Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = the amount of ice added

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2164 KiB  
Article
Polyphenolic Profiling and Evaluation of Antioxidant, Antidiabetic, Anti-Alzheimer, and Antiglaucoma Activities of Allium kharputense and Anchusa azurea var. azurea
by Veysel Tahiroglu, Hasan Karagecili, Kubra Aslan and İlhami Gulcin
Life 2025, 15(8), 1209; https://doi.org/10.3390/life15081209 - 29 Jul 2025
Viewed by 219
Abstract
The genera Allium (Liliaceae) and Anchusa (Boraginaceae) are flowering plant genera with a rich diversity, also including the Allium kharputense Freyn & Sint. and Anchusa azurea Mill. var. azurea species. The antioxidant, anti-Alzheimer’s disease (AD), antidiabetic, and antiglaucoma effects of [...] Read more.
The genera Allium (Liliaceae) and Anchusa (Boraginaceae) are flowering plant genera with a rich diversity, also including the Allium kharputense Freyn & Sint. and Anchusa azurea Mill. var. azurea species. The antioxidant, anti-Alzheimer’s disease (AD), antidiabetic, and antiglaucoma effects of the Allium kharputense Freyn & Sint. and Anchusa azurea Mill. var. azurea species, which are commonly eaten foods in the Southeast of Türkiye in the treatment of several diseases, were studied. To interpret the antioxidant capacities of ethanol extract of two plant species, aerial parts were analyzed by ABTS and DPPH assays. The IC50 values of A. kharputense and A. azurea ethanol and water extracts for ABTS•+ activities were recorded in the range of 30.93 to 33.94 µg/mL and 33.45 to 33.78 µg/mL, respectively. Also, DPPH activities were measured at 30.78 to 36.87 µg/mL and 31.67 to 32.45 µg/mL, respectively. The best of the IC50 values was measured in the ethanol extract of A. kharputense as 30.78 µg/mL for DPPH scavenging activity. The total phenolic and flavonoid quantities in A. kharputense and A. azurea plants were measured. The highest phenolic and flavonoid contents of A. kharputense and A. azurea species were recorded in amounts of 445.52 and 327.35 mg GAE/g in ethanol extracts, respectively, and 332.88 and 234.03 mg QE/g in ethanol extracts, respectively. The effects of A. kharputense and A. azurea on diabetes, AD, and glaucoma were studied on the target enzymes of diseases. The most efficient IC50 values were recorded at 10.72 μg/mL against α-glycosidase, 35.01 μg/mL against AChE, 38.05 μg/mL against BChE, 9.21 μg/mL towards hCA I, and 81.02 μg/mL towards hCA II isoenzymes. The kinds and amounts of phenolic compounds in A. kharputense and A. azurea were determined using LC-MS/MS against 53 standards. A. kharputense and A. azurea plants have prospective use in enhancing glaucoma, diabetes, AD, Parkinson’s disease, epilepsy, and cancerous disorders. Full article
(This article belongs to the Section Biochemistry, Biophysics and Computational Biology)
Show Figures

Figure 1

24 pages, 3850 KiB  
Article
Phytochemical Analysis and Biological Activities of Flavonoids and Anthraquinones from Cassia alata (Linnaeus) Roxburgh and Their Implications for Atopic Dermatitis Management
by Sue-Kei Lee, Jing-Wen Keng, Jessica-Ai-Lyn Yon, Chun-Wai Mai, Heng-Chee Lim, Sek-Chuen Chow, Gabriel Akyirem Akowuah, Kai Bin Liew, Siew-Keah Lee, Philip J. Marriott and Yik-Ling Chew
Plants 2025, 14(3), 362; https://doi.org/10.3390/plants14030362 - 24 Jan 2025
Cited by 4 | Viewed by 1801
Abstract
To study Cassia alata (CA) (Linnaeus) Roxburgh’s effectiveness towards atopic dermatitis (AD), CA leaf extracts were prepared using three methanol-based extraction solvent systems. Bioactive constituents were characterized and quantified via high-performance liquid chromatography with diode array detection. Antioxidant properties and antimicrobial activities against [...] Read more.
To study Cassia alata (CA) (Linnaeus) Roxburgh’s effectiveness towards atopic dermatitis (AD), CA leaf extracts were prepared using three methanol-based extraction solvent systems. Bioactive constituents were characterized and quantified via high-performance liquid chromatography with diode array detection. Antioxidant properties and antimicrobial activities against Staphylococcus aureus, a major AD exacerbation factor, were assessed. Four polyphenols (two flavonoids, two anthraquinones) beneficial in AD control were detected (rhein > aloe-emodin > astragalin > kaempferol). The 75% v/v MeOH/water extract had the most polyphenols and the best antioxidant profile (total phenolic content, total flavonoid content, 2,2-diphenyl-1-picrylhydrazyl-hydrate radical scavenging activity, ascorbic acid equivalent antioxidant capacity), with excellent S. aureus inhibition (minimum inhibitory concentration = 0.625 mg/mL; minimum bactericidal concentration = 1.25 mg/mL). Hence, it was selected for the in vitro examination of cytotoxicity and wound healing activity towards human epidermal keratinocyte cells using a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2h-tetrazolium bromide (MTT) assay and wound scratch assay. The extract showed no cytotoxicity (IC50 > 100 µg/mL) without significant reduction in cell viability up to 200 µg/mL compared to the vehicle control. An amount of 50 μg/mL extract concentration showed the best wound-healing activity (p < 0.05), with a cell migration rate of 5.89 ± 0.80 µm/h over 96 h post-treatment. Such antioxidant, antimicrobial, and wound-healing activities suggest CA and its polyphenols to be promising natural, long-term AD remedies for skin health. Full article
Show Figures

