer-reviewed articles published between 2001 and 2025. The results indicate that existing research is dominated by studies on electrical and thermal performance, with East Asia and Europe—particularly China, Japan, and Germany—emerging as the most active regions. This dominance matters for scalability because real projects must satisfy comfort, compliance, buildability, and operation/maintenance constraints alongside energy yield; limited evidence in these dimensions increases delivery risk when transferring solutions across regions and building types. Accordingly, we interpret the observed distribution as an evidence-maturity pattern: performance gains are increasingly well characterized, whereas deployment-relevant uncertainties (e.g., boundary-condition sensitivity and validation depth) remain less consistently reported. Multidimensional integration of thermal, optical, and electrical functions is gaining momentum; however, user-centered performance dimensions remain underexplored. Simulation-based approaches still prevail, whereas large-scale empirical studies are limited. The review also reveals extensive interdisciplinary collaboration but also identifies a notable lack of architectural perspectives. Using Biblioshiny, this study maps co-authorship networks and research structures. Based on the evidence, we propose future research directions to enhance the practical scalability of BIPV, including strengthening interdisciplinary integration, expanding empirical validation, and developing product-level design strategies. Full article
(This article belongs to the Special Issue Carbon-Neutral Pathways for Urban Building Design)
Show Figures

Figure 1

26 pages, 5049 KB  
Article
Spatiotemporal Dynamics and Drivers of Potential Winter Ice Resources in China (1990–2020) Using Multi-Source Remote Sensing and Machine Learning
by Donghui Shi
Remote Sens. 2026, 18(2), 250; https://doi.org/10.3390/rs18020250 - 13 Jan 2026
Viewed by 198
Abstract
River and lake ice are sensitive indicators of climate change and important components of hydrological and ecological systems in cold regions. In this study, we develop a simple and transferable “surface water + land surface temperature (LST)” framework on Google Earth Engine to [...] Read more.
River and lake ice are sensitive indicators of climate change and important components of hydrological and ecological systems in cold regions. In this study, we develop a simple and transferable “surface water + land surface temperature (LST)” framework on Google Earth Engine to map potential winter ice area across China from 1990 to 2020. The framework enables consistent, large-scale, long-term monitoring without relying on complex remote sensing models or region-specific thresholds. Our results show that, despite a pronounced northwestward shift in the freezing-zone boundary, more than 400 km in the Northeast Plain and about 13 km per year along the eastern coast, the total ice-covered area increased by approximately 1.1% per year. At the same time, the average ice season became slightly shorter. This indicates asynchronous spatial and temporal responses of potential winter ice to warming. We identify a persistent “Northwest–Northeast dual-core” spatial pattern with strong positive spatial autocorrelation, characterized by increasing ice cover in Tibet, Qinghai, Xinjiang, Inner Mongolia, and Northeast China, and decreasing ice cover mainly in Beijing and Yunnan, where intense urbanization and low-latitude warming dominate. Random Forest modeling further shows that water area fraction, nighttime lights, built-up area, altitude, and water–heat indices are the main controls on potential winter ice. These findings highlight the combined influence of hydrological and thermal conditions and urbanization in reshaping potential winter ice patterns under climate change. Full article
Show Figures

Figure 1

21 pages, 5472 KB  
Article
Multifidelity Topology Design for Thermal–Fluid Devices via SEMDOT Algorithm
by Yiding Sun, Yun-Fei Fu, Shuzhi Xu and Yifan Guo
Computation 2026, 14(1), 19; https://doi.org/10.3390/computation14010019 - 12 Jan 2026
Cited by 1 | Viewed by 177
Abstract
Designing thermal–fluid devices that reduce peak temperature while limiting pressure loss is challenging because high-fidelity (HF) Navier–Stokes–convection simulations make direct HF-driven topology optimization computationally expensive. This study presents a two-dimensional, steady, laminar multifidelity topology design framework for thermal–fluid devices operating in a low-to-moderate [...] Read more.
Designing thermal–fluid devices that reduce peak temperature while limiting pressure loss is challenging because high-fidelity (HF) Navier–Stokes–convection simulations make direct HF-driven topology optimization computationally expensive. This study presents a two-dimensional, steady, laminar multifidelity topology design framework for thermal–fluid devices operating in a low-to-moderate Reynolds number regime. A computationally efficient low-fidelity (LF) Darcy–convection model is used for topology optimization, where SEMDOT decouples geometric smoothness from the analysis field to produce CAD-ready boundaries. The LF optimization minimizes a P-norm aggregated temperature subject to a prescribed volume fraction constraint; the inlet–outlet pressure difference and the P-norm parameter are varied to generate a diverse candidate set. All candidates are then evaluated using a steady incompressible HF Navier–Stokes–convection model in COMSOL 6.3 under a consistent operating condition (fixed flow; pressure drop reported as an output). In representative single- and multi-channel case studies, SEMDOT designs reduce the HF peak temperature (e.g., ~337 K to ~323 K) while also reducing the pressure drop (e.g., ~18.7 Pa to ~12.6 Pa) relative to conventional straight-channel layouts under the same operating point. Compared with a conventional RAMP-based pipeline under the tested settings, the proposed approach yields a more favorable Pareto distribution (normalized hypervolume 1.000 vs. 0.923). Full article
(This article belongs to the Special Issue Advanced Topology Optimization: Methods and Applications)
Show Figures

