Biocompatibility of New Hydrogels Based on a Copolymer of Fish Collagen and Methyl Methacrylate Obtained Using Heterogeneous Photocatalysis Under the Influence of Visible Light
Abstract
1. Introduction
- -
- cod collagen, methyl methacrylate, polyethylene glycol, acrylic acid (AA), complex oxide RbTe1.5W0.5O6, and small amounts of modifying additives (triethylene glycol dimethacrylate (TEGDMA))—a sample of CCC, described in the work [34];
- -
- cod collagen, methyl methacrylate, polyethylene glycol, AA, complex oxide RbTe1.5W0.5O6, and small amounts of modifying additives (TEGDMA, glutaraldehyde (GA))—sample CCC-G, described in the work [39];
- -
- the product of enzymatic destruction of the CCC sample is CCC–H hydrolysate.
2. Materials and Methods
2.1. Materials
2.2. Isolation of Cod Collagen
2.3. Synthesis of CCC and CCC-G Copolymer
2.4. Enzymatic Hydrolysis of the CCC Sample
2.5. Cytotoxicity Assessment—MTT Assay
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaikwad, S.; Kim, M.J. Investigation of lemon and green tangerine extracts as natural alternatives for acid-based extraction of collagen hydrolysates: Antioxidant and physicochemical properties. Food Hydrocoll. 2025, 167, 111417. [Google Scholar] [CrossRef]
- Wang, L.; Chen, X.; Wang, X.; Chen, H.; Yang, X.; Xiao, J. Highly biomimetic three-layer mineralized collagen scaffold featuring a wood-reinforced subchondral bone region for gradient chondrogenic-osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Int. J. Biol. Macromol. 2025, 320, 145754. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Min, D.; Jiang, H.; Zeng, W. Identifying and evaluating antihypertensive and antioxidant capacities of the novel bi-functional peptides isolated from tilapia skin. Future Foods 2025, 11, 100648. [Google Scholar] [CrossRef]
- Munawaroh, H.S.H.; Pratiwi, R.N.; Gumilar, G.G.; Aisyah, S.; Rohilah, S.; Nurjanah, A.; Ningrum, A.; Susanto, E.; Pratiwi, A.; Arindita, N.P.Y.; et al. Synthesis, modification and application of fish skin gelatin-based hydrogel as sustainable and versatile bioresource of antidiabetic peptide. Int. J. Biol. Macromol. 2023, 231, 123248. [Google Scholar] [CrossRef] [PubMed]
- Adabavazeh, Z.; Johari, N.; Baino, F. Electrospun conductive polymer scaffolds: Tailoring fiber diameter and electrical properties for tissue engineering applications. Mater. Today Commun. 2025, 46, 112596. [Google Scholar] [CrossRef]
- Jangra, N.; Singla, A.; Puri, V.; Dheer, D.; Chopra, H.; Malik, T.; Sharma, A. Herbal bioactive-loaded biopolymeric formulations for wound healing applications. RSC Adv. 2025, 16, 12402–12442. [Google Scholar] [CrossRef] [PubMed]
- Nashchekina, Y.A.; Lukonina, O.A.; Mikhailov, N.A. Chemical crosslinking agents for collagen: Mechanisms of interaction and prospects of application in regenerative medicine. Cytology 2020, 62, 459–472. (In Russian) [Google Scholar] [CrossRef]