Figure 1

12 pages, 3203 KiB  
Article
Comparative Study of Electrospun Polydimethylsiloxane Fibers as a Substitute for Fluorine-Based Polymeric Coatings for Hydrophobic and Icephobic Applications
by Adrián Vicente, Pedro J. Rivero, Cleis Santos, Nadine Rehfeld and Rafael Rodríguez
Polymers 2024, 16(23), 3386; https://doi.org/10.3390/polym16233386 - 30 Nov 2024
Cited by 2 | Viewed by 1461
Abstract
The development of superhydrophobic, waterproof, and breathable membranes, as well as icephobic surfaces, has attracted growing interest. Fluorinated polymers like PTFE or PVDF are highly effective, and previous research by the authors has shown that combining these polymers with electrospinning-induced roughness enhances their [...] Read more.
The development of superhydrophobic, waterproof, and breathable membranes, as well as icephobic surfaces, has attracted growing interest. Fluorinated polymers like PTFE or PVDF are highly effective, and previous research by the authors has shown that combining these polymers with electrospinning-induced roughness enhances their hydro- and ice-phobicity. The infusion of these electrospun mats with lubricant oil further improves their icephobic properties, achieving a slippery liquid-infused porous surface (SLIPS). However, their environmental impact has motivated the search for fluorine-free alternatives. This study explores polydimethylsiloxane (PDMS) as an ideal candidate because of its intrinsic properties, such as low surface energy and high flexibility, even at very low temperatures. While some published results have considered this polymer for icephobic applications, in this work, the electrospinning technique has been used for the first time for the fabrication of 95% pure PDMS fibers to obtain hydrophobic porous coatings as well as breathable and waterproof membranes. Moreover, the properties of PDMS made it difficult to process, but these limitations were overcome by adding a very small amount of polyethylene oxide (PEO) followed by a heat treatment process that provides a mat of uniform fibers. The experimental results for the PDMS porous coating confirm a hydrophobic behavior with a water contact angle (WCA) ≈ 118° and roll-off angle (αroll-off) ≈ 55°. In addition, the permeability properties of the fibrous PDMS membrane show a high transmission rate (WVD) ≈ 51.58 g∙m−2∙d−1, providing breathability and waterproofing. Finally, an ice adhesion centrifuge test showed a low ice adhesion value of 46 kPa. These results highlight the potential of PDMS for effective icephobic and waterproof applications. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

