Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,255)

Search Parameters:
Keywords = the three-dimensional cell culture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 1334 KiB  
Technical Note
An Optimized Protocol for SBEM-Based Ultrastructural Analysis of Cultured Human Cells
by Natalia Diak, Łukasz Chajec, Agnieszka Fus-Kujawa and Karolina Bajdak-Rusinek
Methods Protoc. 2025, 8(4), 90; https://doi.org/10.3390/mps8040090 (registering DOI) - 6 Aug 2025
Abstract
Serial block-face scanning electron microscopy (SBEM) is a powerful technique for three-dimensional ultrastructural analysis of biological samples, though its application to in vitro cultured human cells remains underutilized. In this study, we present an optimized SBEM sample preparation protocol using human dermal fibroblasts [...] Read more.
Serial block-face scanning electron microscopy (SBEM) is a powerful technique for three-dimensional ultrastructural analysis of biological samples, though its application to in vitro cultured human cells remains underutilized. In this study, we present an optimized SBEM sample preparation protocol using human dermal fibroblasts and induced pluripotent stem cells (iPSCs). The method includes key modifications to the original protocol, such as using only glutaraldehyde for fixation and substituting the toxic cacodylate buffer with a less hazardous phosphate buffer. These adaptations result in excellent preservation of cellular ultrastructure, with high contrast and clarity, as validated by transmission electron microscopy (TEM). The loss of natural cell morphology resulted from fixation during passage, when cells formed a precipitate, rather than from fixation directly within the culture medium. The protocol is time-efficient, safe, and broadly applicable to both stem cells and differentiated cells cultured under 2D conditions, providing a valuable tool for ultrastructural analysis in diverse biomedical research settings. Full article
(This article belongs to the Section Molecular and Cellular Biology)
Show Figures

Figure 1

22 pages, 3527 KiB  
Review
Applications of Organoids and Spheroids in Anaplastic and Papillary Thyroid Cancer Research: A Comprehensive Review
by Deepak Gulwani, Neha Singh, Manisha Gupta, Ridhima Goel and Thoudam Debraj Singh
Organoids 2025, 4(3), 18; https://doi.org/10.3390/organoids4030018 - 1 Aug 2025
Viewed by 98
Abstract
Organoid and spheroid technologies have rapidly become pivotal in thyroid cancer research, offering models that are more physiologically relevant than traditional two-dimensional culture. In the study of papillary and anaplastic thyroid carcinomas, two subtypes that differ both histologically and clinically, three-dimensional (3D) models [...] Read more.
Organoid and spheroid technologies have rapidly become pivotal in thyroid cancer research, offering models that are more physiologically relevant than traditional two-dimensional culture. In the study of papillary and anaplastic thyroid carcinomas, two subtypes that differ both histologically and clinically, three-dimensional (3D) models offer unparalleled insights into tumor biology, therapeutic vulnerabilities, and resistance mechanisms. These models maintain essential tumor characteristics such as cellular diversity, spatial structure, and interactions with the microenvironment, making them extremely valuable for disease modeling and drug testing. This review emphasizes recent progress in the development and use of thyroid cancer organoids and spheroids, focusing on their role in replicating disease features, evaluating targeted therapies, and investigating epithelial–mesenchymal transition (EMT), cancer stem cell behavior, and treatment resistance. Patient-derived organoids have shown potential in capturing individualized drug responses, supporting precision oncology strategies for both differentiated and aggressive subtypes. Additionally, new platforms, such as thyroid organoid-on-a-chip systems, provide dynamic, high-fidelity models for functional studies and assessments of endocrine disruption. Despite ongoing challenges, such as standardization, limited inclusion of immune and stromal components, and culture reproducibility, advancements in microfluidics, biomaterials, and machine learning have enhanced the clinical and translational potential of these systems. Organoids and spheroids are expected to become essential in the future of thyroid cancer research, particularly in bridging the gap between laboratory discoveries and patient-focused therapies. Full article
Show Figures

