Oral Supplementation of Nicotinamide Mononucleotide (NMN) Improves Hair Quality and Subjective Perception of Hair Appearance in Middle-Aged Women
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Design and NMN Supplementation
2.3. Evaluation Measures
2.3.1. Hair Assessment by TrichoScan
2.3.2. SEM Observation of Collected Hair
2.3.3. Hair Metabolomic Analysis (CE-TOFMS)
2.3.4. Hair Hormone Concentration Analysis (LC-MS/MS)
2.3.5. Subjective Assessment (VAS Questionnaire)
2.4. Statistical Analysis
3. Results
3.1. TrichoScan Analysis
3.2. SEM Imaging Analysis
3.3. Metabolomic Analysis
3.4. Hormone Concentrations
3.5. Subjective Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Imai, S.; Guarente, L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014, 24, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Peluso, A.; Damgaard, M.V.; Mori, M.A.S.; Treebak, J.T. Age Dependent Decline of NAD+—Universal Truth or Confounded Consensus? Nutrients 2021, 14, 101. [Google Scholar] [CrossRef]
- She, J.; Sheng, R.; Qin, Z.H. Pharmacology and Potential Implications of Nicotinamide Adenine Dinucleotide Precursors. Aging Dis. 2021, 12, 1879–1897. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Raju, R.P. Regulation of NAD+ Metabolism in Aging and Disease. Metabolism 2022, 126, 154923. [Google Scholar] [CrossRef]
- Fang, E.F.; Lautrup, S.; Hou, Y.; Demarest, T.G.; Croteau, D.L.; Mattson, M.P.; Bohr, V.A. NAD+ in Aging: Molecular Mechanisms and Translational Implications. Trends Mol. Med. 2017, 23, 899–916. [Google Scholar] [CrossRef]
- Radenkovic, D.; Reason; Verdin, E. Clinical Evidence for Targeting NAD Therapeutically. Pharmaceuticals 2020, 13, 247. [Google Scholar] [CrossRef]
- Zhang, M.; Ying, W. NAD+ Deficiency Is a Common Central Pathological Factor of a Number of Diseases and Aging: Mechanisms and Therapeutic Implications. Antioxid. Redox Signal. 2019, 30, 890–905. [Google Scholar] [CrossRef] [PubMed]
- Massudi, H.; Grant, R.; Braidy, N.; Guest, J.; Farnsworth, B.; Guillemin, G. Age Associated Changes in Oxidative Stress and NAD+ Metabolism in Human Tissue. PLoS ONE 2012, 7, e42357. [Google Scholar] [CrossRef]
- Yoshino, J.; Baur, J.A.; Imai, S. NAD+ Intermediates: The Biology and Therapeutic Potential of NMN and NR. Cell Metab. 2018, 27, 513–528. [Google Scholar] [CrossRef]
- Campagna, R.; Vignini, A. NAD+ Homeostasis and NAD+-Consuming Enzymes: Implications for Vascular Health. Antioxidants 2023, 12, 376. [Google Scholar] [CrossRef]
- Shimamoto, Y.; Ono, T.; Sawabe, A. Examination of the Effects of a Food Containing Nicotinamide Mononucleotide on Skin Function and Safety. Jpn. Pharmacol. Ther. 2023, 51, 75–87. [Google Scholar]
- Morita, Y.; Izawa, H.; Hirano, A.; Mayumi, E.; Isozaki, S.; Yonei, Y. Clinical Evaluation of Changes in Biomarkers by Oral Intake of NMN. Glycative Stress Res. 2022, 9, 33–41. [Google Scholar]
