Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,211)

Search Parameters:
Keywords = texture density

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6015 KB  
Article
Soil–Atmosphere Greenhouse Gas Fluxes Across a Land-Use Gradient in the Andes–Amazon Transition Zone: Insights for Climate Innovation
by Armando Sterling, Yerson D. Suárez-Córdoba, Natalia A. Rodríguez-Castillo and Carlos H. Rodríguez-León
Land 2025, 14(10), 1980; https://doi.org/10.3390/land14101980 - 1 Oct 2025
Abstract
This study evaluated the seasonal variability of soil–atmosphere greenhouse gas (GHG) fluxes—carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)—across a land-use gradient in the Andean–Amazon transition zone of Colombia. The gradient included five land-use types incorporating [...] Read more.
This study evaluated the seasonal variability of soil–atmosphere greenhouse gas (GHG) fluxes—carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)—across a land-use gradient in the Andean–Amazon transition zone of Colombia. The gradient included five land-use types incorporating at least one innovative climate-smart practice—improved pasture (IP), cacao agroforestry system (CaAS), copoazu agroforestry system (CoAS), secondary forest with agroforestry enrichment (SFAE), and moriche palm swamp ecosystem (MPSE)—alongside the dominant regional land uses, old-growth forest (OF) and degraded pasture (DP). Soil GHG fluxes varied markedly among land-use types and between seasons. CO2 fluxes were consistently higher during the dry season, whereas CH4 and N2O fluxes peaked in the rainy season. Agroecological and restoration systems exhibited substantially lower CO2 emissions (7.34–9.74 Mg CO2-C ha−1 yr−1) compared with DP (18.85 Mg CO2-C ha−1 yr−1) during the rainy season, and lower N2O fluxes (0.21–1.04 Mg CO2-C ha−1 yr−1) during the dry season. In contrast, the MPSE presented high CH4 emissions in the rainy season (300.45 kg CH4-C ha−1 yr−1). Across all land uses, CO2 was the dominant contributor to the total GWP (>95% of emissions). The highest global warming potential (GWP) occurred in DP, whereas CaAS, CoAS and MPSE exhibited the lowest values. Soil temperature, pH, exchangeable acidity, texture, and bulk density play a decisive role in regulating GHG fluxes, whereas climatic factors, such as air temperature and relative humidity, influence fluxes indirectly by modulating soil conditions. These findings underscore the role of diversified agroforestry and restoration systems in mitigating GHG emissions and the need to integrate soil and climate drivers into regional climate models. Full article
(This article belongs to the Special Issue Land Use Effects on Carbon Storage and Greenhouse Gas Emissions)
19 pages, 1064 KB  
Article
Effect of Plastein Reaction on Physical and Chemical Characteristics of Corn Glutelin Peptides and Quality of Chiffon Cake
by Yang Sun, Wan-Ying Zhang, Chun-Li Song, Zhi-Qin Pan, Guo-Jun Du, Zhi-Qiang Song, Jian Ren, Li-Ying Bo, Jing-Jing An and Meng Wang
Foods 2025, 14(19), 3392; https://doi.org/10.3390/foods14193392 - 30 Sep 2025
Abstract
Corn glutelin hydrolysate (CGH) was prepared by alkaline protease hydrolysis of corn glutelin and further modified by histidine (His) and tryptophan (Trp) through the Plastein reaction, obtaining His-fortified CGH (His-CGH) and Trp-fortified CGH (Trp-CGH). The functional properties (solubility, foaming capacity, and emulsifying activity) [...] Read more.
Corn glutelin hydrolysate (CGH) was prepared by alkaline protease hydrolysis of corn glutelin and further modified by histidine (His) and tryptophan (Trp) through the Plastein reaction, obtaining His-fortified CGH (His-CGH) and Trp-fortified CGH (Trp-CGH). The functional properties (solubility, foaming capacity, and emulsifying activity) of the modified peptides were analyzed. The corresponding modifiers were added to baked products to evaluate potential application in the baking field. The effects of the modifiers on batter density, specific volume, and textural properties of chiffon cake were investigated. This study aimed to enhance the functional characteristics of corn glutelin and provide a theoretical basis for the development of functional products or green food additives. Corn glutelin hydrolysate supplemented with His-CGH and Trp-CGH exhibited improved solubility, foaming stability, and emulsifying capacity. Compared with CGH, the foamability (FC) of Trp-CGH increased by 9%, the foaming stability (FS10) at 10 min elevated by 8.41%, the foaming stability (FS20) at 20 min improved by 14.79%, and the foaming stability at 30 min (FS30) raised by 14.14%. The emulsifying activity of Trp-CGH improved by 10.65 m2/g, and the emulsifying stability increased by 10.57 min. Furthermore, the batter density of the cake sample with Trp-CGH decreased by 0.028 g/cm3, the specific volume increased by 0.29 cm3/g, the baking loss rate lowered by 0.99%, and the hardness reduced by 0.36 N. The improvement of these quality indexes remarkably enhanced the sensory acceptance and texture of the cake sample. Overall, it also reveals that the addition of the Plastein reaction modifiers before baking also highlights their potential as green food additives in baking products. Full article
Show Figures

