Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (215)

Search Parameters:
Keywords = textile polymer composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 1660 KiB  
Article
Efficient Assessment and Optimisation of Medium Components Influencing Extracellular Xylanase Production by Pediococcus pentosaceus G4 Using Statistical Approaches
by Noor Lutphy Ali, Hooi Ling Foo, Norhayati Ramli, Murni Halim and Karkaz M. Thalij
Int. J. Mol. Sci. 2025, 26(15), 7219; https://doi.org/10.3390/ijms26157219 - 25 Jul 2025
Viewed by 223
Abstract
Xylanase is an essential industrial enzyme for degrading plant biomass, pulp and paper, textiles, bio-scouring, food, animal feed, biorefinery, chemicals, and pharmaceutical industries. Despite its significant industrial importance, the extensive application of xylanase is hampered by high production costs and concerns regarding the [...] Read more.
Xylanase is an essential industrial enzyme for degrading plant biomass, pulp and paper, textiles, bio-scouring, food, animal feed, biorefinery, chemicals, and pharmaceutical industries. Despite its significant industrial importance, the extensive application of xylanase is hampered by high production costs and concerns regarding the safety of xylanase-producing microorganisms. The utilisation of renewable polymers for enzyme production is becoming a cost-effective alternative. Among the prospective candidates, non-pathogenic lactic acid bacteria (LAB) are promising for safe and eco-friendly applications. Our investigation revealed that Pediococcus pentosaceus G4, isolated from plant sources, is a notable producer of extracellular xylanase. Improving the production of extracellular xylanase is crucial for viable industrial applications. Therefore, the current study investigated the impact of various medium components and optimised the selected medium composition for extracellular xylanase production of P. pentosaceus G4 using Plackett–Burman Design (PBD) and Central Composite Design (CCD) statistical approaches. According to BPD analysis, 8 out of the 19 investigated factors (glucose, almond shell, peanut shell, walnut shell, malt extract, xylan, urea, and magnesium sulphate) demonstrated significant positive effects on extracellular xylanase production of P. pentosaceus G4. Among them, glucose, almond shells, peanut shells, urea, and magnesium sulphate were identified as the main medium components that significantly (p < 0.05) influenced the production of extracellular xylanase of P. pentosaceus G4. The optimal concentrations of glucose, almond shells, peanut shells, urea, and magnesium sulphate, as determined via CCD, were 26.87 g/L, 16 g/L, 30 g/L, 2.85 g/L, and 0.10 g/L, respectively. The optimised concentrations resulted in extracellular xylanase activity of 2.765 U/mg, which was similar to the predicted extracellular xylanase activity of 2.737 U/mg. The CCD-optimised medium yielded a 3.13-fold enhancement in specific extracellular xylanase activity and a 7.99-fold decrease in production costs compared to the commercial de Man, Rogosa and Sharpe medium, implying that the CCD-optimised medium is a cost-effective medium for extracellular xylanase production of P. pentosaceus G4. Moreover, this study demonstrated a positive correlation between extracellular xylanase production, growth, lactic acid production and the amount of sugar utilised, implying the multifaceted interactions of the physiological variables affecting extracellular xylanase production in P. pentosaceus G4. In conclusion, statistical methods are effective in rapidly assessing and optimising the medium composition to enhance extracellular xylanase production of P. pentosaceus G4. Furthermore, the findings of this study highlighted the potential of using LAB as a cost-effective producer of extracellular xylanase enzymes using optimised renewable polymers, offering insights into the future use of LAB in producing hemicellulolytic enzymes. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