- Gurumurthy, B.; Janorkar, A. Improvements in mechanical properties of collagen-based scaffolds for tissue engineering. Curr. Opin. Biomed. Eng. 2021, 17, 100253. [Google Scholar] [CrossRef]
- Liu, S.; Lau, C.-S.; Liang, K.; Wen, F.; Teoh, S.H. Marine collagen scaffolds in tissue engineering. Curr. Opin. Biomed. Eng. 2022, 74, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Chimal, R.; Arenas-Alatorre, J.A.; Álvarez-Pérez, M.A. Nanoparticle-polymer composite scaffolds for bone tissue engineering. A review. Eur. Polym. J. 2024, 213, 113093. [Google Scholar] [CrossRef]
- Cao, J.; Wang, Y.; He, C.; Kang, Y.; Zhou, J. Ionically crosslinked chitosan/poly(acrylic acid) hydrogels with high strength, toughness and antifreezing capability. Carbohyd. Polym. 2020, 242, 116420. [Google Scholar] [CrossRef] [PubMed]
- Park, K.M.; Park, K.D.; Sevastianov, V.I.; Nemetz, E.A.; Vasilets, V.N. In situ crosslinkable hydrogels for engineered cellular microenvironment. Russ. J. Transpl. Artif. Organs 2017, 19, 53–64. (In Russian) [Google Scholar] [CrossRef]
- Rana, T.; Fatima, M.; Khan, A.Q.; Naeem, Z.; Javaid, S.; Sajid, N.; Habib, A. Hydrogels: A novel drug delivery system. J. Biomed. Res. Environ. Sci. 2020, 1, 439–451. [Google Scholar] [CrossRef]
- Liguori, A.; Uranga, J.; Panzavolta, S.; Guerrero, P.; de la Caba, K.; Focarete, M.L. Electrospinning of fish gelatin solution containing citric acid: An environmentally friendly approach to prepare crosslinked gelatin fibers. Materials 2019, 12, 2808. [Google Scholar] [CrossRef] [PubMed]
- Moghadas, B.; Solouk, A.; Sadeghi, D. Development of chitosan membrane using non-toxic crosslinkers for potential wound dressing applications. Polym. Bull. 2021, 78, 4919–4929. [Google Scholar] [CrossRef]
- Yugay, A.V.; Boytsova, T.M. To the question of multifunctional use of a collagen received from skin of fish. Fundam. Res. 2015, 2, 704–707. (In Russian) [Google Scholar]
- Kouhdasht, M.A.; Moosavi-Nasab, M. Bioactive peptides derived from fish by-product collagen. Int. J. Environ. Sci. Nat. Res. 2018, 13, 555859. [Google Scholar] [CrossRef]
- Zou, Y.; Mao, Z.; Zhao, C.; Fan, Z.; Yang, H.; Xia, A.; Zhang, X. Fish skin dressing for wound regeneration: A bioactive component review of omega-3 PUFAs, collagen and ECM. Int. J. Biol. Macromol. 2024, 283, 137831. [Google Scholar] [CrossRef] [PubMed]
- Espinales, C.; Romero-Pena, M.; Calderon, G.; Vergara, K.; Caceres, P.J.; Castillo, P. Collagen, protein hydrolysates and chitin from by-products of fish and shellfish: An overview. Heliyon 2023, 9, e14937. [Google Scholar] [CrossRef] [PubMed]
- Furtado, M.; Chen, L.; Cui, W. Development of fish collagen in tissue regeneration and drug delivery. Eng. Regener. 2022, 3, 217–231. [Google Scholar] [CrossRef]
