Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (642)

Search Parameters:
Keywords = the ubiquitin/proteasome system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4786 KiB  
Article
Whole RNA-Seq Analysis Reveals Longitudinal Proteostasis Network Responses to Photoreceptor Outer Segment Trafficking and Degradation in RPE Cells
by Rebecca D. Miller, Isaac Mondon, Charles Ellis, Anna-Marie Muir, Stephanie Turner, Eloise Keeling, Htoo A. Wai, David S. Chatelet, David A. Johnson, David A. Tumbarello, Andrew J. Lotery, Diana Baralle and J. Arjuna Ratnayaka
Cells 2025, 14(15), 1166; https://doi.org/10.3390/cells14151166 - 29 Jul 2025
Viewed by 470
Abstract
RNA-seq analysis of the highly differentiated human retinal pigment epithelial (RPE) cell-line ARPE-19, cultured on transwells for ≥4 months, yielded 44,909 genes showing 83.35% alignment with the human reference genome. These included mRNA transcripts of RPE-specific genes and those involved in retinopathies. Monolayers [...] Read more.
RNA-seq analysis of the highly differentiated human retinal pigment epithelial (RPE) cell-line ARPE-19, cultured on transwells for ≥4 months, yielded 44,909 genes showing 83.35% alignment with the human reference genome. These included mRNA transcripts of RPE-specific genes and those involved in retinopathies. Monolayers were fed photoreceptor outer segments (POS), designed to be synchronously internalised, mimicking homeostatic RPE activity. Cells were subsequently fixed at 4, 6, 24 and 48 h when POS were previously shown to maximally co-localise with Rab5, Rab7, LAMP/lysosomes and LC3b/autophagic compartments. A comprehensive analysis of differentially expressed genes involved in proteolysis revealed a pattern of gene orchestration consistent with POS breakdown in the autophagy-lysosomal pathway. At 4 h, these included elevated upstream signalling events promoting early stages of cargo transport and endosome maturation compared to RPE without POS exposure. This transcriptional landscape altered from 6 h, transitioning to promoting cargo degradation in autolysosomes by 24–48 h. Longitudinal scrutiny of mRNA transcripts revealed nuanced differences even within linked gene networks. POS exposure also initiated transcriptional upregulation in ubiquitin proteasome and chaperone-mediated systems within 4–6 h, providing evidence of cross-talk with other proteolytic processes. These findings show detailed evidence of transcriptome-level responses to cargo trafficking and processing in RPE cells. Full article
(This article belongs to the Special Issue Retinal Pigment Epithelium in Degenerative Retinal Diseases)
Show Figures

Graphical abstract

21 pages, 1099 KiB  
Review
The Roles of E3 Ubiquitin Ligases in Cerebral Ischemia–Reperfusion Injury
by Man Li, Xiaoxiao Yu, Qiang Liu, Zhi Fang and Haijun Wang
Int. J. Mol. Sci. 2025, 26(14), 6723; https://doi.org/10.3390/ijms26146723 - 13 Jul 2025
Viewed by 352
Abstract
The temporary or permanent occlusion of cerebral blood vessels results in ischemic stroke (IS). Ischemia per se causes focal neuronal damage, and the subsequent ischemia–reperfusion injury that occurs after blood flow restoration further compromises brain tissue and cells in the neurovascular unit, significantly [...] Read more.
The temporary or permanent occlusion of cerebral blood vessels results in ischemic stroke (IS). Ischemia per se causes focal neuronal damage, and the subsequent ischemia–reperfusion injury that occurs after blood flow restoration further compromises brain tissue and cells in the neurovascular unit, significantly contributing to poor patient outcomes and functional impairments. Current research indicates that the ubiquitin–proteasome system (UPS) plays a crucial role in the pathological processes associated with cerebral ischemia–reperfusion injury (CIRI). Notably, E3 ubiquitin (Ub) ligases, which are essential in the UPS, have garnered increasing attention as potential novel therapeutic targets for treating ischemia–reperfusion damage in the brain. This review focuses primarily on the background of E3 Ub ligases and explores their intricate relationships with the pathological processes of CIRI. Full article
(This article belongs to the Special Issue Latest Advances in Oxidative Stress and Brain Injury)
Show Figures