16 pages, 31664 KiB  
Article
Rheological Behavior of Poly(Styrene-Co-Acrylonitrile)/Carbon Nanotube Sponges for Fiber Electrospinning Applications
by Rubén Caro-Briones, Marco Antonio Pérez-Castillo, Hugo Martínez-Gutiérrez, Emilio Muñoz-Sandoval, Gabriela Martínez-Mejía, Lazaro Ruiz-Virgen and Mónica Corea
Nanomaterials 2025, 15(14), 1060; https://doi.org/10.3390/nano15141060 - 9 Jul 2025
Viewed by 300
Abstract
Polymeric composite solutions (PCSs) reinforced with carbon nanotubes sponges (CNT-sponges) have attracted interest in material science and engineering due to their physicochemical properties. Understanding the influence of CNT-sponges content (0.1 wt.%, 0.3 wt.% and 0.5 wt.%) on rheological behavior of poly(styrene-co-acrylonitrile) P(S:AN) (0:100, [...] Read more.
Polymeric composite solutions (PCSs) reinforced with carbon nanotubes sponges (CNT-sponges) have attracted interest in material science and engineering due to their physicochemical properties. Understanding the influence of CNT-sponges content (0.1 wt.%, 0.3 wt.% and 0.5 wt.%) on rheological behavior of poly(styrene-co-acrylonitrile) P(S:AN) (0:100, 20:80, 40:60 and 50:50, wt.%:wt.%) solutions synthesized by emulsion polymerization can predict the viscoelastic parameters for their possible application in electrospinning processes. The obtained nanofibers can be used as sensors, textiles, purifying agents or artificial muscles and tissues. For this, amplitude and frequency sweeps were performed to measure the viscosity (η), storage (G’) and loss (G”) moduli and loss factor (tan δ). Most PCSs showed a shear thinning behavior over the viscosity range of 0.8 < η/Pa·s < 20. At low CNT-sponges concentration in the polymer matrix, the obtained loss factor indicated a liquid-like behavior, while as CNT-sponges content increases, the solid-like behavior predominated. Then, the polymeric solutions were successfully electrospun; however, some agglomerations were formed in materials containing 0.5 wt.% of CNT-sponges attributed to the interaction forces generated within the structure. Finally, the rheological analysis indicates that the PCS with a low percentage of CNT-sponges are highly suitable to be electrospun. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Fibers and Textiles)
Show Figures

Graphical abstract

56 pages, 16805 KiB  
Review
Lightweight Textile and Fiber-Reinforced Composites for Soft Body Armor (SBA): Advances in Panel Design, Materials, and Testing Standards
by Mohammed Islam Tamjid, Mulat Alubel Abtew and Caroline Kopot
J. Compos. Sci. 2025, 9(7), 337; https://doi.org/10.3390/jcs9070337 - 28 Jun 2025
Viewed by 759
Abstract
Soft body armor (SBA) remains an essential component of first responder protection. However, most SBA design concepts do not adequately address the unique performance, morphological, and psychological needs of women as first responders. In this review, female-specific designs of ballistic-resistant panels, material systems, [...] Read more.
Soft body armor (SBA) remains an essential component of first responder protection. However, most SBA design concepts do not adequately address the unique performance, morphological, and psychological needs of women as first responders. In this review, female-specific designs of ballistic-resistant panels, material systems, and SBA performance testing are critically examined. The paper also explores innovations in shaping and design techniques, including darting, dartless shape construction, modular assembly, and body scanning with CAD integration to create contoured and structurally stable panels with improved coverage, reduced bulk, and greater mobility. In addition, the review addresses broadly used and emerging dry textile fabrics and fiber-reinforced polymers, considering various innovations, such as 3D warp interlock weave, shear thickening fluid (STF) coating, nanomaterials, and smart composites that improve energy dissipation and impact tolerance without sacrificing flexibility. In addition, the paper also examines various emerging ballistic performance testing standards and their revisions to incorporate gender-specific standards and measures their ability to decrease trauma effects and maintain flexibility and practical protection. Finally, it identifies existing challenges and areas of future research, such as optimizing multi-layer systems, addressing fatigue behavior, and improving multi-angle and low-velocity impact performance while providing avenues for future sustainable, adaptive, and performance-optimized body armor. Full article
Show Figures