23 pages, 9292 KiB  
Article
Potential Impacts of Future Climate Change on Super-Typhoons in the Western North Pacific: Cloud-Resolving Case Studies Using Pseudo-Global Warming Experiments
by Chung-Chieh Wang, Min-Ru Hsieh, Yi Ting Thean, Zhe-Wen Zheng, Shin-Yi Huang and Kazuhisa Tsuboki
Atmosphere 2024, 15(9), 1029; https://doi.org/10.3390/atmos15091029 - 25 Aug 2024
Viewed by 2232
Abstract
Potential impacts of projected long-term climate change toward the end of the 21st century on rainfall and peak intensity of six super-typhoons in the western North Pacific (WNP) are assessed using a cloud-resolving model (CRM) and the pseudo-global warming (PGW) method, under two [...] Read more.
Potential impacts of projected long-term climate change toward the end of the 21st century on rainfall and peak intensity of six super-typhoons in the western North Pacific (WNP) are assessed using a cloud-resolving model (CRM) and the pseudo-global warming (PGW) method, under two representative concentration pathway (RCP) emission scenarios of RCP4.5 and RCP8.5. Linear long-term trends in June–October are calculated from 38 Coupled Model Intercomparison Project phase 5 (CMIP5) models from 1981–2000 to 2081–2100, with warmings of about 3 °C in sea surface temperature, 4 °C in air temperature in the lower troposphere, and increases of 20% in moisture in RCP8.5. The changes in RCP4.5 are about half the amounts. For each typhoon, three experiments are carried out: a control run (CTL) using analysis data as initial and boundary conditions (IC/BCs), and two future runs with the trend added to the IC/BCs, one for RCP4.5 and the other for RCP8.5, respectively. Their results are compared for potential impacts of climate change. In future scenarios, all six typhoons produce more rain rather consistently, by around 10% in RCP4.5 and 20% in RCP8.5 inside 200–250 km from the center, with increased variability toward larger radii. Such increases are tested to be highly significant and can be largely explained by the increased moisture and water vapor convergence in future scenarios. However, using this method, the results on peak intensity are mixed and inconsistent, with the majority of cases becoming somewhat weaker in future runs. It is believed that in the procedure to determine the best initial time for CTL, which yielded the strongest TC, often within a few hPa in minimum central sea-level pressure to the best track data, an advantage was introduced to the CTL unintentionally. Once the long-term trends were added in future runs, the environment of the storm was altered and became not as favorable for subsequent intensification. Thus, the PGW approach may have some bias in assessing the peak intensity of such super-typhoon cases, and caution should be practiced. Full article
(This article belongs to the Special Issue Multi-Scale Climate Simulations)
Show Figures

Figure 1

15 pages, 4443 KiB  
Article
Effect of Superabsorbent Polymers and Presoaked Coarse Recycled Shale Lightweight Aggregates on Relative Humidity Development in Early-Age Concrete
by Nan Hu, Dongkang Hu, Shujun Ben, Shuo Chen and Haitao Zhao
Buildings 2024, 14(7), 2159; https://doi.org/10.3390/buildings14072159 - 13 Jul 2024
Cited by 2 | Viewed by 1060
Abstract
Self-desiccation-induced shrinkage may result in cracking at an early age, which is averse to the durability of concrete. Internal curing (IC) agents, such as superabsorbent polymers (SAP), are normally used for moisture regulation and shrinkage reduction. In addition, the make-up of recycled shale [...] Read more.
Self-desiccation-induced shrinkage may result in cracking at an early age, which is averse to the durability of concrete. Internal curing (IC) agents, such as superabsorbent polymers (SAP), are normally used for moisture regulation and shrinkage reduction. In addition, the make-up of recycled shale lightweight aggregate (RSLA) results in a good absorbing capacity, which makes it a potential candidate for IC. In this paper, the synergistic effect of SAP and RSLA on the relative humidity (RH) variation in early-age concrete under sealed conditions is investigated experimentally in terms of the setting time, relative humidity, and autogenous shrinkage. The results indicate that adding SAP and presoaked RSLA can significantly postpone the initial and final setting times. The initial setting time of RSLA30 and SAP06 is delayed by 127 and 171 min, respectively, compared to the benchmark mixture. In addition, increasing the amounts of SAP and presoaked RSLA can effectively extend the duration of the vapour-saturated stage, reducing the decrease in RH and autogenous shrinkage at 28 days. When the RSLA dosage increases from 0 to 10%, 20%, and 30%, the duration of the vapour-saturated stage is extended by 2, 9.4, and 26 days, respectively. Moreover, due to different water desorption behaviours, more IC water released by RSLA during the initial stage can slow the water release of SAP and lead to a higher RH level at 28 days. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 5225 KiB  
Article
Laboratory Study of Liquid Nitrogen Cryo-Fracturing as an Environmentally Friendly Approach for Coalbed Methane (CBM) Reservoirs
by Sotirios Nik. Longinos, Alina Serik, Emil Bayramov, Medet Junussov, Dastan Begaliyev and Randy Hazlett
Energies 2024, 17(10), 2359; https://doi.org/10.3390/en17102359 - 14 May 2024
Cited by 5 | Viewed by 1517
Abstract
This study evaluated two distinct cryo-fracturing techniques using liquid nitrogen (LN2). The evaluation included tests for peak compression strength, acoustic emission, and energy absorption. The experiments compared single-exposure freezing time (FT) and multiple-exposure freezing–thawing cycle (FTC) processes on dried specimens. The [...] Read more.
This study evaluated two distinct cryo-fracturing techniques using liquid nitrogen (LN2). The evaluation included tests for peak compression strength, acoustic emission, and energy absorption. The experiments compared single-exposure freezing time (FT) and multiple-exposure freezing–thawing cycle (FTC) processes on dried specimens. The outcomes indicated that FTC experiments demonstrated lower uniaxial compression stress (UCS) values compared to FT experiments because, during the thawing phase, the ice inside the pores reverts to liquid as the temperature rises. The difference between average baseline experiments versus FT180 and FTC6 indicated a reduction in stress of 14.5% and 38.5%, respectively. The standard error of our experiments ranged from 0.58% for FT60 to 5.35% for FTC6. The damage factor follows a downward trend in both FT and FTC experiments as the time of LN2 treatment augments. The amount of energy that can be absorbed in elastic or plastic deformation before failure is less for FTC specimens with the same total LN2 exposure time. Samples undergoing the freezing time process demonstrate a greater and denser quantity of acoustic emissions in comparison to freezing–thawing cycle processes, suggesting a positive correlation with uniaxial compressive strength outcomes. The large network of fractures formed by the FTC and PFTC techniques indicated that they have the greatest potential as stimulation approaches. The engineering results were improved by adding the geological context, which is essential to apply these findings to coals that have comparable origins. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