Figure 1

18 pages, 3134 KiB  
Article
A Novel Chemotherapy Combination to Enhance Proteotoxic Cell Death in Hepatocellular Carcinoma Experimental Models Without Killing Non-Cancer Cells
by Carlos Perez-Stable, Alicia de las Pozas, Teresita Reiner, Jose Gomez, Manojavan Nagarajan, Robert T. Foster, Daren R. Ure and Medhi Wangpaichitr
Int. J. Mol. Sci. 2025, 26(14), 6699; https://doi.org/10.3390/ijms26146699 - 12 Jul 2025
Viewed by 466
Abstract
Inhibitors of the ubiquitin–proteasome system increase proteotoxic stress and have achieved clinical success for multiple myeloma but not for solid cancers such as hepatocellular carcinoma. Our objective is to identify a combination with proteasome inhibitors that enhances proteotoxic stress and apoptotic cell death [...] Read more.
Inhibitors of the ubiquitin–proteasome system increase proteotoxic stress and have achieved clinical success for multiple myeloma but not for solid cancers such as hepatocellular carcinoma. Our objective is to identify a combination with proteasome inhibitors that enhances proteotoxic stress and apoptotic cell death in hepatocellular carcinoma but with less toxicity to non-cancer cells. We found that rencofilstat, a pan-cyclophilin inhibitor, combined with ixazomib, a proteasome inhibitor, increased apoptotic cell death in hepatocellular carcinoma but not in umbilical vein or dermal fibroblast non-cancer cells. We then analyzed the effects of rencofilstat + ixazomib on XBP1s and PERK, critical factors in the unfolded protein response used by cells to survive proteotoxic stress. Rencofilstat + ixazomib maintained higher expression of XBP1s and genetic models suggested that XBP1s was a pro-survival protein early and pro-death protein at later times. Simultaneously, decreased PERK expression prevented the block in protein synthesis via phospho-eIF2α and likely further amplified proteotoxic stress. Rencofilstat + ixazomib did not have effects on XBP1s or PERK in non-cancer cells. Further genetic experiments revealed the pro-survival roles for cyclophilin A and B in mediating rencofilstat + ixazomib-induced cell death. In the Hep3B xenograft model, rencofilstat + ixazomib significantly inhibited tumor volumes/weights without general toxicity. We conclude that rencofilstat + ixazomib amplified proteotoxic stress in hepatocellular carcinoma past a threshold pro-survival pathways could not tolerate, whereas non-cancer cells were less affected. Full article
Show Figures

Graphical abstract

16 pages, 2386 KiB  
Article
Heat-Killed Lactobacillus plantarum beLP1 Attenuates Dexamethasone-Induced Sarcopenia in Rats by Increasing AKT Phosphorylation
by Jinsu Choi, Eunwoo Jeong, Harang Park, Hye-Yeong Song, Juyeong Moon, Min-ah Kim, Bon Seo Koo, Jin-Ho Lee, Jong Kwang Hong, Kwon-Il Han, Doyong Kim, Han Sung Kim and Tack-Joong Kim
Biomedicines 2025, 13(7), 1668; https://doi.org/10.3390/biomedicines13071668 - 8 Jul 2025
Viewed by 437
Abstract
Background/Objectives: Sarcopenia is an age-related disease resulting in muscle mass deterioration and declining strength and functional ability. Muscle protein degradation pathways are activated through the ubiquitin–proteasome system, which is integral to the pathogenesis of sarcopenia. This study examined the capability of Lactobacillus [...] Read more.
Background/Objectives: Sarcopenia is an age-related disease resulting in muscle mass deterioration and declining strength and functional ability. Muscle protein degradation pathways are activated through the ubiquitin–proteasome system, which is integral to the pathogenesis of sarcopenia. This study examined the capability of Lactobacillus plantarum beLP1 as a postbiotic ingredient of kimchi that prevents sarcopenia. Methods: We evaluated cell viability and measured diameters in a C2C12 myotube damage model and muscle volume, muscle weight, muscle strength, and the expression of muscle degradation proteins MuRF1 and Atrogin-1 in dexamethasone-induced sarcopenic model rats using a heat-killed beLP1 strain. Results: beLP1 had no cytotoxic effects on C2C12 and prevented dexamethasone-induced cellular damage, suggesting its role in muscle protein degradation pathways. beLP1 treatment significantly prevented the dexamethasone-induced reduction in myotube diameter. In a dexamethasone-induced sarcopenic rat model, oral beLP1 significantly mitigated muscle mass decline and prevented grip strength reduction. Microcomputed tomography demonstrated that beLP1 reduced dexamethasone-induced muscle volume loss. beLP1 treatment reduced Atrogin-1 and Muscle RING-finger protein-1 (MuRF1) and the transcription factor Forkhead box O3 alpha (FoxO3α), which triggers muscle protein breakdown. beLP1 exerts protective effects by inhibiting the ubiquitin-proteasome system and regulating FoxO3α signaling. It increased AKT (Ser473) phosphorylation, which affected muscle protein synthesis, degradation, and cell survival, suggesting its potential to prevent sarcopenia. Conclusions: Heat-killed Lactobacillus plantarum beLP1 alleviates muscle mass wasting and weakness in a dexamethasone-induced sarcopenia model by regulating muscle protein degradation pathways and signaling molecules. Thus, postbiotics may be functional ingredients in sarcopenia prevention. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