Figure 1

22 pages, 2708 KiB  
Article
Effect of Changing Climatic Conditions on Properties of Wood Textile Composites
by Claudia L. von Boyneburgk and Hans-Peter Heim
Materials 2025, 18(12), 2764; https://doi.org/10.3390/ma18122764 - 12 Jun 2025
Viewed by 328
Abstract
Wood–textile composites (WTCs), consisting of polypropylene and woven willow wood, have potential for both interior and exterior applications. However, their basic materials are not inherently resistant to outdoor weathering. This study examines the impact of various climatic conditions on the material behavior of [...] Read more.
Wood–textile composites (WTCs), consisting of polypropylene and woven willow wood, have potential for both interior and exterior applications. However, their basic materials are not inherently resistant to outdoor weathering. This study examines the impact of various climatic conditions on the material behavior of WTCs. The composite and its components were aged under different scenarios, including kiln-drying, frost, standard and tropical climate, and artificial weathering and water storage, and analyzed for dimensional stability, chemical changes (FTIR), mechanical damage (µ-CT), and mechanical performance. While kiln-drying, frost, and tropical climates had only minor effects, water storage caused swelling-related damage, resulting in a 45% decrease in Young’s modulus but increased elongation at break (+88%) and impact strength (+75%). Artificial weathering led to significant degradation: tensile strength declined by 28%, Young’s modulus by 49%, and impact strength by 26%. In the medium term, this degradation compromises the integrity of the composite. The results highlight the need for effective stabilization measures—such as polymer modification or structural protection—to ensure the long-term durability of WTCs in outdoor use. Full article
(This article belongs to the Special Issue Leather, Textiles and Bio-Based Materials)
Show Figures

Graphical abstract

27 pages, 1091 KiB  
Review
Advances in Thermoregulating Textiles: Materials, Mechanisms, and Applications
by Kuok Ho Daniel Tang
Textiles 2025, 5(2), 22; https://doi.org/10.3390/textiles5020022 - 11 Jun 2025
Viewed by 1669
Abstract
Advancements in thermoregulating textiles have been propelled by innovations in nanotechnology, composite materials, and smart fiber engineering. This article reviews recent scholarly papers on experimental passive and active thermoregulating textiles to present the latest advancements in these fabrics, their mechanisms of thermoregulation, and [...] Read more.
Advancements in thermoregulating textiles have been propelled by innovations in nanotechnology, composite materials, and smart fiber engineering. This article reviews recent scholarly papers on experimental passive and active thermoregulating textiles to present the latest advancements in these fabrics, their mechanisms of thermoregulation, and their feasibility for use. The review underscores that phase-change materials enhanced with graphene, boron nitride, and carbon nanofibers offer superior thermal conductivity, phase stability, and flexibility, making them ideal for wearable applications. Shape-stabilized phase-change materials and aerogel-infused fibers have shown promising results in outdoor, industrial, and emergency settings due to their durability and high insulation efficiency. Radiative cooling textiles, engineered with hierarchical nanostructures and Janus wettability, demonstrate passive temperature regulation through selective solar reflection and infrared emission, achieving substantial cooling effects without external energy input. Thermo-responsive, shape-memory materials, and moisture-sensitive polymers enable dynamic insulation and actuation. Liquid-cooling garments and thermoelectric hybrids deliver precise temperature control but face challenges in portability and power consumption. While thermoregulating textiles show promise, the main challenges include achieving scalable manufacturing, ensuring material flexibility, and integrating multiple functions without sacrificing comfort. Future research should focus on hybrid systems combining passive and active mechanisms, user-centric wearability studies, and cost-effective fabrication methods. These innovations hold significant potential for applications in extreme environments, athletic wear, military uniforms, and smart clothing, contributing to energy efficiency, health, and comfort in a warming climate. Full article
Show Figures