- Ohashi, Y.; Hirayama, A.; Ishikawa, T.; Nakamura, S.; Shimizu, K.; Ueno, Y.; Tomita, M.; Soga, T. Depiction of Metabolome ChUennges in Histidine Starved Escherichia coli by CE TOFMS. Mol. Biosyst. 2008, 4, 135–147. [Google Scholar] [CrossRef]
- Wang, W.; Wang, H.; Long, Y.; Li, Z.; Li, J. Controlling Hair Loss by Regulating Apoptosis in Hair Follicles: A Comprehensive Overview. Biomolecules 2024, 14, 20. [Google Scholar] [CrossRef]
- Xu, C.; Dai, J.; Ai, H.; Du, W.; Ji, H. β-Nicotinamide Mononucleotide Promotes Cell Proliferation and Hair Growth by Reducing Oxidative Stress. Molecules 2024, 29, 798. [Google Scholar] [CrossRef]
- Okabe, K.; Yaku, K.; Uchida, Y.; Fukamizu, Y.; Sato, T.; Sakurai, T.; Tobe, K.; Nakagawa, T. Oral Administration of Nicotinamide Mononucleotide Is Safe and Efficiently Increases Blood Nicotinamide Adenine Dinucleotide Levels in Healthy Subjects. Front. Nutr. 2022, 9, 868640. [Google Scholar] [CrossRef]
- Mills, K.F.; Yoshida, S.; Stein, L.R.; Grozio, A.; Kubota, S.; Sasaki, Y.; Redpath, P.; Migaud, M.E.; Apte, R.S.; Uchida, K.; et al. Long-term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice. Cell Metab. 2016, 24, 795–806. [Google Scholar] [CrossRef]
- Fukamizu, Y.; Uchida, Y.; Shigekawa, A.; Sato, T.; Kosaka, H.; Sakurai, T. Safety Evaluation of B-Nicotinamide Mononucleotide Oral Administration in Healthy Adult Men and Women. Sci. Rep. 2022, 12, 14442–14452. [Google Scholar] [CrossRef]
- Hoffmann, R. TrichoScan: A Novel Tool for the Analysis of Hair Growth in Vivo. J. Investig. Dermatol. Symp. Proc. 2003, 8, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Ooga, T.; Sato, H.; Nagashima, A.; Sasaki, K.; Tomita, M.; Soga, T.; Ohashi, Y. Metabolomic Anatomy of an Animal Model Revealing Homeostatic Imbalances in Dyslipidaemia. Mol. Biosyst. 2011, 7, 1217–1223. [Google Scholar] [CrossRef]
- Sugimoto, M.; Wong, D.T.; Hirayama, A.; Soga, T.; Tomita, M. Capillary Electrophoresis Mass Spectrometry Based Saliva Metabolomics Identified Oral, Breast and Pancreatic Cancer-Specific Profiles. Metabolomics 2009, 6, 78–95. [Google Scholar] [CrossRef]
- Hobo, Y.; Nishikawa, J.; Miyashiro, Y.; Fujikata, A. Measurement of steroid hormones by liquid chromatography-tandem mass spectrometry with small amounts of hair. Steroids 2020, 164, 108732. [Google Scholar] [CrossRef]
- Kita, F.; Kaneda, N.; Watanabe, Y. Evaluation Method of the Hair Growth Promoter Based on Dynamics of Fall Hairs. Skin Res. 1989, 31, 548–562. [Google Scholar]
- Rushton, D.H. Nutritional factors and hair loss. Clin. Exp. Dermatol. 2002, 27, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Tang, X.; Zhang, S.; Jin, M.; Wang, M.; Deng, Z.; Liu, Z.; Qian, M.; Shi, W.; Wang, Z.; et al. SIRT7 activates quiescent hair follicle stem cells to ensure hair growth in mice. EMBO J. 2020, 39, e104365. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Li, Y.; Jin, S.; Yang, F.; Xiong, R.; Dai, Y.; Song, X.; Guan, C. Progress on mitochondria and hair follicle development in androgenetic alopecia: Relationships and therapeutic perspectives. Stem Cell Res. Ther. 2025, 16, 44. [Google Scholar] [CrossRef] [PubMed]