14 pages, 2737 KiB  
Article
Strengthening the Role of PSMC5 as a Potential Gene Associated with Neurodevelopmental Disorders
by Mirella Vinci, Antonino Musumeci, Carla Papa, Alda Ragalmuto, Salvatore Saccone, Concetta Federico, Donatella Greco, Vittoria Greco, Francesco Calì and Simone Treccarichi
Int. J. Mol. Sci. 2025, 26(13), 6386; https://doi.org/10.3390/ijms26136386 - 2 Jul 2025
Viewed by 265
Abstract
The 26S proteasome is a large, ATP-dependent proteolytic complex responsible for degrading ubiquitinated proteins in eukaryotic cells. It plays a crucial role in maintaining cellular protein homeostasis by selectively eliminating misfolded, damaged, or regulatory proteins marked for degradation. In this study, whole-exome sequencing [...] Read more.
The 26S proteasome is a large, ATP-dependent proteolytic complex responsible for degrading ubiquitinated proteins in eukaryotic cells. It plays a crucial role in maintaining cellular protein homeostasis by selectively eliminating misfolded, damaged, or regulatory proteins marked for degradation. In this study, whole-exome sequencing (WES) was performed on an individual presenting with developmental delay and mild intellectual disability, as well as on both of his unaffected parents. This analysis identified a de novo variant, c.959C>G (p.Pro320Arg), in the PSMC5 gene. As predicted, this gene shows a very likely autosomal dominant inheritance pattern. Notably, PSMC5 has not previously been associated with any phenotype in the OMIM database. This variant was recently submitted to the ClinVar database as a variant of uncertain significance (VUS) and remains absent in both gnomAD and dbSNP. Notably, it has been identified in six unrelated individuals presenting with clinical features comparable to those observed in the patient described in this study. Multiple in silico prediction tools classified the variant as pathogenic, and a PhyloP conservation score supports strong evolutionary conservation of the mutated nucleotide. Protein structure predictions using the AlphaFold3 algorithm revealed notable structural differences between the mutant and wild-type PSMC5 proteins. We hypothesize that the p.Pro320Arg substitution alters the structure and function of PSMC5 as a regulatory subunit of the 26S proteasome, potentially impairing the stability and activity of the entire complex. Although functional studies are imperative, this study contributes to a deeper understanding of PSMC5, expands the spectrum of associated neurodevelopmental phenotypes, and highlights its potential as a therapeutic target. Furthermore, this study resulted in the submission of the identified variant to the ClinVar database (SCV006083352), where it was classified as pathogenic. Full article
Show Figures