Figure 1

22 pages, 1268 KiB  
Review
Natural Polymer-Based Hydrogel Platforms for Organoid and Microphysiological Systems: Mechanistic Insights and Translational Perspectives
by Yeonoh Cho, Jungmok You and Jong Hun Lee
Polymers 2025, 17(15), 2109; https://doi.org/10.3390/polym17152109 - 31 Jul 2025
Viewed by 354
Abstract
Organoids and microphysiological systems (MPSs) have emerged as physiologically relevant platforms that recapitulate key structural and functional features of human organs, tissues, and microenvironments. As one of the essential components that define the success of these systems, hydrogels play the central role of [...] Read more.
Organoids and microphysiological systems (MPSs) have emerged as physiologically relevant platforms that recapitulate key structural and functional features of human organs, tissues, and microenvironments. As one of the essential components that define the success of these systems, hydrogels play the central role of providing a three-dimensional, biomimetic scaffold that supports cell viability, spatial organization, and dynamic signaling. Natural polymer-based hydrogels, derived from materials such as collagen, gelatin, hyaluronic acid, and alginate, offer favorable properties including biocompatibility, degradability, and an extracellular matrix-like architecture. This review presents recent advances in the design and application of such hydrogels, focusing on crosslinking strategies (physical, chemical, and hybrid), the viscoelastic characteristics, and stimuli-responsive behaviors. The influence of these materials on cellular processes, such as stemness maintenance, differentiation, and morphogenesis, is critically examined. Furthermore, the applications of organoid culture and dynamic MPS platforms are discussed, highlighting their roles in morphogen delivery, barrier formation, and vascularization. Current challenges and future perspectives toward achieving standardized, scalable, and translational hydrogel systems are also addressed. Full article
Show Figures

Figure 1

31 pages, 3754 KiB  
Review
Artificial Gametogenesis and In Vitro Spermatogenesis: Emerging Strategies for the Treatment of Male Infertility
by Aris Kaltsas, Maria-Anna Kyrgiafini, Eleftheria Markou, Andreas Koumenis, Zissis Mamuris, Fotios Dimitriadis, Athanasios Zachariou, Michael Chrisofos and Nikolaos Sofikitis
Int. J. Mol. Sci. 2025, 26(15), 7383; https://doi.org/10.3390/ijms26157383 - 30 Jul 2025
Viewed by 440
Abstract
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, [...] Read more.
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, driven by advances in two complementary strategies: organotypic in vitro spermatogenesis (IVS), which aims to complete spermatogenesis ex vivo using native testicular tissue, and in vitro gametogenesis (IVG), which seeks to generate male gametes de novo from pluripotent or reprogrammed somatic stem cells. To evaluate the current landscape and future potential of these approaches, a narrative, semi-systematic literature search was conducted in PubMed and Scopus for the period January 2010 to February 2025. Additionally, landmark studies published prior to 2010 that contributed foundational knowledge in spermatogenesis and testicular tissue modeling were reviewed to provide historical context. This narrative review synthesizes multidisciplinary evidence from cell biology, tissue engineering, and translational medicine to benchmark IVS and IVG technologies against species-specific developmental milestones, ranging from rodent models to non-human primates and emerging human systems. Key challenges—such as the reconstitution of the blood–testis barrier, stage-specific endocrine signaling, and epigenetic reprogramming—are discussed alongside critical performance metrics of various platforms, including air–liquid interface slice cultures, three-dimensional organoids, microfluidic “testis-on-chip” devices, and stem cell-derived gametogenic protocols. Particular attention is given to clinical applicability in contexts such as NOA, oncofertility preservation in prepubertal patients, genetic syndromes, and reprocutive scenarios involving same-sex or unpartnered individuals. Safety, regulatory, and ethical considerations are critically appraised, and a translational framework is outlined that emphasizes biomimetic scaffold design, multi-omics-guided media optimization, and rigorous genomic and epigenomic quality control. While the generation of functionally mature sperm in vitro remains unachieved, converging progress in animal models and early human systems suggests that clinically revelant IVS and IVG applications are approaching feasibility, offering a paradigm shift in reproductive medicine. Full article
Show Figures