Figure 1

17 pages, 914 KB  
Article
Impact of Calcium Lactate Concentration and Holding Time on Caviar-like Chicken Broth Hydrogel Beads
by Betül Karslıoğlu, Eda Demirok Soncu, Tayyip Kızıldoğan, Dilan Gezer and Sıla Sudem Almaci
Molecules 2025, 30(19), 3926; https://doi.org/10.3390/molecules30193926 - 29 Sep 2025
Abstract
This study is the first to encapsulate chicken broth into caviar-like hydrogel beads (CBHBs) using ionic gelation, aiming to explore their potential in molecular gastronomy and functional food design. The effects of calcium lactate concentration (1%, 2.5%, and 5%) and post-gelation holding time [...] Read more.
This study is the first to encapsulate chicken broth into caviar-like hydrogel beads (CBHBs) using ionic gelation, aiming to explore their potential in molecular gastronomy and functional food design. The effects of calcium lactate concentration (1%, 2.5%, and 5%) and post-gelation holding time (0, 30, and 60 min) on the physicochemical, morphological, mechanical, and sensory properties of chicken broth hydrogel beads were evaluated. The beads were produced by dropping a 1% sodium alginate–chicken broth mixture into calcium lactate solutions, followed by analysis of diameter, bulk density, pH, color, shape, texture, and consumer acceptance. Results revealed that higher calcium concentrations and extended holding times significantly decreased bead diameter and increased bulk density and hardness, indicating denser and more compact structures. Morphologically, increased calcium levels resulted in irregular, droplet-like shapes, with reduced sphericity. Instrumental color analysis showed higher a*, b*, and chroma values at higher calcium levels. Sensory evaluations demonstrated that samples with lower calcium concentrations and no post-gelation holding were significantly preferred by panelists in terms of softness and overall liking. These findings underscore the importance of optimizing calcium concentration and holding time in the design of alginate-based hydrogel beads and suggest that CBHBs have potential applications in molecular gastronomy and functional food product development. Full article
Show Figures

Figure 1

16 pages, 6331 KB  
Article
Microstructural Analysis of Hot-Compressed Mg-Nd-Zr-Ca Alloy with Low Rare-Earth Content
by Yiquan Li, Bingchun Jiang, Rui Yang, Lei Jing and Liwei Lu
Materials 2025, 18(19), 4490; https://doi.org/10.3390/ma18194490 - 26 Sep 2025
Abstract
Microstructural analysis of hot-compressed magnesium alloys is crucial for understanding the plastic formability of magnesium alloys during thermo-mechanical processing. Thermal compression tests and finite element simulations were conducted on a low rare-earth (RE) Mg-1.8Nd-0.4Zr-0.3Ca alloy. Multiple microstructural characterization techniques were employed to analyze [...] Read more.
Microstructural analysis of hot-compressed magnesium alloys is crucial for understanding the plastic formability of magnesium alloys during thermo-mechanical processing. Thermal compression tests and finite element simulations were conducted on a low rare-earth (RE) Mg-1.8Nd-0.4Zr-0.3Ca alloy. Multiple microstructural characterization techniques were employed to analyze slip systems, twinning mechanisms, dynamic recrystallization (DRX), and precipitate phases in the hot-compressed alloy. The results demonstrated that the equivalent strain distribution within compressed specimens exhibits heterogeneity, with a larger equivalent strain in the core. After thermal compression, the original microscopic structure formed a necklace-like structure. The primary DRX mechanisms comprise continuous dynamic recrystallization (CDRX), twin-induced dynamic recrystallization (TDRX), and particle-stimulated nucleation (PSN). Pyramidal slip and recrystallization constitute primary contributors to peak texture weakening and tilting. Mg41Nd5 and α-Zr phases enhanced dislocation density by impeding dislocation motion and promoting cross-slip activation. Hot compression provided the necessary thermal activation energy and stress conditions for solute atom diffusion and clustering, triggering dynamic precipitation of Mg41Nd5 phases. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