Figure 1

63 pages, 3732 KiB  
Review
TrypPROTACs Unlocking New Therapeutic Strategies for Chagas Disease
by Ana Luísa Rodriguez Gini, Pamela Souza Tada da Cunha, Emílio Emílio João, Chung Man Chin, Jean Leandro dos Santos, Esteban Carlos Serra and Cauê Benito Scarim
Pharmaceuticals 2025, 18(6), 919; https://doi.org/10.3390/ph18060919 - 19 Jun 2025
Viewed by 1396
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), continues to pose significant public health challenges due to the toxicity, poor tolerability, and limited efficacy of current treatments. Targeted protein degradation (TPD) using proteolysis-targeting chimeras (PROTACs) represents a novel [...] Read more.
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), continues to pose significant public health challenges due to the toxicity, poor tolerability, and limited efficacy of current treatments. Targeted protein degradation (TPD) using proteolysis-targeting chimeras (PROTACs) represents a novel therapeutic avenue by leveraging the ubiquitin–proteasome system to selectively degrade essential parasite proteins. This review introduces the conceptual framework of “TrypPROTACs” as a prospective strategy for T. cruzi, integrating a comprehensive analysis of druggable targets across critical biological pathways, including ergosterol biosynthesis, redox metabolism, glycolysis, nucleotide synthesis, protein kinases, molecular chaperones such as heat shock protein 90 (Hsp90), and epigenetic regulators such as T. cruzi bromodomain factor 3 (TcBDF3). It is important to note that no TrypPROTAC compound has yet been synthesized or experimentally validated in T. cruzi; the approach discussed herein remains theoretical and forward-looking. Representative inhibitors for each target class are compiled, highlighting potency, selectivity, and structural features relevant to ligand design. We also examine the parasite’s ubiquitination machinery and compare it to the human system to identify putative E3 ubiquitin ligases. Key aspects of linker engineering and ternary complex stabilization are discussed, alongside potential validation techniques such as the cellular thermal shift assay (CETSA) and bioluminescence resonance energy transfer (NanoBRET). Collectively, these insights outline a roadmap for the rational design of TrypPROTACs and support the feasibility of expanding targeted protein degradation strategies to neglected tropical diseases. Full article
Show Figures

Graphical abstract

19 pages, 790 KiB  
Review
Not Just PA28γ: What We Know About the Role of PA28αβ in Carcinogenesis
by Paolo Cascio
Biomolecules 2025, 15(6), 880; https://doi.org/10.3390/biom15060880 - 16 Jun 2025
Viewed by 399
Abstract
The ubiquitin-proteasome pathway performs a strictly controlled degradation of specific protein substrates within the eukaryotic cell. This catabolic mechanism allows the rapid removal of proteins damaged in any way, and therefore potentially capable of compromising cellular homeostasis, as well as the constant turnover [...] Read more.
The ubiquitin-proteasome pathway performs a strictly controlled degradation of specific protein substrates within the eukaryotic cell. This catabolic mechanism allows the rapid removal of proteins damaged in any way, and therefore potentially capable of compromising cellular homeostasis, as well as the constant turnover of all cellular proteins, in order to balance their synthesis and thus maintain the correct levels of proteins required by the cell at any given time. Consequently, the ubiquitin-proteasome system plays a fundamental role in regulating essential cellular processes, such as the cell cycle, apoptosis, immune responses, and inflammation, whose dysregulation or malfunction can lead to neoplastic transformation. Not surprisingly, therefore, alterations in the activity and regulatory mechanisms of the proteasome are common not only in various types of tumors, but often represent a contributing cause of oncogenesis itself. Among proteasome modulators, PA28γ, due to its function in promoting cell growth and proliferation, while inhibiting apoptosis and cell-mediated immune responses, has received great attention in recent years for its well established pro-tumoral activity. Conversely, the role played in oncogenesis by the second paralogue of the PA28 family of proteasome activators, namely PA28αβ, is less clearly defined, which is also related to the lower level of general understanding of its cellular activities and biological functions. However, increasing experimental evidence has demonstrated that PA28αβ also plays a non-secondary role in the process of neoplastic transformation and tumor growth, both by virtue of its regulatory function on class I cell-mediated immune responses and through activity promoting cell duplication and growth. This review aims to summarize the current knowledge and evidence on the molecular mechanisms and cellular functions through which PA28αβ may support development and growth of cancer. Full article
Show Figures

