Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = terpene saponins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5463 KiB  
Article
Evaluation of Aqueous and Ethanolic Extracts for the Green Synthesis of Zinc Oxide Nanoparticles from Tradescantia spathacea
by Pedro Gerardo Trejo-Flores, Yazmin Sánchez-Roque, Heber Vilchis-Bravo, Yolanda del Carmen Pérez-Luna, Paulina Elizabeth Velázquez-Jiménez, Francisco Ramírez-González, Karen Magaly Soto Martínez, Pascual López de Paz, Sergio Saldaña-Trinidad and Roberto Berrones-Hernández
Nanomaterials 2025, 15(14), 1126; https://doi.org/10.3390/nano15141126 - 20 Jul 2025
Viewed by 425
Abstract
In this work, we report a green synthesis of zinc oxide (ZnO) nanoparticles using aqueous and ethanolic extracts of Tradescantia spathacea (purple maguey) as bioreducing and stabilizing agents, which are plant extracts not previously employed for metal oxide nanoparticle synthesis. This method provides [...] Read more.
In this work, we report a green synthesis of zinc oxide (ZnO) nanoparticles using aqueous and ethanolic extracts of Tradescantia spathacea (purple maguey) as bioreducing and stabilizing agents, which are plant extracts not previously employed for metal oxide nanoparticle synthesis. This method provides an efficient, eco-friendly, and reproducible route to obtain ZnO nanoparticles, while minimizing environmental impact compared to conventional chemical approaches. The extracts were prepared following a standardized protocol, and their phytochemical profiles, including total phenolics, flavonoids, and antioxidant capacity, were quantified via UV-Vis spectroscopy to confirm their reducing potential. ZnO nanoparticles were synthesized using zinc acetate dihydrate as a precursor, with variations in pH and precursor concentration in both aqueous and ethanolic media. UV-Vis spectroscopy confirmed nanoparticle formation, while X-ray diffraction (XRD) revealed a hexagonal wurtzite structure with preferential (101) orientation and lattice parameters a = b = 3.244 Å, c = 5.197 Å. Scanning electron microscopy (SEM) showed agglomerated morphologies, and Fourier transform infrared spectroscopy (FTIR) confirmed the presence of phytochemicals such as quercetin, kaempferol, saponins, and terpenes, along with Zn–O bonding, indicating surface functionalization. Zeta potential measurements showed improved dispersion under alkaline conditions, particularly with ethanolic extracts. This study presents a sustainable synthesis strategy with tunable parameters, highlighting the critical influence of precursor concentration and solvent environment on ZnO nanoparticle formation. Notably, aqueous extracts promote ZnO synthesis at low precursor concentrations, while alkaline conditions are essential when using ethanolic extracts. Compared to other green synthesis methods, this strategy offers control and reproducibility and employs a non-toxic, underexplored plant source rich in phytochemicals, potentially enhancing the crystallinity, surface functionality, and application potential of the resulting ZnO nanoparticles. These materials show promise for applications in photocatalysis, in antimicrobial coatings, in UV-blocking formulations, and as functional additives in optoelectronic and environmental remediation technologies. Full article
(This article belongs to the Special Issue Advanced Nanocatalysis in Environmental Applications)
Show Figures

Graphical abstract

19 pages, 1341 KiB  
Review
Antioxidant and Anti-Inflammatory Effects of Traditional Medicinal Plants for Urolithiasis: A Scoping Review
by Brenda Pacheco-Hernández, Teresa Ayora-Talavera, Julia Cano-Sosa, Lilia G. Noriega, Neith Aracely Pacheco-López, Juan M. Vargas-Morales, Isabel Medina-Vera, Martha Guevara-Cruz, Rodolfo Chim-Aké, Ana Ligia Gutiérrez-Solis, Roberto Lugo and Azalia Avila-Nava
Plants 2025, 14(13), 2032; https://doi.org/10.3390/plants14132032 - 2 Jul 2025
Viewed by 779
Abstract
Urolithiasis (UL) is the presence of stones in the kidneys or urinary tract; its prevalence has increased worldwide. Thus, strategies have been sought to reduce it and one of them is the use of medicinal plants due to their accessibility, low cost, and [...] Read more.
Urolithiasis (UL) is the presence of stones in the kidneys or urinary tract; its prevalence has increased worldwide. Thus, strategies have been sought to reduce it and one of them is the use of medicinal plants due to their accessibility, low cost, and cultural traditions. Studies on traditional medicinal plants in UL mainly documented results of litholytic and urinary parameters. Although, stone formation is related to oxidative stress and inflammation, and only a few studies are focused on these types of biomarkers. Thus, the aim of the present review was to summarize studies showing the antioxidant and anti-inflammatory effects of traditional medicinal plants used in UL management. We performed a scoping review; the database sources used were MEDLINE/PubMed, Google Scholar, SpringerLink, Scielo and Redalyc. From a total of 184 studies screened, six were included from China (2), India (3), and Corea (1). These studies have shown the antioxidant and anti-inflammatory effects of traditional medicinal plants, including Glechoma longituba (G. longituba), Bergenia ligulate (B. ligulate), Lygodium japonicum (L. japonicum), Citrus limon (C. limon), Xanthium strumarium (X. strumarium) and Tribulus terrestris (T. terrestris). They have also described their molecular mechanism of antioxidant and anti-inflammatory effects through the activation of antioxidant genes induced by Nrf2 or by suppressing the inflammatory gene expression by the inhibition of NFκ-B. These effects could be modulated by their bioactive compounds, such as polyphenols, flavonoids, tannins, saponins, and terpenes, present in these plants. This review summarizes the antioxidant and anti-inflammatory effects of traditional medicinal plants and highlights their molecular mechanisms of action and main bioactive compounds. This evidence may be used in biotechnology and synthetic biology areas for the development of new products from plant-derived compounds to reduce the high recurrence rates of UL. Full article
Show Figures