23 pages, 3120 KB  
Article
Variability in the Carbon Management Index and Enzymatic Activity Under Distinct Altitudes in the Alpine Wetlands of Lesotho
by Knight Nthebere, Dominic Mazvimavi, Makoala Marake, Mosiuoa Mochala, Tebesi Raliengoane, Behrooz Mohseni, Krasposy Kujinga and Jean Marie Kileshye Onema
Sustainability 2025, 17(19), 8571; https://doi.org/10.3390/su17198571 - 24 Sep 2025
Viewed by 35
Abstract
Alpine wetlands, key carbon sinks and biodiversity hubs, remain understudied, especially under climate change pressures. Hence, the present study was conducted to assess the variability in soil enzyme activity (SEA) and the carbon management index (CMI) and to utilize principal component analysis (PCA) [...] Read more.
Alpine wetlands, key carbon sinks and biodiversity hubs, remain understudied, especially under climate change pressures. Hence, the present study was conducted to assess the variability in soil enzyme activity (SEA) and the carbon management index (CMI) and to utilize principal component analysis (PCA) to explore the variation and correlation between SEA and CMI as influenced by altitudinal gradients in alpine wetlands. This information is essential for exploring the impacts of soil degradation and guiding restoration efforts. The study was designed in blocks (catchments) with six altitudinal variations (from 2500 to 3155 m a.s.l), equivalent to alpine wetlands from three catchments (Senqunyane, Khubelu and Sani) as follows: Khorong and Tenesolo in Senqunyane; Khamoqana and Khalong-la-Lichelete in Sani; and Lets’eng-la-Likhama and Koting-Sa-ha Ramosetsana in Khubelu. The soil samples were collected in February 2025 (autumn season, i.e., wet season) at depths of 0–15 and 15–30 cm and analyzed for bulk density, texture, pH, electrical conductivity (EC), soil organic carbon (SOC), SEA, and carbon pools, and the CMI was computed following standard procedures. The results demonstrated that the soil was loam to sandy loam and was slightly acidic and non-saline in nature in the 0–15 cm layer across the wetlands. The significant decreases in SEA were 45.33%, 32.20% and 15.11% (p < 0.05) for dehydrogenase, fluorescein di-acetate and β-Galactosidase activities, respectively, in KSHM compared with those in Khorong (lower elevated site). The passive carbon pool (CPSV) was dominant over the active carbon pool (CACT) and contributed 76–79% of the SOC to the total organic carbon, with a higher CPSV (79%) observed at KSHM. The CMI was also greater (91.05 and 75.88) under KSHM at the 0–15 cm and 15–30 cm soil depths, respectively, than in all the other alpine wetlands, suggesting better carbon management at higher altitudinal gradients and less enzymatic activity. These trends shape climate change outcomes by affecting soil carbon storage, with high-altitude regions serving as significant, though relatively less active, carbon reservoirs. The PCA-Biplot graph revealed a negative correlation between the CMI and SEA, and these variables drove more variation across sites, highlighting a complex interaction influenced by higher altitude with its multiple ecological drivers, such as temperature variation, nutrient dynamics, and shifts in microbial communities. Further studies on metagenomics in alpine soils are needed to uncover altitude-driven microbial adaptations and their role in carbon dynamics. Full article
(This article belongs to the Special Issue Innovations in Environment Protection and Sustainable Development)
Show Figures

Figure 1

16 pages, 3974 KB  
Article
Optimizing FDM Printing Parameters via Orthogonal Experiments and Neural Networks for Enhanced Dimensional Accuracy and Efficiency
by Jinxing Wu, Yi Zhang, Wenhao Hu, Changcheng Wu, Zuode Yang and Guangyi Duan
Coatings 2025, 15(10), 1117; https://doi.org/10.3390/coatings15101117 - 24 Sep 2025
Viewed by 111
Abstract
Optimizing printing parameters is crucial for enhancing the efficiency, surface quality, and dimensional accuracy of Fused Deposition Modeling (FDM) processes. A review of numerous publications reveals that most scholars analyze factors such as nozzle diameter and printing speed, while few investigate the impact [...] Read more.
Optimizing printing parameters is crucial for enhancing the efficiency, surface quality, and dimensional accuracy of Fused Deposition Modeling (FDM) processes. A review of numerous publications reveals that most scholars analyze factors such as nozzle diameter and printing speed, while few investigate the impact of layer thickness, infill density, and shell layer count on print quality. Therefore, this study employed 3D slicing software to process the three-dimensional model and design printing process parameters. It systematically investigated the effects of layer thickness, infill density, and number of shells on printing time and geometric accuracy, quantifying the evaluation through volumetric error. Using an ABS connecting rod model, optimal parameters were determined within the defined range through orthogonal experimental design and signal-to-noise ratio (S/N) analysis. Subsequently, a backpropagation (BP) neural network was constructed to establish a predictive model for process optimization. Results indicate that parameter selection significantly impacts print duration and surface quality. Validation confirmed that the combination of 0.1 mm layer thickness, 40% infill density, and 5-layer shell configuration achieves the highest dimensional accuracy (minimum volumetric error and S/N value). Under this configuration, the volumetric error rate was 3.062%, with an S/N value of −9.719. Compared to other parameter combinations, this setup significantly reduced volumetric error, enhanced surface texture, and improved overall print precision. Statistical analysis indicates that the BP neural network model achieves a Mean Absolute Percentage Error (MAPE) of no more than 5.41% for volume error rate prediction and a MAPE of 5.58% for signal-to-noise ratio prediction. This validates the model’s high-precision predictive capability, with the established prediction model providing effective data support for FDM parameter optimization. Full article
Show Figures