Figure 1

23 pages, 4360 KiB  
Article
Conditioned Generative Modeling of Molecular Glues: A Realistic AI Approach for Synthesizable Drug-like Molecules
by Naeyma N. Islam and Thomas R. Caulfield
Biomolecules 2025, 15(6), 849; https://doi.org/10.3390/biom15060849 - 10 Jun 2025
Cited by 1 | Viewed by 1076
Abstract
Alzheimer’s disease (AD) is marked by the pathological accumulation of amyloid beta-42 (Aβ42), contributing to synaptic dysfunction and neurodegeneration. While extracellular amyloid plaques are well-studied, increasing evidence highlights intracellular Aβ42 as an early and toxic driver of disease progression. In this study, we [...] Read more.
Alzheimer’s disease (AD) is marked by the pathological accumulation of amyloid beta-42 (Aβ42), contributing to synaptic dysfunction and neurodegeneration. While extracellular amyloid plaques are well-studied, increasing evidence highlights intracellular Aβ42 as an early and toxic driver of disease progression. In this study, we present a novel, Generative AI–based drug design approach to promote targeted degradation of Aβ42 via the ubiquitin–proteasome system (UPS), using E3 ligase–directed molecular glues. We systematically evaluated the ternary complex formation potential of Aβ42 with three E3 ligases (CRBN, VHL, and MDM2) through structure-based modeling, ADMET screening, and docking. We then developed a Ligase-Conditioned Junction Tree Variational Autoencoder (LC-JT-VAE) to generate ligase-specific small molecules, incorporating protein sequence embeddings and torsional angle-aware molecular graphs. Our results demonstrate that this generative model can produce chemically valid, novel, and target-specific molecular glues capable of facilitating Aβ42 degradation. This integrated approach offers a promising framework for designing UPS-targeted therapies for neurodegenerative diseases. Full article
Show Figures

Figure 1

14 pages, 1847 KiB  
Communication
The Plasmodium falciparum RING Finger Protein PfRNF1 Forms an Interaction Network with Regulators of Sexual Development
by Afia Farrukh, Sherihan Musa, Ute Distler, Stefan Tenzer, Gabriele Pradel and Che Julius Ngwa
Int. J. Mol. Sci. 2025, 26(12), 5470; https://doi.org/10.3390/ijms26125470 - 7 Jun 2025
Viewed by 607
Abstract
RNA-binding E3 ubiquitin ligases (RBULs) provide a link between RNA metabolic processes and the ubiquitin proteasome system (UPS). In humans, RBULs are involved in various biological processes, such as cell proliferation and differentiation, as well as sexual development. To date, little is known [...] Read more.
RNA-binding E3 ubiquitin ligases (RBULs) provide a link between RNA metabolic processes and the ubiquitin proteasome system (UPS). In humans, RBULs are involved in various biological processes, such as cell proliferation and differentiation, as well as sexual development. To date, little is known about their role in the protozoan parasite Plasmodium falciparum, the causative agent of malaria tropica. We previously identified a novel P. falciparum RBUL, the RING finger E3 ligase PfRNF1, which is highly expressed during gametocyte development. Here, we conducted BioID-based proximity interaction studies to unveil the PfRNF1 interactome. We show that in immature gametocytes, PfRNF1 forms an interaction network that is mainly composed of RNA-binding proteins, including the translational repressors DOZI and CITH and members of the CCR4-NOT complex, as well as UPS-related proteins. In particular, PfRNF1 interacts with recently identified regulators of sexual development like the zinc finger protein PfMD3, with which it shares the majority of interactors. The common interactome of PfRNF1 and PfMD3 comprises several uncharacterized proteins predominantly expressed in male or female gametocytes. Our results demonstrate that PfRNF1 engages with RNA-binding proteins crucial for sex determination in gametocytes, thereby linking posttranscriptional regulation with the UPS. Full article
Show Figures