Figure 1

11 pages, 235 KiB  
Review
Natural Bioactive Agents: Testable Stem Cell-Targeting Alternatives for Therapy-Resistant Breast Cancer
by Nitin T. Telang
Int. J. Mol. Sci. 2025, 26(6), 2529; https://doi.org/10.3390/ijms26062529 - 12 Mar 2025
Viewed by 937
Abstract
Long-term treatment options for conventional chemo-endocrine therapy and molecular-pathway-based targeted therapy are associated with acquired therapy resistance and the emergence of drug-resistant cancer-initiating stem cell populations, leading to the progression of metastatic disease. These treatment options are based on the expression status of [...] Read more.
Long-term treatment options for conventional chemo-endocrine therapy and molecular-pathway-based targeted therapy are associated with acquired therapy resistance and the emergence of drug-resistant cancer-initiating stem cell populations, leading to the progression of metastatic disease. These treatment options are based on the expression status of estrogen receptor-α (ER-α), progesterone receptor (PR) hormone receptors, and/or of human epidermal growth factor receptor-2 (HER-2). The breast cancer subtypes Luminal A, Luminal B, and HER-2-enriched express hormone/growth factor receptors and exhibit a favorable response to hormone receptor modulators and growth factor receptor antagonists. The triple-negative breast cancer subtype lacks the expression of hormone/growth factor receptors and responds only to cytotoxic conventional chemotherapy. The clinical limitations, due to the modest therapeutic responses of chemo-resistant cancer-initiating stem cells, emphasize the need for the identification of stem cells targeting testable alternatives for therapy-resistant breast cancer. Developed drug-resistant stem cell models exhibit upregulated expression of select cellular biomarker tumor spheroid (TS) formations and cluster of differentiation44 (CD44), DNA-binding protein (NANOG), and octamer-binding protein-4 (OCT-4) molecular biomarkers that represent novel experimentally modifiable quantitative endpoints. Naturally occurring dietary phytochemicals and nutritional herbs containing polyphenols, flavones, terpenes, saponins, lignans, and tannins have documented human consumption, lack systemic toxicity, lack phenotypic drug resistance, and exhibit preclinical efficacy. Constituent bioactive agents may provide testable stem cell-targeting alternatives. The present report provides an overview of (i) clinically relevant cellular models and drug-resistant cancer stem cell models for breast cancer subtypes, (ii) evidence for preclinical efficacy and mechanistic leads for natural phytochemicals and nutritional herbs, and (iii) the potential for the stem cell-targeting efficacy of natural bioactive agents as testable drug candidates for therapy-resistant breast cancer. Full article
(This article belongs to the Special Issue New Biomarkers and Therapy for Cancer Stem Cells)
20 pages, 1955 KiB  
Review
Saponins, the Unexplored Secondary Metabolites in Plant Defense: Opportunities in Integrated Pest Management
by Adnan Shakeel, Jewel Jameeta Noor, Uzma Jan, Aabida Gul, Zafar Handoo and Nasheeman Ashraf
Plants 2025, 14(6), 861; https://doi.org/10.3390/plants14060861 - 10 Mar 2025
Cited by 1 | Viewed by 3040
Abstract
Plants are exposed to a diverse range of biotic stressors, including fungi, bacteria, nematodes, insects and viruses. To combat these enemies, plants have developed an arsenal of defense mechanisms over time, among which secondary metabolites are the most effective. Moreover, to overcome the [...] Read more.
Plants are exposed to a diverse range of biotic stressors, including fungi, bacteria, nematodes, insects and viruses. To combat these enemies, plants have developed an arsenal of defense mechanisms over time, among which secondary metabolites are the most effective. Moreover, to overcome the negative impact of chemical pesticides, the plant’s secondary metabolites can be harnessed to develop novel disease management strategies. Alkaloids, flavonoids, terpenes and essential oils are major pathogen/pest-responsive secondary metabolite classes in plants. Among these, saponins have shown significant potential in suppressing a wide range of plant pathogens. However, they are yet to be explored thoroughly compared to other secondary metabolites in plant defense, and therefore, a low number of disease control agents exist in agri-markets based on saponins. Thus, this review aims to rectify this bias by identifying and acknowledging the significance of saponins as being on par with other classes of secondary metabolites in plant defense systems. It also provides the first holistic review on the role of saponins with known mechanisms against all of the major plant pathogens/pests. Furthermore, this review discusses the potential of saponin-rich crops in providing eco-friendly pest/pathogen management products for integrated pest management (IPM) and prospectives on the potential of saponin derivatives in developing novel biocides for sustainable agriculture. Full article
(This article belongs to the Special Issue Secondary Metabolites in Plants)
Show Figures