Figure 1

22 pages, 3894 KiB  
Article
3D-Printed Biocompatible Frames for Electrospun Nanofiber Membranes: An Enabling Biofabrication Technology for Three-Dimensional Tissue Models and Engineered Cell Culture Platforms
by Adam J. Jones, Lauren A. Carothers, Finley Paez, Yanhao Dong, Ronald A. Zeszut and Russell Kirk Pirlo
Micromachines 2025, 16(8), 887; https://doi.org/10.3390/mi16080887 - 30 Jul 2025
Viewed by 433
Abstract
Electrospun nanofiber membranes (ESNFMs) are exceptional biomaterials for tissue engineering, closely mimicking the native extracellular matrix. However, their inherent fragility poses significant handling, processing, and integration challenges, limiting their widespread application in advanced 3D tissue models and biofabricated devices. This study introduces a [...] Read more.
Electrospun nanofiber membranes (ESNFMs) are exceptional biomaterials for tissue engineering, closely mimicking the native extracellular matrix. However, their inherent fragility poses significant handling, processing, and integration challenges, limiting their widespread application in advanced 3D tissue models and biofabricated devices. This study introduces a novel and on-mat framing technique utilizing extrusion-based printing of a UV-curable biocompatible resin (Biotough D90 MF) to create rigid, integrated support structures directly on chitosan–polyethylene oxide (PEO) ESNFMs. We demonstrate fabrication of these circular frames via precise 3D printing and a simpler manual stamping method, achieving robust mechanical stabilization that enables routine laboratory manipulation without membrane damage. The resulting framed ESNFMs maintain structural integrity during subsequent processing and exhibit excellent biocompatibility in standardized extract assays (116.5 ± 12.2% normalized cellular response with optimized processing) and acceptable performance in direct contact evaluations (up to 78.2 ± 32.4% viability in the optimal configuration). Temporal assessment revealed characteristic cellular adaptation dynamics on nanofiber substrates, emphasizing the importance of extended evaluation periods for accurate biocompatibility determination of three-dimensional scaffolds. This innovative biofabrication approach overcomes critical limitations of previous handling methods, transforming delicate ESNFMs into robust, easy-to-use components for reliable integration into complex cell culture applications, barrier tissue models, and engineered systems. Full article
(This article belongs to the Special Issue Advanced Biomaterials and Biofabrication)
Show Figures