Figure 1

38 pages, 5897 KiB  
Review
Future-Oriented Biomaterials Based on Natural Polymer Resources: Characteristics, Application Innovations, and Development Trends
by Oscar Amponsah, Prince Sungdewie Adama Nopuo, Felista Adrehem Manga, Nicole Bianca Catli and Karolina Labus
Int. J. Mol. Sci. 2025, 26(12), 5518; https://doi.org/10.3390/ijms26125518 - 9 Jun 2025
Cited by 1 | Viewed by 1102
Abstract
This review comprehensively explores natural polymer-based materials, focusing on their characteristics, applications, and innovations across different sectors, including medicine, the environment, energy, textiles, and construction. With increasing concern about resource depletion and pollution, biomaterials offer a sustainable alternative to fossil-derived products. The review [...] Read more.
This review comprehensively explores natural polymer-based materials, focusing on their characteristics, applications, and innovations across different sectors, including medicine, the environment, energy, textiles, and construction. With increasing concern about resource depletion and pollution, biomaterials offer a sustainable alternative to fossil-derived products. The review highlights polysaccharide-based and protein-based biomaterials, as well as others, such as polyisoprene, rosin, and hyaluronic acid. Emphasis is laid on their compositions and attractive characteristics, including biocompatibility, biodegradability, and functional versatility. Moreover, the review deeply discusses the ability of natural polymers to form hydrogels, aerogels, films, nanocomposites, etc., enhanced by additives for innovative applications. Future development trends of biomaterials in biomedicine, sustainable materials, environmental biotechnology, and advanced manufacturing are also explored. Their growing potential in these sectors is driven by research advances in emerging technologies such as 3D bioprinting, nanotechnology, and hybrid material innovation, which are proven to enhance the performance, functionality, and scalability of biopolymers. The review suggests several strategies, including improvement in processing techniques and material engineering to overcome limitations associated with biomaterials, thereby reinforcing their suitability and role in a circular and sustainable economy. Full article
(This article belongs to the Special Issue Recent Advances in Polymeric Biomaterials)
Show Figures

Graphical abstract

75 pages, 15988 KiB  
Review
Tailoring Polymer Properties Through Lignin Addition: A Recent Perspective on Lignin-Derived Polymer Modifications
by Nawoda L. Kapuge Dona and Rhett C. Smith
Molecules 2025, 30(11), 2455; https://doi.org/10.3390/molecules30112455 - 3 Jun 2025
Viewed by 912
Abstract
Lignin, an abundant and renewable biopolymer, has gained significant attention as a sustainable modifier and building block in polymeric materials. Recent advancements highlight its potential to tailor mechanical, thermal, and barrier properties of polymers while offering a greener alternative to petroleum-based additives. This [...] Read more.
Lignin, an abundant and renewable biopolymer, has gained significant attention as a sustainable modifier and building block in polymeric materials. Recent advancements highlight its potential to tailor mechanical, thermal, and barrier properties of polymers while offering a greener alternative to petroleum-based additives. This review provides an updated perspective on the incorporation of lignin into various polymer matrices, focusing on lignin modification techniques, structure–property relationships, and emerging applications. Special emphasis is given to recent innovations in lignin functionalization and its role in developing high-performance, biodegradable, and recyclable materials such as polyurethanes, epoxy resins, phenol-formaldehyde resins, lignin-modified composites, and lignin-based films, coatings, elastomers, and adhesives. These lignin-based materials are gaining attention for potential applications in construction, automated industries, packaging, textiles, wastewater treatment, footwear, supporting goods, automobiles, printing rollers, sealants, and binders. Full article
(This article belongs to the Special Issue Advances in Polymer Materials Based on Lignocellulosic Biomass)
Show Figures

Figure 1

39 pages, 11665 KiB  
Review
Sustainable Masonry Retrofitting and Upgrading Techniques: A Review
by Arnas Majumder, Flavio Stochino, Monica Valdes, Giovanna Concu, Marco Pepe and Enzo Martinelli
Fibers 2025, 13(6), 68; https://doi.org/10.3390/fib13060068 - 23 May 2025
Viewed by 1641
Abstract
This study presents a comprehensive review of various advanced methodologies that have been used to enhance the structural and thermal performance of masonry walls through innovative and sustainable retrofitting/upgrading techniques. Focusing on three primary approaches—mechanical/structural retrofitting, thermal retrofitting, and integrated (structural and thermal) [...] Read more.
This study presents a comprehensive review of various advanced methodologies that have been used to enhance the structural and thermal performance of masonry walls through innovative and sustainable retrofitting/upgrading techniques. Focusing on three primary approaches—mechanical/structural retrofitting, thermal retrofitting, and integrated (structural and thermal) retrofitting, this paper critically examines various masonry-strengthening strategies. Retrofitting techniques are categorized by material use and objectives. Fiber-based solutions include insulation materials, fiber composite mortar for strength, FRP for high-strength reinforcement, and TRM for durability. According to the relevant objectives, retrofitting can enhance structural stability (FRP, TRM), improve thermal insulation, or combine both for integrated performance. Particular emphasis is placed on the effectiveness of TRM systems, with a comparative analysis of man-made (glass, steel textile) and natural fiber-based TRM solutions. Regarding integrating natural fibers into TRM systems, this study highlights their potential as eco-friendly alternatives that reduce environmental impact while maintaining or improving structural integrity. Furthermore, it highlights and examines techniques for testing masonry walls. In this context, this review highlights the applicability of natural fiber as a sustainable building material in various retrofitting/upgrading solutions. Full article
Show Figures