16 pages, 10906 KiB  
Article
Icephobic Coating Based on Novel SLIPS Made of Infused PTFE Fibers for Aerospace Application
by Adrián Vicente, Pedro J. Rivero, Nadine Rehfeld, Andreas Stake, Paloma García, Francisco Carreño, Julio Mora and Rafael Rodríguez
Polymers 2024, 16(5), 571; https://doi.org/10.3390/polym16050571 - 20 Feb 2024
Cited by 5 | Viewed by 2190
Abstract
The development of slippery surfaces has been widely investigated due to their excellent icephobic properties. A distinct kind of an ice-repellent structure known as a slippery liquid-infused porous surface (SLIPS) has recently drawn attention due to its simplicity and efficacy as a passive [...] Read more.
The development of slippery surfaces has been widely investigated due to their excellent icephobic properties. A distinct kind of an ice-repellent structure known as a slippery liquid-infused porous surface (SLIPS) has recently drawn attention due to its simplicity and efficacy as a passive ice-protection method. These surfaces are well known for exhibiting very low ice adhesion values (τice < 20 kPa). In this study, pure Polytetrafluoroethylene (PTFE) fibers were fabricated using the electrospinning process to produce superhydrophobic (SHS) porous coatings on samples of the aeronautical alloy AA6061-T6. Due to the high fluorine–carbon bond strength, PTFE shows high resistance and chemical inertness to almost all corrosive reagents as well as extreme hydrophobicity and high thermal stability. However, these unique properties make PTFE difficult to process. For this reason, to develop PTFE fibers, the electrospinning technique has been used by an PTFE nanoparticles (nP PTFE) dispersion with addition of a very small amount of polyethylene oxide (PEO) followed with a sintering process (380 °C for 10 min) to melt the nP PTFE together and form uniform fibers. Once the porous matrix of PTFE fibers is attached, lubricating oil is added into the micro/nanoscale structure in the SHS in place of air to create a SLIPS. The experimental results show a high-water contact angle (WCA) ≈ 150° and low roll-off angle (αroll-off) ≈ 22° for SHS porous coating and a decrease in the WCA ≈ 100° and a very low αroll-off ≈ 15° for SLIPS coating. On one hand, ice adhesion centrifuge tests were conducted for two types of icing conditions (glaze and rime) accreted in an ice wind tunnel (IWT), as well as static ice at different ice adhesion centrifuge test facilities in order to compare the results for SHS, SLIPs and reference materials. This is considered a preliminary step in standardization efforts where similar performance are obtained. On the other hand, the ice adhesion results show 65 kPa in the case of SHS and 4.2 kPa of SLIPS for static ice and <10 kPa for rime and glace ice. These results imply a significant improvement in this type of coatings due to the combined effect of fibers PTFE and silicon oil lubricant. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