Figure 1

18 pages, 4842 KB  
Article
Positron Annihilation Studies of Hydrostatically Extruded AA1050 Aluminum
by Ewa Dryzek, Mirosław Wróbel, Maciej Sarnek and Jacek Skiba
Materials 2025, 18(18), 4428; https://doi.org/10.3390/ma18184428 - 22 Sep 2025
Viewed by 116
Abstract
AA1050 aluminum was hydrostatically extruded at room temperature to true strains of 0.9 and 3.2, and at cryogenic temperature to a true strain of 0.9. As a result of the extrusion process, the yield strength (YS) increased by 130–160% to 120–130 MPa, and [...] Read more.
AA1050 aluminum was hydrostatically extruded at room temperature to true strains of 0.9 and 3.2, and at cryogenic temperature to a true strain of 0.9. As a result of the extrusion process, the yield strength (YS) increased by 130–160% to 120–130 MPa, and the ultimate tensile strength (UTS) rose by 64–81% to 125–140 MPa. The hardness reached 46–49 HV. YS and UTS values correspond to mechanical properties typical of the H6 or H8 temper designations, with unusually high elongation at break ranging from 15% to 16.4%. Differences in lattice parameters, crystallite size, and lattice strain between samples deformed under various conditions—as well as those annealed after deformation—were within the margin of measurement uncertainty. This indicated that differences in defect density between the samples were relatively small, due to dynamic recovery occurring during extrusion. However, positron annihilation spectroscopy demonstrated that the cryo-cooled material extruded at a true strain of 0.9, as well as the one extruded at RT at a true strain of 3.2, exhibited significantly higher mean lattice defect concentrations compared to the sample extruded at RT at a true strain of 0.9. The predominant defects detected were vacancies associated with dislocations. The extrusion parameters also significantly affected the crystallographic texture. In particular, they altered the relative proportions of the <111> and <100> components in the axial texture, with the <100> component becoming dominant in cryogenically extruded samples. This trend was further intensified during recrystallization, which enhanced the <100> component even more. Recrystallization of the deformed materials occurred in the temperature range of 520–570 K. The activation energy for grain boundary migration during recrystallization was estimated to be approximately 1.5 eV. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

28 pages, 6848 KB  
Article
GIS-Based Multi-Criteria Assessment of Managed Aquifer Recharge (MAR) Zones Using the Analytic Hierarchy Process (AHP) Method in Southern Kazakhstan
by Zhuldyzbek Onglassynov, Ronny Berndtsson, Valentina Rakhimova, Timur Rakhimov, Abai Jabassov, Issa Rakhmetov, Mira Muratova and Kamshat Tussupova
Water 2025, 17(18), 2774; https://doi.org/10.3390/w17182774 - 19 Sep 2025
Viewed by 216
Abstract
Southern Kazakhstan, particularly the Zhambyl Region, is facing increasing groundwater stress due to climate change, degradation of irrigation infrastructure, and unsustainable water use. Despite substantial renewable groundwater reserves (8.33 km3/year), irrigation still relies on ephemeral surface flow. This study delineates priority [...] Read more.
Southern Kazakhstan, particularly the Zhambyl Region, is facing increasing groundwater stress due to climate change, degradation of irrigation infrastructure, and unsustainable water use. Despite substantial renewable groundwater reserves (8.33 km3/year), irrigation still relies on ephemeral surface flow. This study delineates priority zones for Managed Aquifer Recharge (MAR) using a GIS-based Multi-Criteria Decision Analysis framework integrated with the Analytic Hierarchy Process (AHP). Nine hydrogeological criteria were incorporated: shallow aquifer depth, groundwater salinity, precipitation, terrain slope, soil texture, land use/land cover, Normalized Difference Vegetation Index (NDVI), drainage density, and lineament density. Each parameter was normalized to a five-class suitability scale and weighted through expert-informed pairwise comparisons. The MAR suitability map identifies about 19% of the region (27,060 km2) as highly favorable for implementation. Field investigations at eleven groundwater sites in 2024 corroborate model results, providing aquifer depth, quality, and infiltration data. The most suitable areas are concentrated on Quaternary alluvial–proluvial fans near the Kyrgyz Alatau foothills and the Talas-Assa interfluve. Three hydrostratigraphic settings were identified: unconfined alluvial aquifers, Neogene–Quaternary unconsolidated sediments, and fractured Carboniferous carbonates. Recommended MAR methods include infiltration galleries, check dams, and injection wells. The proposed approach, validated through consistency analysis (Consistency Ratio ≤ 0.1), demonstrates the applicability of integrated geospatial and field methods for site-specific MAR planning. Strategic MAR deployment could restore productivity to 37,500 ha of degraded irrigated lands and improve groundwater resilience. These findings provide a practical framework for policymakers and water management authorities to optimize groundwater use and enhance agricultural sustainability under changing climatic conditions. Full article
(This article belongs to the Section Water Use and Scarcity)
Show Figures