Figure 1

13 pages, 1887 KiB  
Article
Polymer-Based Thermal Protective Composites: The Role of Reinforcement and Matrix in Providing Strength and Fire Resistance
by Mohammed Meiirbekov, Assem Kuandyk, Mukhammed Sadykov, Meiir Nurzhanov, Nurmakhan Yesbolov, Berdiyar Baiserikov, Ilyas Ablakatov, Laura Mustafa, Botagoz Medyanova, Arman Kulbekov, Sunkar Orazbek and Abussaid Yermekov
Polymers 2025, 17(10), 1419; https://doi.org/10.3390/polym17101419 - 21 May 2025
Viewed by 590
Abstract
This study addresses the need for thermomechanically robust materials for high-temperature environments by investigating fabric-reinforced composites produced through polymer infiltration and thermal pressing using phenol-formaldehyde (PF) and epoxy (ER) resins. Experimental validation was required due to the lack of comparative data across different [...] Read more.
This study addresses the need for thermomechanically robust materials for high-temperature environments by investigating fabric-reinforced composites produced through polymer infiltration and thermal pressing using phenol-formaldehyde (PF) and epoxy (ER) resins. Experimental validation was required due to the lack of comparative data across different textile reinforcements under identical conditions. Seven technical fabrics—carbon, aramid, basalt, silica, fiberglass, asbestos, and a carbon/aramid hybrid—were used as reinforcements. Mechanical testing revealed that carbon- and hybrid fiber composites exhibited the highest tensile (up to 465 MPa) and compressive strengths (up to 301 MPa), particularly when combined with ER. Conversely, the use of PF generally resulted in a 30–50% reduction in mechanical strength. However, PF-based composites demonstrated superior thermal resistance, with the silica/PF combination showing the lowest back-face temperature (401 °C), up to 37% lower than other pairings. Thermal conductivity ranged from 0.041 to 0.51 W/m·K, with PF-based systems offering 6–12% lower values on average compared to ER-based analogs. Morphological analysis confirmed better interfacial bonding in ER composites, while PF systems showed higher structural integrity under thermal loading. Overall, the results emphasize the trade-offs between mechanical strength and thermal protection depending on the fabric–resin combination. Among all variants, the silica fabric with PF demonstrated the most balanced performance, making it a promising candidate for thermomechanical applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