Figure 1

33 pages, 1777 KiB  
Review
Immunomodulatory Natural Products in Cancer Organoid-Immune Co-Cultures: Bridging the Research Gap for Precision Immunotherapy
by Chang-Eui Hong and Su-Yun Lyu
Int. J. Mol. Sci. 2025, 26(15), 7247; https://doi.org/10.3390/ijms26157247 - 26 Jul 2025
Viewed by 597
Abstract
Natural products demonstrate potent immunomodulatory properties through checkpoint modulation, macrophage polarization, and T cell/natural killer (NK) cell activation. While cancer organoid-immune co-culture platforms enable physiologically relevant modeling of tumor–immune interactions, systematic investigation of natural product immunomodulation in these systems remains entirely unexplored. We [...] Read more.
Natural products demonstrate potent immunomodulatory properties through checkpoint modulation, macrophage polarization, and T cell/natural killer (NK) cell activation. While cancer organoid-immune co-culture platforms enable physiologically relevant modeling of tumor–immune interactions, systematic investigation of natural product immunomodulation in these systems remains entirely unexplored. We conducted a comprehensive literature analysis examining natural products tested in cancer organoids, immunomodulatory mechanisms from traditional models, technical advances in organoid-immune co-cultures, and standardization requirements for clinical translation. Our analysis reveals a critical research gap: no published studies have investigated natural product-mediated immunomodulation using organoid-immune co-culture systems. Even though compounds like curcumin, resveratrol, and medicinal mushroom polysaccharides show extensive immunomodulatory effects in two-dimensional (2D) cultures, and organoid technology achieves high clinical correlation for drug response prediction, all existing organoid studies focus exclusively on direct cytotoxicity. Technical challenges include compound stability, limited matrix penetration requiring substantially higher concentrations than 2D cultures, and maintaining functional immune populations in three-dimensional (3D) systems. The convergence of validated organoid-immune co-culture platforms, Food and Drug Administration (FDA) regulatory support through the Modernization Act 2.0, and extensive natural product knowledge creates unprecedented opportunities. Priority research directions include systematic screening of immunomodulatory natural products in organoid-immune co-cultures, development of 3D-optimized delivery systems, and clinical validation trials. Success requires moving beyond cytotoxicity-focused studies to investigate immunomodulatory mechanisms in physiologically relevant 3D systems, potentially unlocking new precision cancer immunotherapy approaches. Full article
Show Figures

Figure 1

25 pages, 2098 KiB  
Review
Recent Advances in Experimental Functional Characterization of GWAS Candidate Genes in Osteoporosis
by Petra Malavašič, Jasna Lojk, Marija Nika Lovšin and Janja Marc
Int. J. Mol. Sci. 2025, 26(15), 7237; https://doi.org/10.3390/ijms26157237 - 26 Jul 2025
Viewed by 427
Abstract
Osteoporosis is a multifactorial, polygenic disease characterized by reduced bone mineral density (BMD) and increased fracture risk. Genome-wide association studies (GWASs) have identified numerous loci associated with BMD and/or bone fractures, but functional characterization of these target genes is essential to understand the [...] Read more.
Osteoporosis is a multifactorial, polygenic disease characterized by reduced bone mineral density (BMD) and increased fracture risk. Genome-wide association studies (GWASs) have identified numerous loci associated with BMD and/or bone fractures, but functional characterization of these target genes is essential to understand the biological mechanisms underlying osteoporosis. This review focuses on current methodologies and key examples of successful functional studies aimed at evaluating gene function in osteoporosis research. Functional evaluation typically follows a multi-step approach. In silico analyses using omics datasets expression quantitative trait loci (eQTLs), protein quantitative trait loci (pQTLs), and DNA methylation quantitative trait loci (mQTLs) help prioritize candidate genes and predict relevant biological pathways. In vitro models, including immortalized bone-derived cell lines and primary mesenchymal stem cells (MSCs), are used to explore gene function in osteogenesis. Advanced three-dimensional culture systems provide additional physiological relevance for studying bone-related cellular processes. In situ analyses of patient-derived bone and muscle tissues offer validation in a disease-relevant context, while in vivo studies using mouse and zebrafish models enable comprehensive assessment of gene function in skeletal development and maintenance. Integration of these complementary methodologies helps translate GWAS findings into biological insights and supports the identification of novel therapeutic targets for osteoporosis. Full article
Show Figures