Figure 1

17 pages, 8633 KB  
Article
Microstructural Evolution and Tensile Deformation Behavior of FeCoNiCrTi0.2 High-Entropy Alloys Regulated by Cold Rolling and Annealing
by Peng Zhang, Dehao Liu, Linfu Zhang, Kang Liu, Jie Zhang, Yuxiao Si, Gang Chen and Qiang Zhu
Metals 2025, 15(9), 1037; https://doi.org/10.3390/met15091037 - 19 Sep 2025
Viewed by 177
Abstract
Novel structural materials, high-entropy alloys (HEAs), have attracted considerable interest owing to their tunable microstructural designs and adjustable mechanical properties. In the present work, the microstructural evolution and tensile deformation behavior of FeCoNiCrTi0.2 HEA are comprehensively examined through cold rolling (with 80% [...] Read more.
Novel structural materials, high-entropy alloys (HEAs), have attracted considerable interest owing to their tunable microstructural designs and adjustable mechanical properties. In the present work, the microstructural evolution and tensile deformation behavior of FeCoNiCrTi0.2 HEA are comprehensively examined through cold rolling (with 80% thickness reduction) followed by annealing, combined with multiscale characterization techniques (EBSD/TEM) and mechanical tests. The results reveal that the as-rolled microstructure was characterized by the presence of strong Brass, Goss/Brass, and S textures, along with the formation of high-density dislocation walls (DDWs) and dislocation cells (DCs). As the annealing temperature increased, recrystallized grains preferentially nucleated at grain boundaries with higher stress concentrations and dislocation densities. The grain size decreased from 120.33 μm in the as-rolled state to 10.26 μm after annealing at 1000 °C. Low-angle grain boundaries (LAGBs) progressively transformed into high-angle grain boundaries (HAGBs), while the fraction of Σ3 twin boundaries initially decreased and subsequently increased, reaching a maximum of 43.7% after annealing at 1000 °C. At annealing temperatures exceeding 800 °C, deformed grains became equiaxed, with partial retention of primary texture components observed. After annealing at 1000 °C, the yield strength and tensile strength decreased compared to the as-rolled state, while the elongation significantly increased from 17.2% to 69.8% Simultaneously, the yield ratio decreased by 53%, and the strain-hardening capacity was enhanced. Ultimately, a constitutive model integrating the influences of dislocation mean free path and twin boundary obstruction was developed, providing microscopic explanations for the inverse relationship between strength and recrystallization fraction. Full article
(This article belongs to the Special Issue Sheet Metal Forming Processes)
Show Figures

Figure 1

18 pages, 5218 KB  
Article
Effect of Surface Morphology and Texture of Short-Tailed Shrew’s Toe on Tribological Properties of 65Mn Steel
by Yachao Zhang, Jian Zhang, Wengang Chen, Haijun Wang, Zhaoling Qiu, Wen Wang, Yali Zhang and Dongyang Li
Biomimetics 2025, 10(9), 631; https://doi.org/10.3390/biomimetics10090631 - 18 Sep 2025
Viewed by 285
Abstract
To reduce the friction coefficient and wear in tillage machinery during operation, biomimetic textures with different densities inspired by the short-tailed shrew’s claw were designed using biomimetic principles. These textures were applied to the surface of 65Mn steel using laser processing technology. This [...] Read more.
To reduce the friction coefficient and wear in tillage machinery during operation, biomimetic textures with different densities inspired by the short-tailed shrew’s claw were designed using biomimetic principles. These textures were applied to the surface of 65Mn steel using laser processing technology. This study investigated the effects of these bionic textures on the tribological properties of 65Mn steel surfaces in two environments: dry friction and soil friction. Friction and wear tests were conducted, and the friction coefficient, wear morphology, and wear quality were measured using a friction and wear testing machine, a scanning electron microscope (SEM), and a three-dimensional profilometer. The results indicate that under dry friction conditions, the tribological properties of specimens with bionic textures were significantly improved compared to non-textured specimens. The frictional properties of the specimens with bionic textures were optimized at a texture density of 20%, with an average coefficient of friction reduction of 24%. Under soil friction conditions, the samples with bionic textures demonstrated better tribological performance at densities of 20% and 30% compared to the non-textured samples, with decreases in the average coefficient of friction of 1.3% and 2.9%. The special surface structure of the bionic short-tailed shrew claw can effectively reduce friction heat effects and wear, demonstrating significant anti-friction and anti-wear performance. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Graphical abstract