Assessment | Pre-Supplementation | Post-Supplementation | ||
---|---|---|---|---|
Date | 9 September | 12 September | 2 December | 5 December |
NMN Intake * | Start after testing | End after testing | ||
Hair Collection and Shaving | ● | ● | ||
TrichoScan | ● | ● | ● | ● |
Questionnaire | ● | ● |
Hair Type | Definition |
---|---|
Anagen hair | Growing hair |
Telogen hair | Non-growing hair |
Vellus hair | Hair with a diameter < 40 µm |
Terminal hair | Hair with a diameter ≥ 40 µm |
Parameter | Mean ± SD | % |
---|---|---|
Age | 49.7 ± 4.8 | — |
Hair density (1/cm2) | 190.8 ± 34.0 | — |
Anagen hair density (1/cm2) | 176.0 ± 29.1 | 92.3 |
Vellus hair density (1/cm2) | 46.7 ± 10.0 | 24.5 |
Terminal hair density (1/cm2) | 144.1 ± 27.9 | 75.5 |
Unit | Before Supplementation Mean ± SD | After Supplementation Mean ± SD | p-Value | |
---|---|---|---|---|
Total hair density | hairs/cm2 | 190.8 ± 34.0 | 167.9 ± 35.8 | <0.01 |
Vellus hair density | hairs/cm2 | 46.7 ± 10.0 | 36.7 ± 10.6 | 0.03 |
Terminal hair density | hairs/cm2 | 144.1 ± 27.9 | 131.2 ± 30.3 | 0.03 |
Anagen hair density (3-day growth after shaving) | hairs/cm2 | 55.9 ± 43.5 | 87.7 ± 21.9 | 0.03 |
Vellus hair density (3-day growth after shaving) | hairs/cm2 | 17.3 ± 15.8 | 21.5 ± 12.9 | 0.50 |
Terminal hair density (3-day growth after shaving) | hairs/cm2 | 38.6 ± 33.7 | 66.2 ± 15.1 | <0.01 |
Pre-Supplementation Mean ± SD | Post-Supplementation Mean ± SD | p-Value | |
---|---|---|---|
Hair diameter (µm) | 75.3 ± 7.6 | 78.8 ± 9.7 | <0.01 |
Compound Name | m/z | MT/RT | Pre | Post | Δ | p-Value | |||
---|---|---|---|---|---|---|---|---|---|
n | Median [IQR] | n | Median [IQR] | n | Median [IQR] | ||||
Nicotinamide riboside | 255.099 | 7.55 | 0 | NA [NA] | 4 | 0.0002 [0.0001 to 0.0002] | NA | NA [NA] | NA |
Nicotinic acid | 124.039 | 7.97 | 1 | 0.0002 [0.0002 to 0.0002] | 8 | 0.0002 [0.0001 to 0.0002] | 1 | 0.0000 [0.0000 to 0.0000] | 1.0000 |
1-Methylnicotinamide | 137.071 | 5.87 | 6 | 0.0002 [0.0002 to 0.0003] | 14 | 0.0008 [0.0004 to 0.0014] | 6 | 0.0013 [0.0009 to 0.0016] | 0.0313 |
6-Hydroxynicotinic acid | 138.019 | 7.58 | 0 | NA [NA] | 1 | 0.0031 [0.0031 to 0.0031] | NA | NA [NA] | NA |
Lactic acid | 89.024 | 8.52 | 15 | 1.2839 [0.7233 to 1.7711] | 15 | 0.5206 [0.3486 to 0.9234] | 15 | −0.5902 [−0.9385 to −0.2749] | 0.0001 |
Creatine | 132.077 | 7.03 | 15 | 0.0004 [0.0002 to 0.0007] | 15 | 0.0009 [0.0005 to 0.0021] | 15 | 0.0005 [0.0000 to 0.0013] | 0.0151 |
Creatinine | 114.066 | 5.82 | 13 | 0.0003 [0.0003 to 0.0005] | 15 | 0.0006 [0.0004 to 0.0014] | 13 | 0.0004 [0.0000 to 0.001] | 0.0327 |