Graphical abstract

21 pages, 4447 KB  
Article
Numerical Investigation of a Multi-Year Sand-Based Thermal Energy Storage System for Building Space Heating Application
by Sandeep Bandarwadkar and Tadas Zdankus
Buildings 2026, 16(2), 321; https://doi.org/10.3390/buildings16020321 - 12 Jan 2026
Viewed by 134
Abstract
Residential space heating in Northern Europe requires long-duration thermal storage to align summer solar gains with winter heating demand. This study investigates a compact sand-based seasonal thermal energy storage integrated with flat-plate solar collectors for an A+ class single-family house in Kaunas, Lithuania. [...] Read more.
Residential space heating in Northern Europe requires long-duration thermal storage to align summer solar gains with winter heating demand. This study investigates a compact sand-based seasonal thermal energy storage integrated with flat-plate solar collectors for an A+ class single-family house in Kaunas, Lithuania. An iterative co-design couples collector sizing with the seasonal charging target and a 3D COMSOL Multiphysics model of a 300 m3 sand-filled, phenolic foam-insulated system, with a 1D conjugate model of a copper pipe heat-exchanger network. The system was charged from March to September and discharged from October to February under measured-weather boundary conditions across three consecutive annual cycles. During the first year, the storage supplied the entire winter heating demand, though 35.2% of the input energy was lost through conduction, resulting in an end-of-cycle average sand temperature slightly below the initial state. In subsequent years, both the peak sand temperature and the residual end-of-cycle temperature increased by 3.7 °C and 3.2 °C, respectively, by the third year, indicating cumulative thermal recovery and improved retention. Meanwhile, the peak conductive losses rate decreased by 98 W, and cumulative annual losses decreased by 781.4 kWh in the third year, with an average annual reduction of 4.15%. These results highlight the progressive self-conditioning of the surrounding soil and demonstrate that a low-cost, sand-based storage system can sustain a complete seasonal heating supply with declining losses, offering a robust and scalable approach for residential building heating applications. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

14 pages, 2448 KB  
Article
A Temperature-Based Statistical Model for Real-Time Thermal Deformation Prediction in End-Milling of Complex Workpiece
by Mengmeng Yang, Yize Yang, Fangyuan Zhang, Tong Li, Xiyuan Qu, Wei Wang, Ren Zhang, Dezhi Ren, Feng Zhang and Koji Teramoto
Machines 2026, 14(1), 85; https://doi.org/10.3390/machines14010085 - 9 Jan 2026
Viewed by 188
Abstract
Thermally induced deformation is a major source of dimensional error in end-milling, especially under high-speed or high-load conditions. Direct measurement of workpiece deformation during machining is impractical, while temperature signals can be obtained with good stability using embedded thermocouples. This study proposes an [...] Read more.
Thermally induced deformation is a major source of dimensional error in end-milling, especially under high-speed or high-load conditions. Direct measurement of workpiece deformation during machining is impractical, while temperature signals can be obtained with good stability using embedded thermocouples. This study proposes an indirect method for predicting milling-induced thermal deformation based on temperature measurements. A three-dimensional thermo-mechanical finite element model is established to simulate the transient temperature field and corresponding deformation of the workpiece during milling. The numerical model is validated using cutting experiments performed under the same boundary conditions and machining parameters. Based on the validated results, the relationship between deformation at critical machining locations and temperature responses at candidate monitoring points is analyzed. To improve applicability to complex workpieces, a statistical prediction model is developed. Temperature monitoring points are optimized, and significant temperature–deformation correlations are identified using multiple linear regression combined with information-criterion-based model selection. The final model is constructed using simulation-derived datasets and provides stable deformation prediction over the entire milling process. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