27 pages, 8010 KB  
Article
Deep Learning-Based Short- and Mid-Term Surface and Subsurface Soil Moisture Projections from Remote Sensing and Digital Soil Maps
by Saman Rabiei, Ebrahim Babaeian and Sabine Grunwald
Remote Sens. 2025, 17(18), 3219; https://doi.org/10.3390/rs17183219 - 18 Sep 2025
Viewed by 365
Abstract
Accurate real-time information about soil moisture (SM) at a large scale is essential for improving hydrological modeling, managing water resources, and monitoring extreme weather events. This study presents a framework using convolutional long short-term memory (ConvLSTM) network to produce short- (1, 3, and [...] Read more.
Accurate real-time information about soil moisture (SM) at a large scale is essential for improving hydrological modeling, managing water resources, and monitoring extreme weather events. This study presents a framework using convolutional long short-term memory (ConvLSTM) network to produce short- (1, 3, and 7 days ahead) and mid-term (14 and 30 days ahead) forecasts of SM at surface (0–10 cm) and subsurface (10–40 and 40–100 cm) soil layers across the contiguous U.S. The model was trained with five-year period (2018–2022) datasets including Soil Moisture Active Passive (SMAP) level 3 ancillary covariables, North American Land Data Assimilation System phase 2 (NLDAS-2) SM product, shortwave infrared reflectance from Moderate Resolution Imaging Spectroradiometer (MODIS), and terrain features (e.g., elevation, slope, curvature), as well as soil texture and bulk density maps from the Soil Landscape of the United States (SOLUS100) database. To develop and evaluate the model, the dataset was divided into three subsets: training (January 2018–January 2021), validation (2021), and testing (2022). The outputs were validated with observed in situ data from the Soil Climate Analysis Network (SCAN) and the United States Climate Reference Network (USCRN) soil moisture networks. The results indicated that the accuracy of SM forecasts decreased with increasing lead time, particularly in the surface (0–10 cm) and subsurface (10–40 cm) layers, where strong fluctuations driven by rainfall variability and evapotranspiration fluxes introduced greater uncertainty. Across all soil layers and lead times, the model achieved a median unbiased root mean square error (ubRMSE) of 0.04 cm3 cm−3 with a Pearson correlation coefficient of 0.61. Further, the performance of the model was evaluated with respect to both land cover and soil texture databases. Forecast accuracy was highest in coarse-textured soils, followed by medium- and fine-textured soils, likely because the greater penetration depth of microwave observations improves SM retrieval in sandy soils. Among land cover types, performance was strongest in grasslands and savannas and weakest in dense forests and shrublands, where dense vegetation attenuates the microwave signal and reduces SM estimation accuracy. These results demonstrate that the ConvLSTM framework provides skillful short- and mid-term forecasts of surface and subsurface soil moisture, offering valuable support for large-scale drought and flood monitoring. Full article
(This article belongs to the Special Issue Earth Observation Satellites for Soil Moisture Monitoring)
Show Figures