19 pages, 6110 KiB  
Article
Fabrication and Characterisation of Fully Bio-Based Flax Fibre-Reinforced Polyester Composites
by Lorenz Walter, Michael Scherdel and Iman Taha
J. Compos. Sci. 2025, 9(5), 241; https://doi.org/10.3390/jcs9050241 - 14 May 2025
Viewed by 563
Abstract
The development of lightweight construction is of crucial importance for the development of sustainable technologies and for the reduction in carbon dioxide emissions, especially in the automotive industry. This study aims to address the challenges associated with manufacturing plant fibre-based polymer composites. The [...] Read more.
The development of lightweight construction is of crucial importance for the development of sustainable technologies and for the reduction in carbon dioxide emissions, especially in the automotive industry. This study aims to address the challenges associated with manufacturing plant fibre-based polymer composites. The investigation focused on two novel formulations of bio-based unsaturated polyester resins, assessing their viability as a matrix in plant fibre-reinforced composites within the context of automotive applications. The study addresses the challenges related to the preparation and processing of the system, leading to the necessity of diluting the resin with (hydroxymethyl)methacrylate (HEMA) to achieve an applicable viscosity. Two different flax fibre textiles, in the form of a short fibre mat and a woven fabric, were used as reinforcement. The composite panels were manufactured using the vacuum-assisted resin infusion (VARI) process. The most efficacious material combination, comprising Bcomp® ampliTex™ 5040 and STRUKTOL® POLYVERTEC® 3831, with viscosity modified by 39% HEMA, exhibited a consistent fibre volume fraction of 40% and a glass transition temperature of 70 °C. In addition, the mechanical behaviour in the 0°-direction demonstrated tensile strength and modulus values of approximately 99 MPa and 9 GPa, respectively, accompanied by an elongation at break of 2%. The flexural modulus was found to be 7 GPa, and the flexural strength 94 MPa. Full article
(This article belongs to the Section Fiber Composites)
Show Figures

Graphical abstract

25 pages, 5168 KiB  
Article
Pyrolyzed Biomass Filler for PLA-Based Food Packaging
by Andreea-Cătălina Joe, Maria Tănase, Catalina Călin, Elena-Emilia Sîrbu, Ionuț Banu, Dorin Bomboș and Stanca Cuc
Polymers 2025, 17(10), 1327; https://doi.org/10.3390/polym17101327 - 13 May 2025
Cited by 2 | Viewed by 668
Abstract
Poly(lactic acid) (PLA) is a biodegradable thermoplastic polymer used in various applications, including food packaging, 3D printing, textiles, and biomedical devices. Nevertheless, it presents several limitations, such as high hydrophobicity, low gas barrier properties, UV sensitivity, and brittleness. To overcome this issue, in [...] Read more.
Poly(lactic acid) (PLA) is a biodegradable thermoplastic polymer used in various applications, including food packaging, 3D printing, textiles, and biomedical devices. Nevertheless, it presents several limitations, such as high hydrophobicity, low gas barrier properties, UV sensitivity, and brittleness. To overcome this issue, in this study, biochar (BC) produced through pyrolysis of bio-mass waste was incorporated (1 wt.%, 2wt.%, and 3 wt.%—PLA 1, PLA 2, and PLA 3) to enhance thermal and mechanical properties of PLA composites. The impact of pyrolysis temperature on the kinetic parameters, physicochemical characteristics, and structural properties of banana and orange peels for use as biochar added to PLA was investigated. The biomass waste such as banana and orange peels were characterized by proximal analysis and thermogravimetric analysis (TGA); meanwhile, the PLA composites were characterized by tensile straight, TGA, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The results indicated that the presence of biochar improved hygroscopic characteristics and Tg temperature from 62.98 °C for 1 wt.% to 80.29 °C for 3 wt.%. Additionally, it was found that the tensile strength of the composites increased by almost 30% for PLA 3 compared with PLA 1. The Young’s modulus also increased from 194.334 MPa for PLA1 to 388.314 MPa for PLA3. However, the elongation decreased from 14.179 (PLA 1) to 7.240 mm (PLA3), and the maximum thermal degradation temperature shifted to lower temperatures ranging from 366 °C for PLA-1 to 345 °C for PLA-3 samples, respectively. From surface analysis, it was observed that the surface of these samples was relatively smooth, but small microcluster BC aggregates were visible, especially for the PLA 3 composite. In conclusion, the incorporation of biochar into PLA is a promising method for enhancing material performance while maintaining environmental sustainability by recycling biomass waste. Full article
Show Figures