Isovalerylcarnitine | 246.170 | 7.68 | 12 | 0.0004 [0.0002 to 0.0009] | 15 | 0.0008 [0.0006 to 0.002] | 12 | 0.0006 [0.0003 to 0.0011] | 0.0005 |
Arginine | 175.119 | 5.68 | 15 | 0.0063 [0.0020 to 0.0124] | 15 | 0.0048 [0.0036 to 0.0083] | 15 | −0.0018 [−0.0034 to 0.0008] | 0.2769 |
Aspartic acid | 134.045 | 9.21 | 15 | 0.0033 [0.0019 to 0.0063] | 15 | 0.0079 [0.0049 to 0.0131] | 15 | 0.0049 [−0.0007 to 0.0087] | 0.0151 |
Glutamic acid | 148.061 | 8.70 | 15 | 0.0057 [0.0038 to 0.0100] | 15 | 0.0193 [0.0094 to 0.046] | 15 | 0.0145 [0.0007 to 0.0361] | 0.0043 |
Glycine | 76.039 | 6.65 | 15 | 0.0035 [0.0019 to 0.0040] | 15 | 0.0041 [0.0026 to 0.0054] | 15 | 0.0004 [−0.0015 to 0.002] | 0.8904 |
Isoleucine | 132.102 | 8.08 | 15 | 0.0070 [0.0037 to 0.0113] | 15 | 0.0097 [0.008 to 0.0141] | 15 | 0.0048 [−0.0001 to 0.0094] | 0.0215 |
Leucine | 132.102 | 8.17 | 15 | 0.0125 [0.0059 to 0.019] | 15 | 0.0200 [0.0143 to 0.0262] | 15 | 0.0091 [0.0012 to 0.0182] | 0.0181 |
Lysine | 147.113 | 5.49 | 15 | 0.0017 [0.0012 to 0.0035] | 15 | 0.0043 [0.0031 to 0.0074] | 15 | 0.0025 [0.0001 to 0.005] | 0.0084 |
Phenylalanine | 166.086 | 8.78 | 15 | 0.0078 [0.004 to 0.0102] | 15 | 0.0122 [0.0089 to 0.0138] | 15 | 0.0056 [0.0005 to 0.0099] | 0.0054 |
Proline | 116.071 | 8.56 | 15 | 0.0033 [0.0018 to 0.004] | 15 | 0.0035 [0.003 to 0.0075] | 15 | 0.001 [−0.0012 to 0.0036] | 0.3303 |
Serine | 106.050 | 7.97 | 15 | 0.0097 [0.0059 to 0.0121] | 15 | 0.0100 [0.0062 to 0.0141] | 15 | 0.0016 [−0.0052 to 0.0043] | 0.6788 |
Threonine | 120.066 | 8.36 | 15 | 0.0031 [0.0019 to 0.0049] | 15 | 0.0033 [0.0027 to 0.0089] | 15 | 0.0009 [−0.0011 to 0.0021] | 0.4887 |
Tryptophan | 205.098 | 8.73 | 15 | 0.0025 [0.0017 to 0.0039] | 15 | 0.0039 [0.0034 to 0.0058] | 15 | 0.0017 [0.0004 to 0.003] | 0.0026 |
Tyrosine | 182.081 | 8.99 | 15 | 0.0043 [0.0024 to 0.0061] | 15 | 0.0058 [0.0050 to 0.0072] | 15 | 0.0017 [0.0001 to 0.0032] | 0.0125 |
Valine | 118.086 | 7.93 | 14 | 0.0082 [0.0047 to 0.0118] | 15 | 0.0089 [0.0076 to 0.0133] | 14 | 0.003 [−0.0018 to 0.0071] | 0.1726 |
Cysteine | 122.027 | 8.99 | 0 | NA [NA] | 1 | 0.0001 [0.0001 to 0.0001] | NA | NA [NA] | NA |
Hydroxyproline | 132.066 | 9.52 | 0 | NA [NA] | 1 | 0.0001 [0.0001 to 0.0001] | NA | NA [NA] | NA |
Carnitine | 162.112 | 6.77 | 14 | 0.0004 [0.0002 to 0.0005] | 14 | 0.0005 [0.0003 to 0.0014] | 13 | 0.0003 [0.0001 to 0.0005] | 0.0215 |
Cystine | 241.032 | 8.75 | 0 | NA [NA] | 2 | 0.0001 [0.0001 to 0.0001] | NA | NA [NA] | NA |
Adenosine | 268.105 | 7.83 | 10 | 0.0002 [0.0001 to 0.0003] | 8 | 0.0001 [0.0001 to 0.0002] | 8 | −0.0001 [−0.0001 to 0.0000] | 0.1953 |
5-Oxoproline | 128.035 | 7.63 | 15 | 0.0217 [0.016 to 0.0381] | 15 | 0.0414 [0.0267 to 0.0697] | 15 | 0.0179 [−0.0041 to 0.0454] | 0.0479 |
Terephthalic acid | 165.019 | 12.02 | 15 | 0.003 [0.0025 to 0.0035] | 15 | 0.0022 [0.0019 to 0.0023] | 15 | −0.0008 [−0.0014 to −0.0002] | 0.0215 |