Graphical abstract

43 pages, 2656 KiB  
Review
α-Synuclein Pathology in Synucleinopathies: Mechanisms, Biomarkers, and Therapeutic Challenges
by Oscar Arias-Carrión, Magdalena Guerra-Crespo, Francisco J. Padilla-Godínez, Luis O. Soto-Rojas and Elías Manjarrez
Int. J. Mol. Sci. 2025, 26(11), 5405; https://doi.org/10.3390/ijms26115405 - 4 Jun 2025
Viewed by 1834
Abstract
Parkinson’s disease and related synucleinopathies, including dementia with Lewy bodies and multiple system atrophy, are characterised by the pathological aggregation of the α-synuclein (aSyn) protein in neuronal and glial cells, leading to cellular dysfunction and neurodegeneration. This review synthesizes knowledge of aSyn biology, [...] Read more.
Parkinson’s disease and related synucleinopathies, including dementia with Lewy bodies and multiple system atrophy, are characterised by the pathological aggregation of the α-synuclein (aSyn) protein in neuronal and glial cells, leading to cellular dysfunction and neurodegeneration. This review synthesizes knowledge of aSyn biology, including its structure, aggregation mechanisms, cellular interactions, and systemic influences. We highlight the structural diversity of aSyn aggregates, ranging from oligomers to fibrils, their strain-like properties, and their prion-like propagation. While the role of prion-like mechanisms in disease progression remains a topic of ongoing debate, these processes may contribute to the clinical heterogeneity of synucleinopathies. Dysregulation of protein clearance pathways, including chaperone-mediated autophagy and the ubiquitin–proteasome system, exacerbates aSyn accumulation, while post-translational modifications influence its toxicity and aggregation propensity. Emerging evidence suggests that immune responses and alterations in the gut microbiome are key modulators of aSyn pathology, linking peripheral processes—particularly those of intestinal origin—to central neurodegeneration. Advances in biomarker development, such as cerebrospinal fluid assays, post-translationally modified aSyn, and real-time quaking-induced conversion technology, hold promise for early diagnosis and disease monitoring. Furthermore, positron emission tomography imaging and conformation-specific antibodies offer innovative tools for visualising and targeting aSyn pathology in vivo. Despite significant progress, challenges remain in accurately modelling human synucleinopathies, as existing animal and cellular models capture only specific aspects of the disease. This review underscores the need for more reliable aSyn biomarkers to facilitate the development of effective treatments. Achieving this goal requires an interdisciplinary approach integrating genetic, epigenetic, and environmental insights. Full article
(This article belongs to the Special Issue Molecular Insights in Neurodegeneration)
Show Figures

Graphical abstract

12 pages, 2647 KiB  
Article
Decursin Suppresses Esophageal Squamous Cell Carcinoma Progression via Orchestrated Cell Cycle Deceleration, Apoptotic Activation, and Oncoprotein Degradation
by Chen Fang, Lin Wu, Xiangzhe Yang, Kai Xie, Peng Zhang, Yu Feng, Haitao Ma and Xing Tong
Int. J. Mol. Sci. 2025, 26(11), 5391; https://doi.org/10.3390/ijms26115391 - 4 Jun 2025
Viewed by 564
Abstract
Esophageal squamous cell carcinoma (ESCC) remains a lethal malignancy with limited therapeutic options. This study investigated the antitumor efficacy and mechanisms of decursin, a natural pyranocoumarin derivative, against ESCC. In vitro analyses demonstrated that decursin selectively inhibited ESCC cell viability (IC50: 14.62 ± [...] Read more.
Esophageal squamous cell carcinoma (ESCC) remains a lethal malignancy with limited therapeutic options. This study investigated the antitumor efficacy and mechanisms of decursin, a natural pyranocoumarin derivative, against ESCC. In vitro analyses demonstrated that decursin selectively inhibited ESCC cell viability (IC50: 14.62 ± 0.61–26.20 ± 2.11 μM across TE-1, KYSE-30, and KYSE-150 cell lines) without affecting normal esophageal epithelial cells (Het-1A). Decursin (10 μM) suppressed colony formation, impaired wound healing (p < 0.001 at 48 h), and reduced Transwell migration/invasion in KYSE-150 cells. Subcutaneous xenograft models revealed significant tumor growth inhibition (p < 0.01) with decursin treatment (10 mg/kg, intraperitoneal), accompanied by no systemic toxicity. Mechanistically, decursin induced G0/G1 cell cycle deceleration (p < 0.01) and apoptosis through ubiquitin–proteasome-mediated degradation of oncoproteins TP63 and SOX2. Time- and dose-dependent protein suppression was reversed by proteasome inhibitor MG-132, but unaffected by lysosomal inhibition. These findings establish decursin as a promising therapeutic agent for ESCC, functioning via proteasomal degradation of key oncogenic drivers, and provide a rationale for decursin’s further development as a targeted monotherapy or chemosensitizer in multimodal regimens. Full article
Show Figures