Figure 1

38 pages, 4607 KiB  
Review
Rubber-Based Sustainable Textiles and Potential Industrial Applications
by Bapan Adak, Upashana Chatterjee and Mangala Joshi
Textiles 2025, 5(2), 17; https://doi.org/10.3390/textiles5020017 - 8 May 2025
Viewed by 2183
Abstract
This review explores the evolving landscape of sustainable textile manufacturing, with a focus on rubber-based materials for various industrial applications. The textile and rubber industries are shifting towards eco-friendly practices, driven by environmental concerns and the need to reduce carbon footprints. The integration [...] Read more.
This review explores the evolving landscape of sustainable textile manufacturing, with a focus on rubber-based materials for various industrial applications. The textile and rubber industries are shifting towards eco-friendly practices, driven by environmental concerns and the need to reduce carbon footprints. The integration of sustainable textiles in rubber-based products, such as tires, conveyor belts, and defense products, is becoming increasingly prominent. This review discusses the adoption of natural fibers like flax, jute, and hemp, which offer biodegradability and improved mechanical properties. Additionally, it highlights sustainable elastomer sources, including natural rubber from Hevea brasiliensis and alternative plants like Guayule and Russian dandelion, as well as bio-based synthetic rubbers derived from terpenes and biomass. The review also covers sustainable additives, such as silica fillers, nanoclay, and bio-based plasticizers, which enhance performance while reducing environmental impact. Textile–rubber composites offer a cost-effective alternative to traditional fiber-reinforced polymers when high flexibility and impact resistance are needed. Rubber matrices enhance fatigue life under cyclic loading, and sustainable textiles like jute can reduce environmental impact. The manufacturing process involves rubber preparation, composite assembly, consolidation/curing, and post-processing, with precise control over temperature and pressure during curing being critical. These composites are versatile and robust, finding applications in tires, conveyor belts, insulation, and more. The review also highlights the advantages of textile–rubber composites, innovative recycling and upcycling initiatives, addressing current challenges and outlining future perspectives for achieving a circular economy in the textile and rubber sectors. Full article
Show Figures

Graphical abstract

28 pages, 4098 KiB  
Review
Advances in the Study of Flame-Retardant Cellulose and Its Application in Polymers: A Review
by Quan Yuan, Shaodong Wang, Liping He and Shiwei Xu
Polymers 2025, 17(9), 1249; https://doi.org/10.3390/polym17091249 - 3 May 2025
Cited by 1 | Viewed by 1280
Abstract
Cellulose, as a green and renewable polymer material, has attracted the attention of a wide range of scholars for its excellent mechanical strength, easy chemical modification and degradability. However, its flammability limits its application in automotive, aerospace, construction, textile and electronic fields. This [...] Read more.
Cellulose, as a green and renewable polymer material, has attracted the attention of a wide range of scholars for its excellent mechanical strength, easy chemical modification and degradability. However, its flammability limits its application in automotive, aerospace, construction, textile and electronic fields. This review recapitulates the modification methods of flame-retardant cellulose and their applications in polymers in recent years. This paper discusses the fabrication of flame-retardant cellulose from various aspects such as boron, nitrogen, phosphorus, sulphur, inorganic and heterogeneous synergistic modification, respectively, and evaluates the flame retardancy of flame-retardant cellulose by means of thermogravimetry, cone calorimetry, limiting oxygen index, the vertical combustion of UL94, etc. Finally, it discusses the application of flame-retardant cellulose in actual composites, which fully reflects the extraordinary potential of flame-retardant cellulose for applications in polymers. Currently, flame-retardant cellulose has significantly improved its flame-retardant properties through multi-faceted modification strategies and has shown a broad application prospect in composite materials. However, interfacial compatibility, environmental protection and process optimisation are still the key directions for future research, and efficient, low-toxic and industrialised flame-retardant cellulose materials need to be realised through innovative design. Full article
Show Figures