Diethanolamine | 106.086 | 6.09 | 15 | 0.0017 [0.0012 to 0.0077] | 15 | 0.0009 [0.0007 to 0.0032] | 15 | −0.0009 [−0.0035 to −0.0001] | 0.0256 |
Uric acid | 167.021 | 7.22 | 14 | 0.0063 [0.0036 to 0.0082] | 15 | 0.0125 [0.0072 to 0.0305] | 14 | 0.0092 [0.0024 to 0.0187] | 0.0012 |
Urea | 61.040 | 16.68 | 15 | 0.0865 [0.0407 to 0.2211] | 14 | 0.0700 [0.0242 to 0.0831] | 14 | −0.0233 [−0.0989 to −0.0039] | 0.0353 |
Trimethylamine N-oxide | 76.076 | 5.38 | 15 | 0.0012 [0.001 to 0.0019] | 15 | 0.0009 [0.0008 to 0.0010] | 15 | −0.0003 [−0.0008 to 0.0000] | 0.0479 |
Analyte | n | Pre-Median [IQR] | Post-Median [IQR] | Δ Median [IQR] | p-Value |
---|---|---|---|---|---|
Cortisol (pg/mg) | 14 | 13.65 [11.45 to 19.02] | 15.59 [12.78 to 16.57] | −0.48 [−4.41 to 3.47] | 0.63 |
Testosterone (pg/mg) | 14 | 0.37 [0.30 to 0.84] | 0.38 [0.17 to 0.76] | −0.05 [−0.16 to 0.14] | 0.80 |
Progesterone (pg/mg) | 15 | 6.52 [1.64 to 25.79] | 12.35 [0.35 to 27.86] | −0.08 [−0.90 to 5.34] | 0.94 |
Item | Pre-Supplementation | Post-Supplementation | p-Value |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Fatigue | 4.6 ± 2.7 | 3.0 ± 1.9 | <0.01 |
Hair elasticity | 4.1 ± 2.2 | 7.2 ± 2.0 | <0.01 |
Combing ease | 4.5 ± 2.2 | 7.2 ± 1.9 | <0.01 |
Gloss | 4.5 ± 2.4 | 7.5 ± 2.1 | <0.01 |
Volume | 4.5 ± 1.8 | 6.8 ± 2.4 | <0.01 |
Gray hair perception | 6.0 ± 3.1 | 4.0 ± 2.8 | <0.01 |
Hair parting concerns | 4.9 ± 2.3 | 3.2 ± 2.6 | <0.01 |
Hair loss upon waking | 3.6 ± 2.6 | 2.4 ± 2.6 | <0.01 |
Hair loss upon shampooing | 5.8 ± 3.2 | 3.7 ± 3.1 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukumoto, S.; Ito, M.; Kunitomo, H.; Hataoka, T.; Chiba, T.; Nureki, O.; Fujimoto, T. Oral Supplementation of Nicotinamide Mononucleotide (NMN) Improves Hair Quality and Subjective Perception of Hair Appearance in Middle-Aged Women. Cosmetics 2025, 12, 204. https://doi.org/10.3390/cosmetics12050204
Fukumoto S, Ito M, Kunitomo H, Hataoka T, Chiba T, Nureki O, Fujimoto T. Oral Supplementation of Nicotinamide Mononucleotide (NMN) Improves Hair Quality and Subjective Perception of Hair Appearance in Middle-Aged Women. Cosmetics. 2025; 12(5):204. https://doi.org/10.3390/cosmetics12050204
Chicago/Turabian StyleFukumoto, Shuichi, Maiko Ito, Hiroyo Kunitomo, Takeshi Hataoka, Takuya Chiba, Osamu Nureki, and Takahiro Fujimoto. 2025. "Oral Supplementation of Nicotinamide Mononucleotide (NMN) Improves Hair Quality and Subjective Perception of Hair Appearance in Middle-Aged Women" Cosmetics 12, no. 5: 204. https://doi.org/10.3390/cosmetics12050204
APA StyleFukumoto, S., Ito, M., Kunitomo, H., Hataoka, T., Chiba, T., Nureki, O., & Fujimoto, T. (2025). Oral Supplementation of Nicotinamide Mononucleotide (NMN) Improves Hair Quality and Subjective Perception of Hair Appearance in Middle-Aged Women. Cosmetics, 12(5), 204. https://doi.org/10.3390/cosmetics12050204