- Farooq, M.U.; Zairov, R.R.; Arkook, B.; Harb, M.; Makhlouf, M.M. Gold nanocatalysts supported on Mono-/Mixed oxides for efficient synthesis of methyl methacrylate. Fuel 2025, 382, 133763. [Google Scholar] [CrossRef]
- He, X.; Wang, R.; Zhou, F.; Liu, H. Recent advances in photo-crosslinkable methacrylated silk (Sil-MA)-based scaffolds for regenerative medicine: A review. Int. J. Biol. Macromol. 2024, 256, 128031. [Google Scholar] [CrossRef] [PubMed]
- Armengol, E.S.; Soler, L.A.S.; Offermann, N.V.; Laffleur, F. Polymer powerhouse: Methyl methacrylate–A breakthrough blend for superior adhesion to gingiva. Dent. Mater. 2024, 40, 2101–2113. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.-K.; Lu, I.-l.; Huang, C.-W.; Lin, W.-C. Effects of poly (methyl methacrylate) particle size in dental glaze on viscosity and glossiness. J. Dent. Sci. 2025, 20, 1999–2001. [Google Scholar] [CrossRef] [PubMed]
- Zivic, N.; Bouzrati-Zerelli, M.; Kermagoret, A.; Dumur, F.; Fouassier, J.-P.; Gigmes, D.; Lalevée, J. Photocatalysts in polymerization reactions. ChemCatChem 2016, 8, 1617–1631. [Google Scholar] [CrossRef]
- Wang, Z.; Cui, F.; Sui, Y.; Yan, J. Radical chemistry in polymer science: An overview and recent advances. Beilstein J. Org. Chem. 2023, 19, 1580–1603. [Google Scholar] [CrossRef] [PubMed]
- Semenycheva, L.L.; Chasova, V.O.; Matkivskaya, Y.O.; Fukina, D.G.; Koryagin, A.V.; Belaya, T.A.; Grigoreva, A.O.; Kurskii, Y.A.; Suleimanov, E.V. Features of polymerization of methyl methacrylate using a photocatalyst—The complex oxide RbTe1.5W0.5O6. J. Inorg. Organomet. Polym. 2021, 31, 3572. [Google Scholar] [CrossRef]
- Chasova, V.O.; Fukina, D.G.; Koryagin, A.V. Preparation of a composite material by graft copolymerization of methylmethacrylate and fish gelatin using a photocatalyst-complex oxide RbTe1.5W0.5O6. Key Eng. Mater. 2021, 899, 332–336. [Google Scholar] [CrossRef]
- Semenycheva, L.L.; Chasova, V.O.; Fukina, D.G.; Koryagin, A.V.; Valetova, N.B.; Suleimanov, E.V. Synthesis of polymethyl-methacrylate–collagen-graft copolymer using a complex oxide RbTe1.5W0.5O6 photocatalyst. Polym. Sci. Ser. D 2022, 15, 110–117. [Google Scholar] [CrossRef]
- Chasova, V.; Semenycheva, L.; Egorikhina, M.; Charykova, I.; Linkova, D.; Rubtsova, Y.; Fukina, D.; Koryagin, A.; Valetova, N.; Suleimanov, E. Cod Gelatin as an alternative to cod collagen in hybrid materials for regenerative medicine. Macromol. Res. 2022, 30, 212–221. [Google Scholar] [CrossRef]
- Chasova, V.O.; Fukina, D.G.; Boryakov, A.V.; Zhizhin, E.V.; Koroleva, E.V.; Semenycheva, L.L.; Suleimanov, E.V. The effect of methyl methacrylate transformations during photocatalysis in the presence of RbTe1.5W0.5O6 on the change of the complex oxide surface. Proc. Universities. Appl. Chem. Biotechnol. 2022, 12, 208. (In Russian) [Google Scholar] [CrossRef]