19 pages, 1976 KiB  
Technical Note
Development and Characterization of a Functional Ice Cream from Sheep Milk Enriched with Microparticulated Whey Proteins, Inulin, Omega-3 Fatty Acids, and Bifidobacterium BB-12®
by Giacomo Lai, Margherita Addis, Marco Caredda, Myriam Fiori, Alessio Silvio Dedola, Stefano Furesi and Massimo Pes
Dairy 2024, 5(1), 134-152; https://doi.org/10.3390/dairy5010011 - 1 Feb 2024
Cited by 6 | Viewed by 3415
Abstract
The aim of this work was develop a technological process for the manufacturing of an ice cream from sheep milk, enriched with both functional ingredients and probiotic bacteria. The studied process involved the use of an enriched milk (EM) obtained by mixing predetermined [...] Read more.
The aim of this work was develop a technological process for the manufacturing of an ice cream from sheep milk, enriched with both functional ingredients and probiotic bacteria. The studied process involved the use of an enriched milk (EM) obtained by mixing predetermined amounts of sheep skimmed milk concentrated by ultrafiltration (retentate), cream from sheep’s milk and whey, microparticulated whey proteins (MWP), obtained by ultrafiltration of sweet sheep whey as a source of whey proteins, marine algal oil from Schizochytrium spp. as a source of the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), inulin as a prebiotic fiber, and locust bean gum as a stabilizer. The resulting EM was inoculated with starter and aroma cultures together with the probiotic culture of Bifidobacterium animalis subsp. lactis (BB-12®) in order to obtain a fermented functional product (FFP) with a physico-chemical composition similar to that of EM. FFP was the main ingredient (~80%, w/w) in the ice cream mixture. Two sucrose-alternative sweeteners (trehalose and erythritol), together with dextrose, were subsequently added to obtain the final ice cream formulation. The resulting ice cream met three nutritional claims: “Source of protein”, “Source of fiber” and “High in omega-3 fatty acids” listed in Regulations (EC) No 1924/2006 and (EU) No 116/2010. Furthermore, the ice cream satisfied the requirement of “probiotic food” according to the Italian Ministry of Health’s guidelines for probiotics. The nutritional characteristics of the ice cream, including the concentration of the probiotic culture, remained stable up to 120 days of storage at −20 ± 2 °C. Full article
(This article belongs to the Section Milk Processing)
Show Figures

Figure 1

17 pages, 1900 KiB  
Article
Exploring the Potential of Water-Soluble Squid Ink Melanin: Stability, Free Radical Scavenging, and Cd2+ Adsorption Abilities
by Shuji Liu, Xianwei Liu, Xueqin Zhang, Yongchang Su, Xiao’e Chen, Shuilin Cai, Dengyuan Liao, Nan Pan, Jie Su, Xiaoting Chen, Meitian Xiao and Zhiyu Liu
Foods 2023, 12(21), 3963; https://doi.org/10.3390/foods12213963 - 30 Oct 2023
Cited by 9 | Viewed by 3832
Abstract
Squid ink melanin can be efficiently extracted from the byproduct ink sac generated during squid processing. As a natural food colorant, it possesses inherent antioxidant properties and the capability to adsorb heavy metals. This study aims to investigate the solubility of water-soluble squid [...] Read more.
Squid ink melanin can be efficiently extracted from the byproduct ink sac generated during squid processing. As a natural food colorant, it possesses inherent antioxidant properties and the capability to adsorb heavy metals. This study aims to investigate the solubility of water-soluble squid ink melanin (WSSM) obtained from the ink sac, as well as its stability under various conditions including temperature, pH, salt, sugar, potassium sorbate, metal ions, sodium benzoate, sodium sulfite (reducing agent), and hydrogen peroxide (oxidizing agent). Moreover, it explores the scavenging effects of WSSM on free radicals and cadmium ions. The findings suggest that WSSM’s stability is insignificantly affected by high temperature, sucrose, and salt. However, acidity, sodium benzoate, potassium sorbate, sodium sulfite (Na2SO3), and hydrogen peroxide (H2O2) significantly influence its stability. Most metal ions do not impact the stability of WSSM, except for Fe2+, Fe3+, Al3+, and Cu2+, which result in the precipitation of WSSM. Additionally, WSSM exhibits remarkable antioxidant activity with IC50 values of 0.91, 0.56, and 0.52 mg/mL for scavenging superoxide anion radicals (O2−·), hydroxyl radicals (·OH), and DPPH radicals, respectively. It also demonstrates the ability to adsorb the heavy metal Cd2+, with the adsorption rate gradually increasing with a higher temperature and larger amounts of WSSM added. Infrared spectroscopy analysis reveals the weakening of characteristic peaks (-COOH and -OH) during the process of Cd2+ adsorption by WSSM, while SEM confirms surface roughening and structural damage after Cd2+ adsorption. This study provides valuable insights for the utilization of squid melanin products as natural antioxidants and heavy metal adsorbents in the food industry. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