Figure 1

16 pages, 2230 KiB  
Article
Three-Dimensional-Printed Biomimetic Scaffolds for Investigating Osteoblast-Like Cell Interactions in Simulated Microgravity: An In Vitro Platform for Bone Tissue Engineering Research
by Eleonora Zenobi, Giulia Gramigna, Elisa Scatena, Luca Panizza, Carlotta Achille, Raffaella Pecci, Annalisa Convertino, Costantino Del Gaudio, Antonella Lisi and Mario Ledda
J. Funct. Biomater. 2025, 16(8), 271; https://doi.org/10.3390/jfb16080271 - 24 Jul 2025
Viewed by 635
Abstract
Three-dimensional cell culture systems are relevant in vitro models for studying cellular behavior. In this regard, this present study investigates the interaction between human osteoblast-like cells and 3D-printed scaffolds mimicking physiological and osteoporotic bone structures under simulated microgravity conditions. The objective is to [...] Read more.
Three-dimensional cell culture systems are relevant in vitro models for studying cellular behavior. In this regard, this present study investigates the interaction between human osteoblast-like cells and 3D-printed scaffolds mimicking physiological and osteoporotic bone structures under simulated microgravity conditions. The objective is to assess the effects of scaffold architecture and dynamic culture conditions on cell adhesion, proliferation, and metabolic activity, with implications for osteoporosis research. Polylactic acid scaffolds with physiological (P) and osteoporotic-like (O) trabecular architectures were 3D-printed by means of fused deposition modeling technology. Morphometric characterization was performed using micro-computed tomography. Human osteoblast-like SAOS-2 and U2OS cells were cultured on the scaffolds under static and dynamic simulated microgravity conditions using a rotary cell culture system (RCCS). Scaffold biocompatibility, cell viability, adhesion, and metabolic activity were evaluated through Bromodeoxyuridine incorporation assays, a water-soluble tetrazolium salt assay, and an enzyme-linked immunosorbent assay of tumor necrosis factor-α secretion. Both scaffold models supported osteoblast-like cell adhesion and growth, with an approximately threefold increase in colonization observed on the high-porosity O scaffolds under dynamic conditions. The dynamic environment facilitated increased surface interaction, amplifying the effects of scaffold architecture on cell behavior. Overall, sustained cell growth and metabolic activity, together with the absence of detectable inflammatory responses, confirmed the biocompatibility of the system. Scaffold microstructure and dynamic culture conditions significantly influence osteoblast-like cell behavior. The combination of 3D-printed scaffolds and a RCCS bioreactor provides a promising platform for studying bone remodeling in osteoporosis and microgravity-induced bone loss. These findings may contribute to the development of advanced in vitro models for biomedical research and potential countermeasures for bone degeneration. Full article
(This article belongs to the Special Issue Functional Biomaterial for Bone Regeneration)
Show Figures

Graphical abstract

27 pages, 1804 KiB  
Review
The 3D Language of Cancer: Communication via Extracellular Vesicles from Tumor Spheroids and Organoids
by Simona Campora and Alessandra Lo Cicero
Int. J. Mol. Sci. 2025, 26(15), 7104; https://doi.org/10.3390/ijms26157104 - 23 Jul 2025
Viewed by 366
Abstract
Extracellular vesicles (EVs) have emerged as key mediators of intercellular communication, gaining recognition as tumor biomarkers and promising therapeutic targets. As the study of EVs advances, it has become increasingly clear that the cellular context in which they are produced significantly influences their [...] Read more.
Extracellular vesicles (EVs) have emerged as key mediators of intercellular communication, gaining recognition as tumor biomarkers and promising therapeutic targets. As the study of EVs advances, it has become increasingly clear that the cellular context in which they are produced significantly influences their composition and function. Traditional two-dimensional in vitro models are being progressively replaced by more advanced three-dimensional systems, such as tumor spheroids and organoids. These 3D models are particularly valuable in cancer research, providing a more accurate representation of the complex cellular and molecular heterogeneity that characterizes tumors, better mimicking the in vivo microenvironment compared to standard monolayer cultures. This review explores the role of EVs derived from tumor spheroids and organoids in key oncogenic processes, including tumor growth, metastasis, and interactions within the tumor microenvironment. We highlight how EVs contribute to the spread of cancer cells, affecting surrounding tissues, and promote immune evasion, which poses significant challenges in cancer therapy. Full article
(This article belongs to the Special Issue Recent Advances in 3D Tumor Models for Cancer Research)
Show Figures