- Semenycheva, L.L.; Uromicheva, M.A.; Chasova, V.O.; Fukina, D.G.; Koryagin, A.V.; Valetova, N.B.; Suleimanov, E.V. Synthesis of a graft copolymer of polybutyl acrylate on fish collagen substratum using the RbTe1. 5W0.5O6 complex oxide photocatalyst. Proc. Universities. Appl. Chem. Biotechnol. 2022, 12, 97–108. (In Russian) [Google Scholar] [CrossRef]
- Semenycheva, L.L.; Chasova, V.O.; Fukina, D.G.; Koryagin, A.V.; Belousov, A.S.; Valetova, N.B.; Suleimanov, E.V. Photocatalytic synthesis of materials for regenerative medicine using complex oxides with β-pyrochlore structure. Life 2023, 13, 352. [Google Scholar] [CrossRef] [PubMed]
- Semenycheva, L.L.; Chasova, V.O.; Sukhareva, A.A.; Fukina, D.G.; Koryagin, A.V.; Valetova, N.B.; Smirnova, O.N.; Suleimanov, E.V. New composite materials with cross-linked structures based on grafted copolymers of acrylates on cod collagen. Appl. Sci. 2023, 13, 5455. [Google Scholar] [CrossRef]
- Fukina, D.G.; Belousov, A.S.; Suleimanov, E.V. Pyrochlore Oxides: Structure, Properties, and Potential in Photocatalytic Applications; Springer: Cham, Switzerland, 2024; p. 226. [Google Scholar] [CrossRef]
- Semenycheva, L.L.; Rumyantseva, V.O.; Fukina, D.G.; Valetova, N.B.; Suleimanov, E.V. Synthesis of biodegradable medical materials based on grafted acrylate copolymers on collagen, prepared under photocatalysis conditions. Polym. Sci. Ser. D 2024, 17, 615–625. [Google Scholar] [CrossRef]
- Niu, Y.; Liu, G.; Fu, M.; Chen, C.; Fu, W.; Zhang, Z.; Xia, H.; Stadler, F.J. Designing a multifaceted bio-interface nanofiber tissue-engineered tubular scaffold graft to promote neo-vascularization for urethral regeneration. J. Mater. Chem. B 2020, 8, 1748–1758. [Google Scholar] [CrossRef] [PubMed]
- Zalipsky, S. Active Carbonates of Polyalkylene Oxides for Modification of Polypeptides. Patent US 5122614A, 16 June 1992. [Google Scholar]
- Semenycheva, L.L.; Rumyantseva, V.O.; Valetova, N.B.; Egorikhina, M.N.; Suleimanov, E.V. Some properties of matrices based on copolymers of fish collagen and acrylates designed for regenerative medicine and obtained under conditions of photocatalysisby visible light in the presence of RbTe1.5W0.5O6 oxide. Russ. Chem. Bull. 2025, 74, 1333–1341. [Google Scholar] [CrossRef]
- Fukina, D.G.; Koryagin, A.V.; Koroleva, A.V.; Zhizhin, E.V.; Suleimanov, E.V.; Kirillova, N.I. Photocatalytic properties of β-pyrochlore RbTe1.5W0.5O6 under visible-light irradiation. J. Solid State Chem. 2021, 300, 122235. [Google Scholar] [CrossRef]
- Semenycheva, L.L.; Astanina, M.V.; Kuznetsova, J.L.; Valetova, N.B.; Geras’kina, E.V.; Tarankova, O.A. Method for Production of Acetic Dispersion of High Molecular Fish Collagen. Patent RU 2567171C1, 20 October 2015. [Google Scholar]
- ISO 10993-5:2009; Medical devices. Biological evaluation of medical devices. Part 5. Tests for cytotoxicity. Standartinform: Moscow, Russia, 2010.