Figure 1

23 pages, 7753 KiB  
Article
Microplastic Pollution on the Beaches of the Black Sea in Romania and Bulgaria
by Mirel Glevitzky, Gabriela-Alina Dumitrel, Gerlinde Iuliana Rusu, Daniela Toneva, Stoyan Vergiev, Mihai-Teopent Corcheş, Ana-Maria Pană and Maria Popa
Appl. Sci. 2025, 15(9), 4751; https://doi.org/10.3390/app15094751 - 25 Apr 2025
Cited by 2 | Viewed by 1284
Abstract
Microplastic pollution has gained attention in recent years due to its adverse impact on the environment. As a major threat to marine ecosystems and biota, the accumulation of microplastics along coastlines has become a growing concern. This study focused on quantifying and characterizing [...] Read more.
Microplastic pollution has gained attention in recent years due to its adverse impact on the environment. As a major threat to marine ecosystems and biota, the accumulation of microplastics along coastlines has become a growing concern. This study focused on quantifying and characterizing the presence, distribution, and composition of microplastics along the beaches of Romania and Bulgaria. Microplastics were extracted from beach sand samples using a saturated NaCl solution. The particles were then analyzed through FT-IR and DSC spectral analyses to identify their chemical composition. Sampling was conducted across several resorts along the Romanian and Bulgarian coastlines. The findings revealed varying concentrations of microplastics across different beaches, with Romanian beaches showing concentrations of between 40 and 213 particles per sample (470–2500 microplastics/kg), which were notably higher in areas like Mamaia and Costinești. On Bulgarian beaches, the average concentrations reached up to 137 particles per sample (1612 microplastics/kg), particularly in areas like Sunny Beach and Nessebar. Polyethylene (PE) was identified as the most prevalent polymer (55%), followed by polyamide (PA), polypropylene (PP), polyethylene terephthalate (PET), and polyurethane (PU). These polymers were linked to common sources such as packaging, textiles, and industrial products. Microscopic examination, combined with FT-IR and DSC spectral analysis, confirmed the plastic nature of the particles, revealing distinct chemical structures characteristic of each material type. This study underscores the widespread contamination of Romanian and Bulgarian beaches with microplastics, emphasizing the environmental risks to coastal ecosystems. The presence of synthetic polymers highlights the urgent need for policies targeting plastic waste management to mitigate the growing pollution in marine environments. Full article
Show Figures

Figure 1

27 pages, 6049 KiB  
Review
Inkjet Printing Is a Promising Method of Dyeing Polymer Textile Materials
by Andrey A. Vodyashkin, Mstislav O. Makeev and Pavel A. Mikhalev
Polymers 2025, 17(6), 756; https://doi.org/10.3390/polym17060756 - 13 Mar 2025
Cited by 1 | Viewed by 1557
Abstract
Inkjet printing is a universal method of direct application and application of various substances to the surface of materials. This technology is gaining popularity in various fields, from textile printing to microelectronics and biomedicine. In the textile industry, inkjet printing has been widely [...] Read more.
Inkjet printing is a universal method of direct application and application of various substances to the surface of materials. This technology is gaining popularity in various fields, from textile printing to microelectronics and biomedicine. In the textile industry, inkjet printing has been widely used for many years. In our approach, we systematized the main approaches to maintaining the quality of inkjet printing on various components of materials. We reported and analyzed methods for optimizing the rheological properties of paint to improve the colorimetric characteristics and color fastness on various fabrics. The paper presents surface tension and viscosity regulators, with the help of which the colorimetric indicators of the image on textiles can be improved. For each type of textile, individual modifiers were demonstrated that could most effectively improve the quality of the pattern. Particular attention was paid to the methods of modifying the surface of products, including both physical and chemical approaches. This section discusses an effective method of plasma treatment, which allows you to control the surface free energy for textile polymer materials. By controlling the surface tension of inkjet paints and the surface energy of the material, it is possible to achieve maximum adhesion, thereby significantly increasing the amount of paint per unit area of textile. Additionally, for similar purposes, the principles of chemical modification of the surface with various substances were considered. These methods enable control over the wettability of ink and adhesion to textiles of consistent composition. Additionally, we highlight the potential of thin, optically transparent polymer coatings as a promising strategy to enhance the efficiency of dyeing textile materials. The textile industry is rapidly developing, and the functionality of clothing is improving every year. Inkjet printing methods optimized for maximum accuracy and quality can serve as a significant alternative for applying images. Full article
(This article belongs to the Special Issue Fiber Spinning Technologies and Functional Polymer Fiber Development)
Show Figures

Figure 1

Back to TopTop