Figure 1

15 pages, 4493 KiB  
Article
Biocompatibility of New Hydrogels Based on a Copolymer of Fish Collagen and Methyl Methacrylate Obtained Using Heterogeneous Photocatalysis Under the Influence of Visible Light
by Victoria Rumyantseva, Lyudmila Semenycheva, Natalia Valetova, Marfa Egorikhina, Ekaterina Farafontova, Daria Linkova, Ekaterina Levicheva, Diana Fukina and Evgeny Suleimanov
Polymers 2025, 17(15), 2002; https://doi.org/10.3390/polym17152002 - 22 Jul 2025
Viewed by 325
Abstract
New stable three-dimensional hydrogels were obtained in an inert gas atmosphere in light in an aqueous dispersion of the main components: cod collagen, methyl methacrylate, polyethylene glycol, RbTe1.5W0.5O6 complex oxide, and modifying additives. The analysis of the new [...] Read more.
New stable three-dimensional hydrogels were obtained in an inert gas atmosphere in light in an aqueous dispersion of the main components: cod collagen, methyl methacrylate, polyethylene glycol, RbTe1.5W0.5O6 complex oxide, and modifying additives. The analysis of the new hydrogels’ cytotoxicity using the MTT assay showed that the cytotoxicity of the sample extracts was observed in a number of examples, but was decreased with increasing dilution of the extracts. The decrease in cell viability at high concentrations of the extract is likely caused by a decrease in the number of specific components of the complete culture medium used to produce extracts. It is related to the well-known adsorption of medium proteins by the gel component, high-molecular compounds included in the matrix. The stimulating effect of the substances included in its composition was observed with a significant dilution of the extract, i.e., the proliferative activity of the cells increased. The extract of the hydrogel hydrolysate sample and all its dilutions did not show cytotoxicity in the MTT assay examples. It determines the prospect of its use on the wound surface, since hydrogel destruction occurs under the action of body enzymes. The new hydrogel is a promising material for creating wound coverings or scaffolds. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Graphical abstract

22 pages, 1258 KiB  
Review
Advances in Cryopreservation Strategies for 3D Biofabricated Constructs: From Hydrogels to Bioprinted Tissues
by Kaoutar Ziani, Laura Saenz-del-Burgo, Jose Luis Pedraz and Jesús Ciriza
Int. J. Mol. Sci. 2025, 26(14), 6908; https://doi.org/10.3390/ijms26146908 - 18 Jul 2025
Viewed by 287
Abstract
The cryopreservation of three-dimensional (3D) biofabricated constructs is a key enabler for their clinical application in regenerative medicine. Unlike two-dimensional (2D) cultures, 3D systems such as encapsulated cell spheroids, molded hydrogels, and bioprinted tissues present specific challenges related to cryoprotectant (CPA) diffusion, thermal [...] Read more.
The cryopreservation of three-dimensional (3D) biofabricated constructs is a key enabler for their clinical application in regenerative medicine. Unlike two-dimensional (2D) cultures, 3D systems such as encapsulated cell spheroids, molded hydrogels, and bioprinted tissues present specific challenges related to cryoprotectant (CPA) diffusion, thermal gradients, and ice formation during freezing and thawing. This review examines the current strategies for preserving 3D constructs, focusing on the role of biomaterials as cryoprotective matrices. Natural polymers (e.g., hyaluronic acid, alginate, chitosan), protein-based scaffolds (e.g., silk fibroin, sericin), and synthetic polymers (e.g., polyethylene glycol (PEG), polyvinyl alcohol (PVA)) are evaluated for their ability to support cell viability, structural integrity, and CPA transport. Special attention is given to cryoprotectant systems that are free of dimethyl sulfoxide (DMSO), and to the influence of hydrogel architecture on freezing outcomes. We have compared the efficacy and limitations of slow freezing and vitrification protocols and review innovative approaches such as temperature-controlled cryoprinting, nano-warming, and hybrid scaffolds with improved cryocompatibility. Additionally, we address the regulatory and manufacturing challenges associated with developing Good Manufacturing Practice (GMP)-compliant cryopreservation workflows. Overall, this review provides an integrated perspective on material-based strategies for 3D cryopreservation and identifies future directions to enable the long-term storage and clinical translation of engineered tissues. Full article
(This article belongs to the Special Issue Rational Design and Application of Functional Hydrogels)
Show Figures