Figure 1

19 pages, 3742 KiB  
Article
Comparison of Secondary Metabolite Extraction Methods in Hamelia patens Jacq. and Their Inhibitory Effect on Fusarium oxysporum f. sp. radicis-lycopersici
by Daniel Jafet Valle Ortiz, Dolores Guadalupe Aguila Muñoz, María del Carmen Cruz López, Diana Verónica Cortés Espinosa, Martha Rosales Castro and Fabiola Eloísa Jiménez Montejo
Metabolites 2025, 15(1), 23; https://doi.org/10.3390/metabo15010023 - 6 Jan 2025
Viewed by 1827
Abstract
Background: Hamelia patens Jacq. (HP) is widely recognized in traditional medicine for its antimicrobial properties, which are attributed to secondary metabolites such as phenolic compounds, alkaloids, and terpenes. Fusarium oxysporum f. sp. radicis-lycopersici (Fo), a phytopathogenic fungus affecting economically important crops, is [...] Read more.
Background: Hamelia patens Jacq. (HP) is widely recognized in traditional medicine for its antimicrobial properties, which are attributed to secondary metabolites such as phenolic compounds, alkaloids, and terpenes. Fusarium oxysporum f. sp. radicis-lycopersici (Fo), a phytopathogenic fungus affecting economically important crops, is managed with fungicides like benzimidazoles and azoles. Excessive use of these compounds has led to resistance and environmental contamination, highlighting the need for sustainable alternatives. This study aimed to optimize the extraction of secondary metabolites from HP leaves and flowers, evaluate their antifungal activity, and assess the impact of extraction methods and plant parts on chemical composition and efficacy. Methods: Three extraction methods were employed: consecutive maceration (CM) using solvents of ascending polarity; total maceration (TM), which is a single-step methanol-based method; and ultrasound-assisted maceration (UAM) employing ultrasonic waves with methanol. Extracts were characterized by quantifying total phenols (TP), condensed tannins (TC), flavonoids (Fl), alkaloids (TA), sterols (TS), and saponins (S) using colorimetric assays and UPLC-MS. Multivariate analyses, including PCA, PLS-DA, OPLS-DA, and Pearson correlation, evaluated the relationships between the chemical profiles and antifungal activity. Results: Leaf extracts exhibited higher flavonoid and tannin contents than flower extracts. CMML showed the highest antifungal activity (IC50 3.7% w/v), which was associated with elevated levels of these compounds. Significant correlations linked antifungal activity with rutin (HP21) and kaempferol-3-O-β-rutinoside (HP29). Conclusions: Methanolic extracts of HP exhibited significant antifungal activity against Fo. These findings highlight the importance of optimizing extraction methods and selecting specific plant parts to enhance bioactive compound efficacy, offering a sustainable approach to pathogen management. Full article
Show Figures