Graphical abstract

16 pages, 4482 KB  
Article
Unveiling the Distribution Characteristics of Benzene-Based Pollutants in a Retired Industrial Park and Their Influence Factors: Soil Properties and Microbial Communities
by Lei Wang, Weizhen Chen, Xuejun Tan and Li Xie
Toxics 2025, 13(9), 791; https://doi.org/10.3390/toxics13090791 - 17 Sep 2025
Viewed by 249
Abstract
With the transformation of industrial enterprises in China, the relocation of numerous factories has led to the emergence of retired industrial parks with serious pollution. This study investigated the contamination of benzene-based pollutants (BBPs) in soil and their relationship with soil texture, physicochemical [...] Read more.
With the transformation of industrial enterprises in China, the relocation of numerous factories has led to the emergence of retired industrial parks with serious pollution. This study investigated the contamination of benzene-based pollutants (BBPs) in soil and their relationship with soil texture, physicochemical properties, and microbial communities at a former factory site in Shanghai. The results indicated that benzene and toluene were the main pollutants in the region, accounting for 25.7–36.1% and 7.6–10.2% of the total pollutants, respectively. The horizontal contamination distribution pattern of BBPs at different sampling points were clearly related to the functional zoning of the area. Sampling points close to workshops and bathrooms possessed higher contamination levels of BBPs than those close to warehouses and office buildings. With the increase in sampling depth, the gradually rising soil density and soil porosity ratio reduced the adsorption capacity of soil for BBPs, thereby promoting the volatilization and release of BBPs in deeper soil layers to a certain extent, resulting in a “shallow > deep” trend for the content of BBPs. The abundance of norank_f__norank__o_norank__c__Bathyarchaeia in the soil may be the main functional microorganisms affecting the distribution of BBPs. Styrene and chlorobenzene exhibited significant correlations with microbial communities, primarily involving bacteria (Desulfobacterium, Thermincola, and Trichlorobacter) and archaea (including norank_f_Nitrosopumilaceae, norank_f_norank_o_norank_c_Nitrososphaeria, and Methanocella). This study identifies and analyzes the BBP contamination characteristics in a typical retired industrial park in Shanghai, providing valuable references for risk assessment and microbial remediation of such contaminated areas. Full article
Show Figures

Graphical abstract

14 pages, 2885 KB  
Article
Entropy-Based CT Radiomics as an Imaging Marker of Hepatic Injury in COVID-19
by Alin Iulian Feiereisz, George-Călin Oprinca and Victoria Birlutiu
Diagnostics 2025, 15(18), 2364; https://doi.org/10.3390/diagnostics15182364 - 17 Sep 2025
Viewed by 203
Abstract
Background: Hepatic involvement in COVID-19 is frequently observed, yet conventional CT imaging may fail to detect subtle parenchymal alterations. This study aimed to evaluate whether CT-based radiomic texture analysis can identify liver injury associated with SARS-CoV-2 infection. Methods: We retrospectively analyzed 41 patients [...] Read more.
Background: Hepatic involvement in COVID-19 is frequently observed, yet conventional CT imaging may fail to detect subtle parenchymal alterations. This study aimed to evaluate whether CT-based radiomic texture analysis can identify liver injury associated with SARS-CoV-2 infection. Methods: We retrospectively analyzed 41 patients with RT-PCR–confirmed moderate or severe COVID-19 pneumonia who underwent non-contrast thoracoabdominal CT during the acute phase and at follow-up. Liver volume, mean hepatic attenuation, liver-to-spleen attenuation ratio, and radiomic features including first-order and GLCM entropy were extracted using 3D Slicer version 5.6.2 and SlicerRadiomic Revision: 8426cdf. Hepatic injury was defined by elevated serum transaminases. Three additional patients with available liver histopathology were included for correlation with imaging findings. Results: Patients with biochemical liver injury demonstrated significantly higher hepatic entropy values in the acute phase compared to those without injury (first-order entropy: 1.63 vs. 1.48, p = 0.019; GLCM entropy: 3.12 vs. 2.83, p = 0.013). Entropy metrics were inversely correlated with hepatic attenuation at follow-up (GLCM r = −0.385, p = 0.013; first-order r = −0.346, p = 0.027), indicating possible progression to lower-density states. Ferritin showed a moderate positive correlation with entropy (r = 0.47, p = 0.0017). Histopathological examination revealed steatosis, hepatocellular injury, inflammatory infiltration, and vascular congestion, aligning with radiomic abnormalities. Conclusions: Entropy-based CT radiomics reflect microstructural liver alterations in COVID-19, supported by both biochemical and histopathological data. This approach may enhance the detection of hepatic injury beyond conventional imaging and could be explored in systemic infections. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