15 pages, 9644 KB  
Article
Microstructure and Texture Evolution of Friction-Stir-Welded AA5052 and AA6061 Aluminum Alloys
by Luqman Hakim Ahmad Shah, Amirali Shamsolhodaei, Scott Walbridge and Adrian Gerlich
Metals 2026, 16(1), 73; https://doi.org/10.3390/met16010073 - 8 Jan 2026
Viewed by 189
Abstract
This study examines the through-thickness microstructure and crystallographic texture evolution in friction-stir-welded (FSWed) AA5052-H32 and AA6061-T651 aluminum alloys using a tri-flats threaded pin tool. Optical microscopy and electron backscatter diffraction (EBSD) were employed to characterize grain morphology, boundary misorientation, and texture components across [...] Read more.
This study examines the through-thickness microstructure and crystallographic texture evolution in friction-stir-welded (FSWed) AA5052-H32 and AA6061-T651 aluminum alloys using a tri-flats threaded pin tool. Optical microscopy and electron backscatter diffraction (EBSD) were employed to characterize grain morphology, boundary misorientation, and texture components across the weld thickness. Both alloys exhibited progressive grain refinement and increased high-angle grain boundary fractions from the top to the bottom of the stir zone due to combined thermal and strain gradients. The FSWed AA5052 displayed dominant {111}<110> and Y + γ fiber components at the upper and mid regions, whereas AA6061 showed more randomized textures. At the bottom region, both alloys developed rotated Goss {011}<01-1> and weak A ({112}<110>) and α fiber components. These results clarify how alloy strengthening mechanisms—solid-solution versus precipitation hardening—govern texture evolution under different strain-path and heat input conditions. The findings contribute to optimizing process parameters and material selection for structural-scale FSW aluminum joints in industrial applications such as bridge decks, transportation panels, and marine structures. Full article
(This article belongs to the Section Welding and Joining)
Show Figures

Figure 1

14 pages, 2468 KB  
Article
Transient Arcing Characteristics of the Pantograph–Catenary System in Electrical Sectioning Overlaps
by Like Pan, Xiaokang Wang, Yuan Yuan, Tong Xing and Liming Chen
Infrastructures 2026, 11(1), 17; https://doi.org/10.3390/infrastructures11010017 - 8 Jan 2026
Viewed by 164
Abstract
Transient arcing often occurs as an electric locomotive traverses an electrical sectioning overlap (ESO), deteriorating current collection stability and reducing the durability of the pantograph–catenary (PC) system. In this study, the formation mechanism and electrical evolution characteristics of transient arcing in the ESO [...] Read more.
Transient arcing often occurs as an electric locomotive traverses an electrical sectioning overlap (ESO), deteriorating current collection stability and reducing the durability of the pantograph–catenary (PC) system. In this study, the formation mechanism and electrical evolution characteristics of transient arcing in the ESO region are investigated through theoretical analysis and numerical simulations. First, based on the dynamic motion of the locomotive passing through the ESO, the transient arcing mechanism of the ESO is clarified, and the plasma characteristics of the arc are described. Then, the electromagnetic, airflow, and thermal field interactions within the PC contact gap during arc ignition are analyzed. A Multiphysics coupled PC arc model is developed, incorporating aerodynamic, electromagnetic, and heat transfer effects. Subsequently, finite element meshing and boundary conditions are applied to simulate the transient evolution of the ESO arc. Finally, the transient arcing characteristics of the ESO are analyzed. The results indicate that the current density is highly concentrated at the initial arcing stage and gradually forms an axially symmetric conductive channel (approximately 107 A/m2), which shifts upward as the contact gap increases. Moreover, due to the geometric discontinuity of the ESO, a strong localized electric field develops near the wire edge, leading to arc root migration and reignition. Full article
(This article belongs to the Special Issue The Resilience of Railway Networks: Enhancing Safety and Robustness)
Show Figures

Figure 1

32 pages, 3111 KB  
Article
Free and Transient Vibration Analysis of Sandwich Piezoelectric Laminated Beam with General Boundary Conditions
by Xiaoshuai Zhang, Wei Fu, Zixin Ning, Ningze Sun, Yang Li, Ziyuan Yang and Sen Jiu
Materials 2026, 19(1), 136; https://doi.org/10.3390/ma19010136 - 30 Dec 2025
Viewed by 292
Abstract
This study comprehensively analyzes the free vibration and transient response for a sandwich piezoelectric laminated beam with elastic boundaries in a thermal environment. Quasi-3D shear deformation beam theory (Q3DBT) and Hamilton’s principle are used to obtain the thermo-electro-mechanical coupling equations, and the method [...] Read more.
This study comprehensively analyzes the free vibration and transient response for a sandwich piezoelectric laminated beam with elastic boundaries in a thermal environment. Quasi-3D shear deformation beam theory (Q3DBT) and Hamilton’s principle are used to obtain the thermo-electro-mechanical coupling equations, and the method of reverberation-ray matrix (MRRM) is utilized to integrate the phase and scattering relationship of the structure in a unified approach. Specifically, the scattering relationship established by the Mixed Rigid-Rod Model (MRRM) via dual coordinate systems describes the general dynamic model of the beam using generalized displacements and generalized forces at the two endpoints. This analytical solution is compared with the finite element numerical results based on Solid5 and Solid45 elements. The similarity of this approach lies in the fact that solid elements can account for the Poisson effect of thick beams, while the difference is that solid elements have a certain width; here, the error is minimized by adopting a single-element division in the width direction. Comparison of the numerical results under different geometric parameters and boundary conditions with the simulation software proves that MRRM has good accuracy and stability in analyzing the dynamic performance of sandwich piezoelectric laminated beams. On this basis, a spring-supported boundary technology is introduced to expand the flexibility of classical boundary conditions, and a detailed parameterization study is conducted on the material properties of the base layer, including the material parameters, geometric property, and the external temperature. The study in this article provides many new results for sandwich-type piezoelectric laminated structures to help further research. Full article
Show Figures