Figure 1

26 pages, 4557 KiB  
Article
Ethanolic Extract of Averrhoa carambola Leaf Has an Anticancer Activity on Triple-Negative Breast Cancer Cells: An In Vitro Study
by Oscar F. Beas-Guzmán, Ariana Cabrera-Licona, Gustavo A. Hernández-Fuentes, Silvia G. Ceballos-Magaña, José Guzmán-Esquivel, Luis De-León-Zaragoza, Mario Ramírez-Flores, Janet Diaz-Martinez, Idalia Garza-Veloz, Margarita L. Martínez-Fierro, Iram P. Rodríguez-Sanchez, Gabriel Ceja-Espíritu, Carmen Meza-Robles, Víctor H. Cervantes-Kardasch and Iván Delgado-Enciso
Pharmaceutics 2025, 17(1), 2; https://doi.org/10.3390/pharmaceutics17010002 - 24 Dec 2024
Cited by 4 | Viewed by 2150
Abstract
Background/Objectives: Averrhoa carambola, or star fruit, is a shrub known for its medicinal properties, especially due to bioactive metabolites identified in its roots and fruit with anti-cancer activity. However, the biological effects of its leaves remain unexplored. This study aimed to [...] Read more.
Background/Objectives: Averrhoa carambola, or star fruit, is a shrub known for its medicinal properties, especially due to bioactive metabolites identified in its roots and fruit with anti-cancer activity. However, the biological effects of its leaves remain unexplored. This study aimed to assess the effects of ethanolic extract from A. carambola leaves on triple-negative breast cancer (TNBC), an aggressive subtype lacking specific therapy. Methods: Phytochemical analysis and HPLC profile and additional cell line evaluation employing MDA-MB-231 were carried out. Results: Phytochemical screening revealed that the ethanolic extract was rich in flavonoids, saponins, and steroids, demonstrating an antioxidant capacity of 45%. 1H NMR analysis indicated the presence of flavonoids, terpenes, and glycoside-like compounds. Cell viability assays showed a concentration-dependent decrease in viability, with an IC50 value of 20.89 μg/mL at 48 h. Clonogenic assays indicated significant inhibition of replicative immortality, with only 2.63% survival at 15 μg/mL. Migration, assessed through a wound healing assay, was reduced to 3.06% at 100 μg/mL, with only 16.23% of cells remaining attached. An additive effect was observed when combining lower concentrations of the extract with doxorubicin, indicating potential synergy. Conclusions: These results suggest that the ethanolic extract of A. carambola leaves contains metabolites with anti-cancer activity against TNBC cells, supporting further research into their bioactive compounds and therapeutic potential. Full article
(This article belongs to the Special Issue Pharmaceutical Applications of Plant Extracts, 2nd Edition)
Show Figures

Graphical abstract

38 pages, 2191 KiB  
Review
Anti-Aging Effect of Traditional Plant-Based Food: An Overview
by Gitishree Das, Srinivasan Kameswaran, Bellamkonda Ramesh, Manjunatha Bangeppagari, Rajat Nath, Anupam Das Talukdar, Han-Seung Shin and Jayanta Kumar Patra
Foods 2024, 13(23), 3785; https://doi.org/10.3390/foods13233785 - 25 Nov 2024
Cited by 5 | Viewed by 5680
Abstract
Aging is a complex process that involves many physiological mechanisms that gradually impair normal cellular and tissue function and make us more susceptible to diseases and death. It is influenced by intrinsic factors like cellular function and extrinsic factors like pollution and UV [...] Read more.
Aging is a complex process that involves many physiological mechanisms that gradually impair normal cellular and tissue function and make us more susceptible to diseases and death. It is influenced by intrinsic factors like cellular function and extrinsic factors like pollution and UV radiation. Recent scientific studies show that traditional plant-based foods and supplements can help mitigate the effects of aging. Nutraceuticals, which are dietary supplements with medicinal properties, have gained attention for their ability to prevent chronic and age-related diseases. Antioxidants like flavonoids, carotenoids, ascorbic acid, terpenes, tannins, saponins, alkaloids, minerals, etc. found in plants are key to managing oxidative stress, which is a major cause of aging. Well-known plant-based supplements from Bacopa monnieri, Curcuma longa, Emblica officinalis, Ginkgo biloba, Glycyrrhiza glabra, and Panax ginseng have been found to possess medicinal properties. These supplements have been shown to improve cognitive function, reduce oxidative stress, improve overall health, and potentially extend life and enhance the excellence of life. The obtained benefits from these plant species are due to the presence of their bioactive secondary metabolites, such as bacosides in Bacopa monnieri, curcumin in Curcuma longa, ginsenosides in Panax ginseng, and many more. These compounds not only protect against free radical damage but also modulate key biological pathways of aging. Also, traditional fermented foods (tempeh and kimchi), which are rich in probiotics and bioactive compounds, support gut health, boost immune function, and have anti-aging properties. The molecular mechanisms behind these benefits are the activation of nutrient-sensing pathways like AMPK, SIRT/NAD+, and mTOR, which are important for cellular homeostasis and longevity. This review shows the potential of traditional plant-based foods and dietary supplements for healthy aging, and more studies are needed to prove their efficacy and safety in humans. Incorporating these natural products into our diet may be a practical and effective way to counteract the effects of aging and overall well-being. The foremost goal of this review is to emphasize the importance of supporting the body’s antioxidant system by consuming the right balance of natural ingredients in the diet. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