19 pages, 3087 KiB  
Article
Beetroot Stalk Extract as a Functional Colorant for Stirred Yogurt Beverages: Effect on Nutritional Value and Stability during Storage
by Eman M. Abdo, Hanem M. M. Mansour, Amira M. Galal Darwish, Sobhy Ahmed El-Sohaimy, Mohamed A. E. Gomaa, Omayma E. Shaltout and Marwa G. Allam
Fermentation 2023, 9(10), 878; https://doi.org/10.3390/fermentation9100878 - 29 Sep 2023
Cited by 5 | Viewed by 3035
Abstract
Betalains are natural red colorants characterized by their stability to anthocyanins, particularly in acidic foods. Beetroot stalks are a good source of betalains, with higher bioactive components than the whole root. Hence, the current study aims to investigate the potential use of beetroot [...] Read more.
Betalains are natural red colorants characterized by their stability to anthocyanins, particularly in acidic foods. Beetroot stalks are a good source of betalains, with higher bioactive components than the whole root. Hence, the current study aims to investigate the potential use of beetroot stalk water extract (BSE) as a functional colorant for raspberry-flavored stirred yogurt. For this purpose, the betalains of BSE and their stability at pH 4 and 5 were investigated in addition to the phenolic and flavonoid content. Furthermore, the antioxidant and antimicrobial activities of BSE were characterized. Subsequently, BSE was added to raspberry-flavored stirred yogurt at concentrations of 1 (T1), 2 (T2), and 5% (T3) to study the stability of betalains, the physicochemical properties, the nutritional value, and the viability of lactic acid bacteria during storage (14 days/4 °C). BSE showed a considerable amount of betalains (456.82 mg/L) and phenolics (139.87 mg/g), with a high content of chlorogenic and ferulic acids. The betalains showed greater stability at pH 4 than pH 5 after 14 days of cold storage (275.05 and 247.00 mg/L, respectively). Applying BSE resulted in a functional beverage with high phenolic content (116.55 ± 1.23 mg/g) and flavonoids (71.77 ± 0.57 mg/g) in T3 (5%) compared to the control (95.11 ± 1.12 and 64.72 ± 0.29 mg/g, respectively). The beverages shared high DPPH scavenging activity (IC50 = 71.68 ± 1.30– 69.18 ± 0.48) compared with the control (78.47 ± 3.27 µL/mL). BSE significantly increased the betalain level in yogurt from 44.19 ± 0.05 mg/L to 67.86 ± 0.54 mg/L, resulting in pale red beverages with a redness value of 6.38–9.68 on day 1. By day 14, the redness of the treatments decreased by 6–18% compared with the first day, reaching 5.25 ± 0.03 (T1), 7.87 ± 0.03 (T2), and 8.43 ± 0.05 (T3) due to the degradation of betalains. Generally, BSE is a promising natural colorant when added to stirred yogurt, and it has preferable physical and sensory properties, as it improves the stability of the red color throughout cold storage and increases the nutritional quality. The use of beet stalks as a natural and functional colorant is presented for the first time in the current investigation. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

11 pages, 2394 KiB  
Article
A New Composite Material with Environmental Implications for Sustainable Agriculture
by Viorica Ghisman, Puiu Lucian Georgescu, Georgiana Ghisman and Daniela Laura Buruiana
Materials 2023, 16(19), 6440; https://doi.org/10.3390/ma16196440 - 27 Sep 2023
Cited by 3 | Viewed by 1459
Abstract
Sewage sludge, also referred to as biosolids, consists of the by-products of wastewater treatment, which are a mixture of the water and organic and inorganic materials eliminated from wastewater sourced from domestic sewage industries during physical, biological, and/or chemical treatments. Biosolids are nutrient-rich [...] Read more.
Sewage sludge, also referred to as biosolids, consists of the by-products of wastewater treatment, which are a mixture of the water and organic and inorganic materials eliminated from wastewater sourced from domestic sewage industries during physical, biological, and/or chemical treatments. Biosolids are nutrient-rich organic materials resulting from the treatment of domestic wastewater in treatment plants. Sewage sludge can be considered a significant biological resource for sustainable agriculture. A new composite has been made consisting of soil, sewage sludge collected from the Galati Wastewater Treatment Plant, and slag from the Galati Steel Plant. This study aimed to investigate the structural, morphological, and chemical parameters of this composite through FTIR, SEM-EDX analysis, and XRF analysis. The samples had values of potential toxic elements that were within normal limits according to Directive 86/278/CEE, and, in terms of the iron-to-calcium ratio (I/C), all samples were of a low grade. This is the first time that slag has been added in a sewage sludge–soil combination, which can be an effective fertilizer replacement. Sewage sludge contains substantial amounts of organic matter, and slag reduces the contents of potentially toxic elements. In addition to these attributes, they may provide an opportunity for the beneficial re-use of sewage sludge and slag as resources in agriculture. Full article
Show Figures