Figure 1

26 pages, 2448 KB  
Review
Green Aerogels for Atmospheric Water Harvesting: A PRISMA-Guided Systematic Review of Bio-Derived Materials and Pathways to 2035
by Ghassan Sonji, Nada Sonji, Afaf El Katerji and Mohamad Rahal
Polymers 2026, 18(1), 108; https://doi.org/10.3390/polym18010108 - 30 Dec 2025
Viewed by 345
Abstract
Atmospheric water harvesting (AWH) offers a decentralized and renewable solution to global freshwater scarcity. Bio-derived and hybrid aerogels, characterized by ultra-high porosity and hierarchical pore structures, show significant potential for high water uptake and energy-efficient, low-temperature regeneration. This PRISMA-guided systematic review synthesizes evidence [...] Read more.
Atmospheric water harvesting (AWH) offers a decentralized and renewable solution to global freshwater scarcity. Bio-derived and hybrid aerogels, characterized by ultra-high porosity and hierarchical pore structures, show significant potential for high water uptake and energy-efficient, low-temperature regeneration. This PRISMA-guided systematic review synthesizes evidence on silica, carbon, MOF-integrated, and bio-polymer aerogels, emphasizing green synthesis and circular design. Our analysis shows that reported water uptake reaches up to 0.32 g·g−1 at 25% relative humidity (RH) and 3.5 g·g−1 at 90% RH under static laboratory conditions. Testing protocols vary significantly across studies, and dynamic testing typically reduces these values by 20–30%. Ambient-pressure drying and solar-photothermal integration enhance sustainability, but performance remains highly dependent on device architecture and thermal management. Techno-economic models estimate water costs from USD 0.05 to 0.40 per liter based on heterogeneous assumptions and system boundaries. However, long-term durability and real-world environmental stressor data are severely underreported. Bridging these gaps is essential to move from lab-scale promise to scalable, commercially viable deployment. We propose a strategic roadmap toward 2035, highlighting the need for improved material stability, standardized testing protocols, and comprehensive life cycle assessments to ensure the global viability of green aerogel technologies. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Graphical abstract

15 pages, 16047 KB  
Article
Deformation Behavior of Sintered Cu-10wt%Mo Composite in the Hot Extrusion Process
by Qing Li, Zengde Li, Zhanning Zhang and Songxiao Hui
Metals 2026, 16(1), 44; https://doi.org/10.3390/met16010044 - 29 Dec 2025
Viewed by 176
Abstract
A hot extrusion deformation test of sintered Cu-10wt%Mo composite was carried out under deformation conditions, with deformation temperatures ranging from 800 °C to 950 °C, and extrusion ratios ranging from 2.9 to 10.5. The hot extrusion process eliminated the original interfaces between copper [...] Read more.
A hot extrusion deformation test of sintered Cu-10wt%Mo composite was carried out under deformation conditions, with deformation temperatures ranging from 800 °C to 950 °C, and extrusion ratios ranging from 2.9 to 10.5. The hot extrusion process eliminated the original interfaces between copper powder particles in sintered Cu-10wt%Mo composite. While the copper phase experienced dynamic recrystallization, the molybdenum particles effectively pinned the boundaries and inhibited subsequent grain growth. As the extrusion ratio increased, the composite material’s tensile strength, elongation, and thermal conductivity first increased and then decreased. With the rise in hot extrusion deformation temperature, the composite material’s tensile strength, elongation, and thermal conductivity gradually increased, but stabilized after reaching 900 °C. Deformation during hot extrusion is confined to the copper phase, which undergoes dynamic recrystallization (DRX), with no significant deformation occurring in the molybdenum phase. The molybdenum phase promotes an increased local strain rate in the copper phase, resulting in the formation of a certain number of twin grains. Full article
Show Figures

Figure 1

Back to TopTop