Figure 1

18 pages, 4899 KiB  
Review
Targeting the Undruggable: Recent Progress in PROTAC-Induced Transcription Factor Degradation
by Hyein Jung and Yeongju Lee
Cancers 2025, 17(11), 1871; https://doi.org/10.3390/cancers17111871 - 3 Jun 2025
Viewed by 1835
Abstract
Transcription factors (TFs) play central roles in gene regulation and disease progression but have long been considered undruggable due to the absence of well-defined binding pockets and their reliance on protein–protein or protein–DNA interactions. Proteolysis-targeting chimeras (PROTACs) offer a novel strategy to overcome [...] Read more.
Transcription factors (TFs) play central roles in gene regulation and disease progression but have long been considered undruggable due to the absence of well-defined binding pockets and their reliance on protein–protein or protein–DNA interactions. Proteolysis-targeting chimeras (PROTACs) offer a novel strategy to overcome these limitations by inducing selective degradation of TFs via the ubiquitin–proteasome system. This review highlights recent advances in TF-targeting PROTACs, focusing on key oncogenic TFs such as androgen receptor (AR), estrogen receptor alpha (ERα), BRD4, c-Myc, and STAT family members. Strategies for ligand design—including small molecules, peptides, and nucleic acid-based elements—are discussed alongside the use of various E3 ligases such as VHL, CRBN, and IAP. Several clinically advanced PROTACs, including ARV-110 and ARV-471, demonstrate the therapeutic potential of this technology. Despite challenges in pharmacokinetics and E3 ligase selection, emerging data suggest that PROTACs can successfully target TFs, paving the way for new treatment strategies across oncology and other disease areas. Full article
(This article belongs to the Special Issue Recent Advances in PROteolysis TArgeting Chimeras (PROTACs))
Show Figures

Figure 1

13 pages, 1261 KiB  
Review
VEXAS Syndrome and Alzheimer’s Disease—Are There Connections?
by Aleksandra Sowa, Marta Malicka, Magdalena Biernacka, Jan Aleksander Beszłej and Jerzy Leszek
Brain Sci. 2025, 15(6), 573; https://doi.org/10.3390/brainsci15060573 - 26 May 2025
Viewed by 532
Abstract
VEXAS syndrome and Alzheimer’s disease (AD), though distinct in clinical manifestations, share overlapping pathophysiological mechanisms, including systemic inflammation, protein misfolding, and vascular dysfunction. VEXAS syndrome, a rare autoinflammatory disorder characterized by somatic UBA1 mutations, systemic inflammation, and hematologic abnormalities, presents primarily in older [...] Read more.
VEXAS syndrome and Alzheimer’s disease (AD), though distinct in clinical manifestations, share overlapping pathophysiological mechanisms, including systemic inflammation, protein misfolding, and vascular dysfunction. VEXAS syndrome, a rare autoinflammatory disorder characterized by somatic UBA1 mutations, systemic inflammation, and hematologic abnormalities, presents primarily in older males. Meanwhile, AD, the leading cause of dementia, involves progressive neurodegeneration driven by amyloid-beta plaques, tau tangles, and chronic neuroinflammation. This article explores potential connections between the two conditions, focusing on inflammation, neurovascular changes and cellular stress. Systemic inflammation observed in VEXAS syndrome may potentiate neuroinflammatory processes in Alzheimer’s disease (AD), as circulating proinflammatory cytokines have the capacity to cross the blood–brain barrier (BBB), thereby inducing glial activation and promoting neuroinflammation. Additionally, coexisting vascular dysfunctions characteristic of both conditions may synergistically contribute to accelerated cognitive decline. Both conditions involve disruption of the ubiquitin–proteasome system, with UBA1 mutations being specific to VEXAS. Given the established role of UBA1 in maintaining neuronal homeostasis, investigating the overlapping and distinct molecular mechanisms may provide valuable insights into their pathophysiology. The review underscores the need for further research to elucidate these links and improve therapeutic strategies, especially for individuals affected by both disorders. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