19 pages, 2231 KB  
Article
Mapping and Characterization of Planosols in the Omo-Gibe Basin, Southwestern Ethiopia
by Eyasu Elias, Alemayehu Regassa, Gudina Legesse Feyisa and Abreham Berta Aneseyee
Sustainability 2025, 17(18), 8341; https://doi.org/10.3390/su17188341 - 17 Sep 2025
Viewed by 323
Abstract
Planosols are seasonally waterlogged soils characterized by an abrupt transition from coarse-textured surface horizons to dense, clay-enriched subsoils. Despite the increased agricultural expansion in the Planosol landscapes, these soils have been largely overlooked in Ethiopia. The FAO soil map of Ethiopia (1:200,000 scale) [...] Read more.
Planosols are seasonally waterlogged soils characterized by an abrupt transition from coarse-textured surface horizons to dense, clay-enriched subsoils. Despite the increased agricultural expansion in the Planosol landscapes, these soils have been largely overlooked in Ethiopia. The FAO soil map of Ethiopia (1:200,000 scale) does not recognize the presence of Planosols. In contrast, the more recent digital soil map of Ethiopia, EthoSoilGrids v1.0, at a 250 spatial resolution, was not detailed enough to capture Planosol landscapes, reflecting their historical undersampling in the legacy data. To address this gap, we conducted a thorough mapping and characterization of Planosols in the Omo-Gibe basin, southwestern Ethiopian highlands. Using over 200 auger observations, 74 georeferenced soil profiles, 296 laboratory analyses, and Random Forest modeling, we produced a 30 m-resolution soil-landscape map. Our results show that Planosols cover about 18% of the basin, a substantial extent previously unrecognized in national exploratory maps. Morphologically, these soils exhibit abrupt textural change from the coarse-textured, light grey Ap/Eg horizon (about 30–40 cm thick) to a very clayey, grey–black Bssg/Bt horizon occurring below 40 cm depth. Analytical data on selected parameters show the following pattern: low clay contents (20–29%) and acidic pH (5.2–5.8) with relatively low CEC values (11–26 cmol/kg) in the surface horizons (Ap/Eg), but pronounced clay increase (37–74%), higher bulk density (1.3 g/cm3), higher pH (up to 6.5), and substantially higher CEC (37–47 cmol/kg) in the sub-surface horizons (Bss/Bt). In terms of soil fertility, Planosols are low in SOC, TN, and exchangeable K contents, but micronutrient levels are variable—high in Fe-Mn-Zn and low in B and Cu. The findings confirm the diagnostic features of WRB Planosols and align with regional East African averages, underscoring the reproducibility of our approach. By rectifying long-standing misclassifications and generating fine-scale, field-validated evidence on soil fertility constraints and management options, this study establishes a strong foundation for targeted soil management in Ethiopia. It offers transferable insights for Planosol-dominated agroecosystems across Eastern Africa. Globally, the dataset contributes to enriching the global scientific knowledge and evidence base on Planosols, thereby supporting their improved characterization and management. Full article
(This article belongs to the Special Issue The Sustainability of Agricultural Soils)
Show Figures

Figure 1

13 pages, 6372 KB  
Article
Oral Supplementation of Nicotinamide Mononucleotide (NMN) Improves Hair Quality and Subjective Perception of Hair Appearance in Middle-Aged Women
by Shuichi Fukumoto, Maiko Ito, Hiroyo Kunitomo, Takeshi Hataoka, Takuya Chiba, Osamu Nureki and Takahiro Fujimoto
Cosmetics 2025, 12(5), 204; https://doi.org/10.3390/cosmetics12050204 - 16 Sep 2025
Viewed by 1048
Abstract
Background: Nicotinamide mononucleotide (NMN) has gained attention as an anti-aging compound due to its ability to replenish NAD+ levels, which typically decline with age and stress. While improvements in skin conditions have been reported, clinical studies on human hair remain lacking. In [...] Read more.
Background: Nicotinamide mononucleotide (NMN) has gained attention as an anti-aging compound due to its ability to replenish NAD+ levels, which typically decline with age and stress. While improvements in skin conditions have been reported, clinical studies on human hair remain lacking. In this study, we evaluated the effects of NMN supplementation on hair conditions in middle-aged women and explored its association with quality-of-life (QOL) factors such as fatigue. Methods: Torula yeast-fermented NMN was evaluated in this clinical trial. A single-arm, pre-post intervention study was conducted involving 15 healthy Japanese women aged between 40 and 50 years who orally consumed NMN for 12 weeks. Hair growth cycles and hair shaft diameters were assessed using TrichoScan (TrichoGrabV3B) analysis and scanning electron microscopy (SEM). Hair metabolites and hormone levels were also measured. Subjective indices, including fatigue and hair texture, were evaluated using a visual analog scale (VAS) questionnaire. Results: Following NMN supplementation, anagen hair elongation density (hairs/cm2) significantly increased from 55.9 to 87.7 (p = 0.03). Hair diameter (µm) also significantly increased from 75.3 to 78.8 (p < 0.01), with improvements in hair cuticle condition. Metabolomic analyses revealed significant changes in amino acids and energy metabolism-related compounds. No marked changes were observed in hair hormone concentrations. The VAS questionnaire indicated improvements in subjective hair characteristics such as elasticity, gloss, and volume, as well as reductions in fatigue and perceived hair loss, suggesting enhanced QOL. Conclusions: Oral supplementation with NMN may be a beneficial strategy for promoting hair growth and improvement in hair cuticle condition in middle-aged women, thus potentially enhancing overall hair care and quality of life. Full article
Show Figures

Graphical abstract

Back to TopTop