Figure 1

17 pages, 1449 KiB  
Review
Three-Dimensional Culture System: A New Frontier in Cancer Research, Drug Discovery, and Stem Cell-Based Therapy
by Guya Diletta Marconi, Antonella Mazzone, Ylenia Della Rocca, Oriana Trubiani, Jacopo Pizzicannella and Francesca Diomede
Biology 2025, 14(7), 875; https://doi.org/10.3390/biology14070875 - 17 Jul 2025
Viewed by 325
Abstract
Two-dimensional culture systems have been used for a long time in the research field but their disadvantages make it difficult to reproduce the in vivo environment. Three-dimensional culture systems overcome these limitations, simulating the physiological context of an organism, from the molecular level [...] Read more.
Two-dimensional culture systems have been used for a long time in the research field but their disadvantages make it difficult to reproduce the in vivo environment. Three-dimensional culture systems overcome these limitations, simulating the physiological context of an organism, from the molecular level to the cellular, tissue, and organ complexity levels. This review focuses on 3D cellular models, such as spheroids and tumoroids, which reproduce tumor heterogeneity and microenvironments. It also includes 3D cultures of mesenchymal stem cells (MSCs), particularly those derived from teeth. In conclusion, 3D models are profoundly impacting the biomedical field by offering more accurate in vitro platforms for drug development and disease modeling, thereby significantly reducing the reliance on animal testing and leading to the advancement of personalized and regenerative medicine. Full article
Show Figures

Figure 1

22 pages, 7820 KiB  
Article
Patient-Derived Gastric Cancer Assembloid Model Integrating Matched Tumor Organoids and Stromal Cell Subpopulations
by Irit Shapira-Netanelov, Olga Furman, Dikla Rogachevsky, Galia Luboshits, Yael Maizels, Dmitry Rodin, Igor Koman and Gabriela A. Rozic
Cancers 2025, 17(14), 2287; https://doi.org/10.3390/cancers17142287 - 9 Jul 2025
Viewed by 634
Abstract
Background/Purpose: Conventional three-dimensional in vitro tumor models often fail to fully capture the complexity of the tumor microenvironment, particularly the diverse populations of cancer-associated fibroblasts that contribute to poor prognosis and treatment resistance. The purpose of this study is to develop a [...] Read more.
Background/Purpose: Conventional three-dimensional in vitro tumor models often fail to fully capture the complexity of the tumor microenvironment, particularly the diverse populations of cancer-associated fibroblasts that contribute to poor prognosis and treatment resistance. The purpose of this study is to develop a patient-specific gastric cancer assembloid model that integrates tumor epithelial cells with matched stromal cell subtypes, each derived using tailored growth media to enhance cancer preclinical research and advance personalized therapeutic strategies. Methods: Tumor tissue was dissociated, and cells expanded in media for organoids, mesenchymal stem cells, fibroblasts, or endothelial cells. The resulting tumor-derived subpopulations were co-cultured in an optimized assembloid medium supporting each cell type’s growth. Biomarker expression was assessed by immunofluorescence staining, and transcriptomic profiles were analyzed by RNA sequencing. Drug responsiveness was evaluated using cell viability assays following treatment with various therapeutic agents. Results: The optimized co-culture conditions yielded assembloids that closely mimicked the cellular heterogeneity of primary tumors, confirmed by the expression of epithelial and stromal markers. Compared to monocultures, the assembloids showed higher expression of inflammatory cytokines, extracellular matrix remodeling factors, and tumor progression-related genes across different organoids and stromal ratios. Drug screening revealed patient- and drug-specific variability. While some drugs were effective in both organoid and assembloid models, others lost efficacy in the assembloids, highlighting the critical role of stromal components in modulating drug responses. Conclusions: This assembloid system offers a robust platform to study tumor–stroma interactions, identify resistance mechanisms, and accelerate drug discovery and personalized therapeutic strategies for gastric cancer. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