33 pages, 2729 KiB  
Review
Misregulation of the Ubiquitin–Proteasome System and Autophagy in Muscular Dystrophies Associated with the Dystrophin–Glycoprotein Complex
by Manuela Bozzi, Francesca Sciandra, Maria Giulia Bigotti and Andrea Brancaccio
Cells 2025, 14(10), 721; https://doi.org/10.3390/cells14100721 - 15 May 2025
Viewed by 1257
Abstract
The stability of the sarcolemma is severely impaired in a series of genetic neuromuscular diseases defined as muscular dystrophies. These are characterized by the centralization of skeletal muscle syncytial nuclei, the replacement of muscle fibers with fibrotic tissue, the release of inflammatory cytokines, [...] Read more.
The stability of the sarcolemma is severely impaired in a series of genetic neuromuscular diseases defined as muscular dystrophies. These are characterized by the centralization of skeletal muscle syncytial nuclei, the replacement of muscle fibers with fibrotic tissue, the release of inflammatory cytokines, and the disruption of muscle protein homeostasis, ultimately leading to necrosis and loss of muscle functionality. A specific subgroup of muscular dystrophies is associated with genetic defects in components of the dystrophin–glycoprotein complex (DGC), which plays a crucial role in linking the cytosol to the skeletal muscle basement membrane. In these cases, dystrophin-associated proteins fail to correctly localize to the sarcolemma, resulting in dystrophy characterized by an uncontrolled increase in protein degradation, which can ultimately lead to cell death. In this review, we explore the role of intracellular degradative pathways—primarily the ubiquitin–proteasome and autophagy–lysosome systems—in the progression of DGC-linked muscular dystrophies. The DGC acts as a hub for numerous signaling pathways that regulate various cellular functions, including protein homeostasis. We examine whether the loss of structural stability within the DGC affects key signaling pathways that modulate protein recycling, with a particular emphasis on autophagy. Full article
Show Figures

Graphical abstract

45 pages, 15230 KiB  
Article
The Transcription Axes ERK-Elk1, JNK-cJun, and JAK-STAT Promote Autophagy Activation and Proteasome Inhibitor Resistance in Prostate Cancer Cells
by Georgios Kalampounias, Kalliopi Zafeiropoulou, Theodosia Androutsopoulou, Spyridon Alexis, Argiris Symeonidis and Panagiotis Katsoris
Curr. Issues Mol. Biol. 2025, 47(5), 352; https://doi.org/10.3390/cimb47050352 - 12 May 2025
Viewed by 816
Abstract
The rapid emergence of resistance limits the application of proteasome inhibitors against solid tumors, despite their effectiveness in the treatment of hematological malignancies. Resistant phenotypes are complex and multifaceted, and, thus, the mechanisms involved have not been adequately described. In this study, a [...] Read more.
The rapid emergence of resistance limits the application of proteasome inhibitors against solid tumors, despite their effectiveness in the treatment of hematological malignancies. Resistant phenotypes are complex and multifaceted, and, thus, the mechanisms involved have not been adequately described. In this study, a Bortezomib-resistant prostate cancer cell line is created by using the PC-3 cell as a prostate carcinoma model of high metastatic potential. The main biochemical differences and adaptations exhibited by the resistant cells revolve around apoptosis evasion, autophagy induction (functioning as a ubiquitin-proteasome system substitute), expression of epithelial-to-mesenchymal transition markers, and increased aggressiveness. Broad-spectrum signaling pathway analyses also reveal an upregulation and activation of Nf-κB, STAT3, cJun, and Elk1 transcription factors in the resistant cells. Additionally, intracellular reactive oxygen species assays reveal a downregulation in resistant cells, which is theorized to be a consequence of metabolic changes, increased autophagic flux, and antioxidative enzyme action. These findings expand our understanding of proteasome inhibitor resistance and highlight key kinases and transcription factors as novel potential therapeutic targets. Effective inhibition of resistance-specific pathways could re-sensitize the cells to proteasome inhibitors, thus surpassing current therapeutic limitations. Full article
(This article belongs to the Special Issue Molecular Research of Urological Diseases)
Show Figures

Figure 1

Back to TopTop