Figure 1

27 pages, 7271 KiB  
Article
Combined Effect of Biostimulants and Mineral Fertilizers on Crop Performance and Fruit Quality of Watermelon Plants
by Ângela Fernandes, Nikolaos Polyzos, Filipa Mandim, Carla Pereira, Jovana Petrović, Marina Soković and Spyridon A. Petropoulos
Horticulturae 2023, 9(7), 838; https://doi.org/10.3390/horticulturae9070838 - 23 Jul 2023
Cited by 5 | Viewed by 4158
Abstract
The aim of the present study was to evaluate the possible effects of two different biostimulant formulations at different application regimes and combined or not with mineral fertilizers (e.g., W1–W8, including the control treatment (no formulations added)) on the yield parameters and fruit [...] Read more.
The aim of the present study was to evaluate the possible effects of two different biostimulant formulations at different application regimes and combined or not with mineral fertilizers (e.g., W1–W8, including the control treatment (no formulations added)) on the yield parameters and fruit quality of watermelon plants. The highest yield was recorded for the W5 treatment due to the formation of more fruit. The highest content of fat, proteins and ash was recorded for treatment W1, whereas carbohydrates were the most abundant in the control treatment, resulting also in the highest energetic value. The main detected sugars in all the tested samples were sucrose and fructose, which were the highest for the W4 and W5 treatments (sucrose) and W4 treatment (fructose). Malic and citric acid were the most abundant compounds, especially in the W4 treatment. In terms of tocopherols, only α-tocopherol was detected, with the highest amounts being recorded for the W4 treatment. Regarding bioactive properties, the lowest IC50 values for OxHLIA were recorded for the W2, W3 and W8 formulations. Moreover, all the extracts exhibited significant anti-inflammatory activity comparable to the positive control, while a variable efficacy of the tested extracts against the studied bacteria and fungi was recorded. In conclusion, our results indicate that simple agronomic practices such as biostimulant application may improve crop performance and improve the proximal composition and the overall quality of watermelon fruit within the context of sustainable crop production. Full article
(This article belongs to the Special Issue Practices and Innovation in Vegetable and Mushroom Production)
Show Figures

Figure 1

14 pages, 3266 KiB  
Article
Managing Encapsulated Oil Extract of Date Seed Waste for High Hydroxyl Radical Scavenging Assayed via Hybrid Photo-Mediated/Spectrofluorimetric Probing
by Amr A. Essawy, Khaled F. El-Massry, Ibrahim Hotan Alsohaimi and A. El-Ghorab
Molecules 2023, 28(13), 5160; https://doi.org/10.3390/molecules28135160 - 1 Jul 2023
Cited by 5 | Viewed by 1707
Abstract
This work addresses two research topics: the first concerns the specific/sensitive trapping of hydroxyl radicals (OH), and the second concerns the efficacy of encapsulating natural antioxidants, potentially lengthening their preservation activity. For context, nano-titania was solar-irradiated to produce OH, which [...] Read more.
This work addresses two research topics: the first concerns the specific/sensitive trapping of hydroxyl radicals (OH), and the second concerns the efficacy of encapsulating natural antioxidants, potentially lengthening their preservation activity. For context, nano-titania was solar-irradiated to produce OH, which was spectrofluorimetrically assessed, based on the selective aromatic hydroxylation of the non-fluorescent sodium terephthalate to 2-hydroxyterephthalate fluorophore. Fluorescence intensity is proportional to generated OH. Thus, a simple/rapid indirect method was utilized to assess OH precisely. Accordingly, novel photoluminescent system is outlined in order to assess the scavenging potentiality of OH in date seed oil (DSO) in both its pure and encapsulated formulations (ECP–DSO), i.e., when fresh and 5 months after extraction and encapsulation, respectively. With the addition of 80 μg/mL DSO or ECP–DSO, the efficacy of OH scavenging amounted to 25.12 and 63.39%, which increased to 68.65 and 92.72% when 200 μg/mL DSO or ECP–DSO, respectively, was added. Moreover, the IC50 of DSO and ECP–DSO is 136.6 and 62.1 µg/mL, respectively. Furthermore, DSO and ECP–DSO decreased the kinetics for producing OH by ≈20 and 40%, respectively, relative to OH generated in the absence of antioxidant. This demonstrates the benefits of encapsulation on the preservation activity of natural antioxidants, even after five months after extraction, in terms of its interesting activity when compared to synthetic antioxidants. The developed fluorimetric OH probing upgrades antioxidant medicines, thus paving the way for theoretical/practical insights on mechanistic hydroxyl radical-damaging biology. Full article
(This article belongs to the Special Issue Bioactive Compounds in Food Chemistry and/or Drug Discovery)
Show Figures