15 pages, 3156 KiB  
Article
Formation and Characterization of Two Magnetic Three-Dimensional Spheroid Models of Murine Pancreatic Adenocarcinoma
by Magali Perier, Litan Wang, Marine Simonneau, Jacqueline Ngo-Reymond, Julie Guillermet-Guibert, Maxime Lafond and Cyril Lafon
Methods Protoc. 2025, 8(4), 75; https://doi.org/10.3390/mps8040075 - 7 Jul 2025
Viewed by 394
Abstract
Pancreatic adenocarcinoma remains one of the deadliest cancers, with limited treatment options and high chemoresistance. Traditional 2D cell cultures fail to accurately replicate the tumor architecture. Our study introduces three-dimensional (3D) pancreatic adenocarcinoma spheroid models using magnetic aggregation of pancreatic cancer cells and [...] Read more.
Pancreatic adenocarcinoma remains one of the deadliest cancers, with limited treatment options and high chemoresistance. Traditional 2D cell cultures fail to accurately replicate the tumor architecture. Our study introduces three-dimensional (3D) pancreatic adenocarcinoma spheroid models using magnetic aggregation of pancreatic cancer cells and immortalized fibroblasts in either liquid culture medium or embedded in hydrogels. The spheroids’ growth was characterized using optical imaging, while viability was assessed using ATP quantification and flow cytometry. Results demonstrated successful spheroid formation and growth. Further analysis suggested that on one hand, culture in liquid medium and ATP-based viability assessment are practical for initial experiments. On the other hand, hydrogel culture and flow cytometry, although being more resource- and labor-intensive, provided both a more reproducible and detailed viability analysis. Full article
(This article belongs to the Section Tissue Engineering and Organoids)
Show Figures

Figure 1

29 pages, 1450 KiB  
Review
A Concise Review of Organoid Tissue Engineering: Regenerative Applications and Precision Medicine
by Karnika Yogeswari Makesh, Abilash Navaneethan, Mrithika Ajay, Ganesh Munuswamy-Ramanujam, Arulvasu Chinnasamy, Dhanavathy Gnanasampanthapandian and Kanagaraj Palaniyandi
Organoids 2025, 4(3), 16; https://doi.org/10.3390/organoids4030016 - 4 Jul 2025
Viewed by 1207
Abstract
Organoids are three-dimensional tissue culture models derived from stem cells, and they have become one of the most valuable tools in biomedical research. These self-organizing miniature organs mimic the structure−function properties of their in vivo counterparts and offer an exceptional prospective for disease [...] Read more.
Organoids are three-dimensional tissue culture models derived from stem cells, and they have become one of the most valuable tools in biomedical research. These self-organizing miniature organs mimic the structure−function properties of their in vivo counterparts and offer an exceptional prospective for disease modeling, drug discovery, and regenerative medicine. By replicating the complexity of human tissue, organoids enable the study of disease pathophysiology, tissue development, and cellular interactions in a highly controlled and manipulable environment. Recent developments in organoid technology have enabled the production of functional organoids of various tissues. These systems have proven to be highly promising tools for personalized medicine. In addition, organoids have also raised hopes for the development of functional transplantable organs, transforming the study of regenerative medicine. This review provides an overview of the current state of organoid technology and its application and prospects and focuses on the transformative impact of organoid technology on biomedical research and its contribution to human health. Full article
(This article belongs to the Special Issue The Current Applications and Potential of Stem Cell-Derived Organoids)
Show Figures

Figure 1

Back to TopTop