- Egorikhina, M.N.; Kobyakova, I.I.; Charykova, I.N.; Linkova, D.D.; Rubtsova, Y.P.; Farafontova, E.A.; Aleynik, D.Y. Application of hydrogel wound dressings in cell therapy—Approaches to assessment in vitro. Int. J. Burn. Trauma 2023, 13, 13–32. [Google Scholar]
- Matyjaszewski, K.; Davis, T.P. Handbook of Radical Polymerization; Wiley: Hoboken, NJ, USA, 2002; p. 920. [Google Scholar] [CrossRef]
- De France, K.J.; Xu, F.; Hoare, T. Structured macroporous hydrogels: Progress, challenges, and opportunities. Adv. Healthc. Mater. 2018, 7, 1700927. [Google Scholar] [CrossRef] [PubMed]
- Olteanu, G.; Neacșu, S.M.; Joiţa, F.A.; Musuc, A.M.; Lupu, E.C.; Ioniţă-Mîndrican, C.-B.; Lupuliasa, D.; Mititelu, M. Advancements in regenerative hydrogels in skin wound treatment: A comprehensive review. Int. J. Mol. Sci. 2024, 25, 3849. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Bhowmick, A.K. Effect of structure development on the rheological properties of PVDF/HNBR-based thermoplastic elastomer and its vulcanizates. J. Appl. Polym. Sci. 2019, 137, 48758. [Google Scholar] [CrossRef]
- Bernhard, C.; Roeters, S.J.; Franz, J.; Weidner, T.; Bonn, M.; Gonella, G. Repelling and ordering: The influence of poly(ethylene glycol) on protein adsorption. Phys. Chem. Chem. Phys. 2017, 19, 28182–28188. [Google Scholar] [CrossRef] [PubMed]
- Rahmatia, M.; Mozafaria, M. Protein adsorption on polymers. Mater. Today Commun. 2018, 17, 527–540. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, Y.; Zheng, X.; Yu, G.; Dan, N.; Dan, W.; Li, Z.; Chen, Y.; Liu, X. Origin of critical nature and stability enhancement in collagen matrix based biomaterials: Comprehensive modification technologies. Int. J. Biol. Macromol. 2022, 216, 741–756. [Google Scholar] [CrossRef] [PubMed]
- Sivaraj, D.; Chen, K.; Chattopadhyay, A.; Henn, D.; Wu, W.; Noishiki, C.; Magbual, N.J.; Mittal, S.; Mermin-Bunnell, A.M.; Bonham, C.A.; et al. Hydrogel scaffolds to deliver cell therapies for wound healing. Front. Bioeng. Biotechnol. 2021, 9, 660145. [Google Scholar] [CrossRef] [PubMed]
- Sedlačík, T.; Studenovská, H.; Rypáček, F. Enzymatic degradation of the hydrogels based on synthetic poly(α-amino acid)s. J. Mater. Sci. Mater. Med. 2011, 22, 781–788. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rumyantseva, V.; Semenycheva, L.; Valetova, N.; Egorikhina, M.; Farafontova, E.; Linkova, D.; Levicheva, E.; Fukina, D.; Suleimanov, E. Biocompatibility of New Hydrogels Based on a Copolymer of Fish Collagen and Methyl Methacrylate Obtained Using Heterogeneous Photocatalysis Under the Influence of Visible Light. Polymers 2025, 17, 2002. https://doi.org/10.3390/polym17152002
Rumyantseva V, Semenycheva L, Valetova N, Egorikhina M, Farafontova E, Linkova D, Levicheva E, Fukina D, Suleimanov E. Biocompatibility of New Hydrogels Based on a Copolymer of Fish Collagen and Methyl Methacrylate Obtained Using Heterogeneous Photocatalysis Under the Influence of Visible Light. Polymers. 2025; 17(15):2002. https://doi.org/10.3390/polym17152002
Chicago/Turabian StyleRumyantseva, Victoria, Lyudmila Semenycheva, Natalia Valetova, Marfa Egorikhina, Ekaterina Farafontova, Daria Linkova, Ekaterina Levicheva, Diana Fukina, and Evgeny Suleimanov. 2025. "Biocompatibility of New Hydrogels Based on a Copolymer of Fish Collagen and Methyl Methacrylate Obtained Using Heterogeneous Photocatalysis Under the Influence of Visible Light" Polymers 17, no. 15: 2002. https://doi.org/10.3390/polym17152002
APA StyleRumyantseva, V., Semenycheva, L., Valetova, N., Egorikhina, M., Farafontova, E., Linkova, D., Levicheva, E., Fukina, D., & Suleimanov, E. (2025). Biocompatibility of New Hydrogels Based on a Copolymer of Fish Collagen and Methyl Methacrylate Obtained Using Heterogeneous Photocatalysis Under the Influence of Visible Light. Polymers, 17(15), 2002. https://doi.org/10.3390/polym17152002