Graphical abstract

21 pages, 1268 KiB  
Article
Interactive Effects of Salinity Stress and Irrigation Intervals on Plant Growth, Nutritional Value, and Phytochemical Content in Mesembryanthemum crystallinum L.
by Okuhle Mndi, Avela Sogoni, Muhali Olaide Jimoh, Carolyn Margaret Wilmot, Fanie Rautenbach and Charles Petrus Laubscher
Agriculture 2023, 13(5), 1026; https://doi.org/10.3390/agriculture13051026 - 8 May 2023
Cited by 16 | Viewed by 3462
Abstract
Halophytes such as ice plants are concurrently subjected to salt and drought stresses in their natural habitats, but our knowledge about the effects of combined stress on plants is limited. In this study, the individual and combined effects of salinity and irrigation intervals [...] Read more.
Halophytes such as ice plants are concurrently subjected to salt and drought stresses in their natural habitats, but our knowledge about the effects of combined stress on plants is limited. In this study, the individual and combined effects of salinity and irrigation intervals on the plant growth, mineral content, and proximate and phytochemical composition of M. crystallinum were evaluated. Treatments consisted of four irrigation treatments ((1) 100 mL once a day; (2) 100 mL once every 2 days; (3) 100 mL once every 4 days; (4) 100 mL once every 8 days) with four salt concentrations (0, 200, 400, and 800 ppm) applied in each treatment. Salt concentrations were set up by adding increasing concentrations of NaCl to the nutrient solution, while the control treatment was irrigated daily without NaCl. The results revealed a significant increase in the leaf number and fresh and dry weights of plants irrigated with 800 ppm salinity every four days. However, the highest chlorophyll content was consistently recorded in the control treatment (0 ppm, 4-day irrigation interval), although no significant variability in chlorophyll content was observed at week 6. The highest yields of N, Mg, and Cu were consistently recorded in plants without saline treatment, while P, K, Ca, Na, Zn, and Fe were consistently recorded in plants subjected to a combination of salinity and irrigation intervals. The combination of salinity and irrigation intervals was significant for Fe and Ca, whereas, for other elements, no significant differences occurred. The salt concentration did not influence the high yields of acid detergent fibre (ADF), crude fat, protein, or neutral detergent fibre (NDF), as they were recorded in high amounts in plants subjected to irrigation intervals only, whereas a combination of salinity and irrigation intervals resulted in the highest ash and moisture contents. Invariably, the 8-day irrigation interval without salinity optimized the yields of assayed polyphenols, flavonols, Ferric Reducing/Antioxidant Power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH), suggesting that salt stress does not influence the quantities of phytochemicals and antioxidants of M. crystallinum. These findings suggest that M. crystallinum can minimize the impact of salt stress on the accumulated minerals, phytochemicals, and proximate and antioxidant substances. Therefore, it is a suitable vegetable for regions affected by both salinity and water stress, as it can provide additional minerals, phytochemicals, antioxidants, and proximate nutrients when cultivated in saline soils. Full article
(This article belongs to the Special Issue Effects of Abiotic Stress on Horticultural Crops)
Show Figures

Figure 1

13 pages, 2686 KiB  
Article
Improving the Leavening Effect of Ice like CO2 Gas Hydrates by Addition of Gelling Agents in Wheat Bread
by Shubhangi Srivastava, Ann Mary Kollemparembil, Viktoria Zettel, Antonio Delgado, Mario Jekle and Bernd Hitzmann
Gels 2023, 9(3), 223; https://doi.org/10.3390/gels9030223 - 14 Mar 2023
Cited by 2 | Viewed by 2087
Abstract
This article brings together the application of ice-like CO2 gas hydrates (GH) as a leavening agent in wheat bread along with the incorporation of some natural gelling agents or flour improvers into the bread to enhance the textural properties of the wheat [...] Read more.
This article brings together the application of ice-like CO2 gas hydrates (GH) as a leavening agent in wheat bread along with the incorporation of some natural gelling agents or flour improvers into the bread to enhance the textural properties of the wheat bread. The gelling agents used for the study were ascorbic acid (AC), egg white (EW), and rice flour (RF). These gelling agents were added to the GH bread containing different amounts of GH (40, 60, and 70% GH). Moreover, a combination of these gelling agents in a wheat GH bread recipe was studied for each respective percentage of GH. The combinations of gelling agents used in the GH bread were as follows: (1) AC, (2) RF + EW, and (3) RF + EW + AC. The best combination of GH wheat bread was 70% GH + AC + EW + RF combination. The primary goal of this research is to gain a better understanding of the complex bread dough created by CO2 GH and its influence on product quality when certain gelling agents are added to the dough. Moreover, the prospect of managing and modifying wheat bread attributes by the use of CO2 GH with the addition of natural gelling agents has not yet been researched and is a fresh idea in the food industry. Full article
(This article belongs to the Special Issue Recent Advance in Food Gels)
Show Figures

Graphical abstract

Back to TopTop