18 pages, 1567 KiB  
Review
Current Evidence of Natural Products against Overweight and Obesity: Molecular Targets and Mechanisms of Action
by Cristina Alicia Elizalde-Romero, Nayely Leyva-López, Laura Aracely Contreras-Angulo, Rigoberto Cabanillas Ponce de-León, Libia Zulema Rodriguez-Anaya, Josefina León-Félix, J. Basilio Heredia, Saul Armando Beltrán-Ontiveros and Erick Paul Gutiérrez-Grijalva
Receptors 2024, 3(3), 362-379; https://doi.org/10.3390/receptors3030017 - 11 Jul 2024
Cited by 4 | Viewed by 2327
Abstract
Overweight and obesity are global health and economic concerns. This disease can affect every system of the human body and can lead to complications such as metabolic syndrome, diabetes, cancer, dyslipidemia, cardiovascular diseases, and hypertension, among others. Treatment may sometimes include diet, exercise, [...] Read more.
Overweight and obesity are global health and economic concerns. This disease can affect every system of the human body and can lead to complications such as metabolic syndrome, diabetes, cancer, dyslipidemia, cardiovascular diseases, and hypertension, among others. Treatment may sometimes include diet, exercise, drugs, and bariatric surgery. Nonetheless, not all people have access to these treatments, and public health strategies consider prevention the most important factor. In this regard, recent investigations are aiming to find alternatives and adjuvants for the treatment of obesity, its prevention, and the reversion of some of its complications, using natural sources of anti-obesogenic compounds like polyphenols, terpenes, alkaloids, and saponins, among others. In this review, we gather the most current information using PubMed, Google Scholar, Scopus, Cochrane, and the Web of Science. We present and discuss the current information about natural products that have shown anti-obesogenic effects at a molecular level. We also consider the impact of dietary habits and lifestyle on preventing overweight and obesity due to the evidence of the benefits of certain foods and compounds consumed regularly. We discuss mechanisms, pathways, and receptors involved in the modulation of obesity, especially those related to inflammation and oxidative stress linked to this disease, due to the relevance of these two aspects in developing complications. Full article
Show Figures

Figure 1

15 pages, 10719 KiB  
Article
Widely Targeted Metabolomic Analysis Reveals the Improvement in Panax notoginseng Triterpenoids Triggered by Arbuscular Mycorrhizal Fungi via UPLC–ESI–MS/MS
by Xing-Kai Zhang, Yue Wu, Xian-Nv Long, Xiao-Xu You, Di Chen, Yue Bi, Sen He and Guan-Hua Cao
Molecules 2024, 29(13), 3235; https://doi.org/10.3390/molecules29133235 - 8 Jul 2024
Cited by 1 | Viewed by 1948
Abstract
Panax notoginseng is a highly valued perennial medicinal herb in China and is widely used in clinical treatments. The main purpose of this study was to elucidate the changes in the composition of P. notoginseng saponins (PNSs), which are the main bioactive substances, [...] Read more.
Panax notoginseng is a highly valued perennial medicinal herb in China and is widely used in clinical treatments. The main purpose of this study was to elucidate the changes in the composition of P. notoginseng saponins (PNSs), which are the main bioactive substances, triggered by arbuscular mycorrhizal fungi (AMF) via ultrahigh-performance liquid chromatography–electrospray ionization–tandem mass spectrometry (UPLC–ESI–MS/MS). A total of 202 putative terpenoid metabolites were detected, of which 150 triterpene glycosides were identified, accounting for 74.26% of the total. Correlation analysis, principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS–DA) of the metabolites revealed that the samples treated with AMF (group Ce) could be clearly separated from the CK samples. In total, 49 differential terpene metabolites were identified between the Ce and CK groups, of which 38 and 11 metabolites were upregulated and downregulated, respectively, and most of the upregulated differentially abundant metabolites were mainly triterpene glycosides. The relative abundances of the two major notoginsenosides (MNs), ginsenosides Rd and Re, and 13 rare notoginsenosides (RNs), significantly increased. The differential saponins, especially RNs, were more easily clustered into one branch and had a high positive correlation. It could be concluded that the biosynthesis and accumulation of some RNs share the same pathways as those triggered by AMF. This study provides a new way to obtain more notoginsenoside resources, particularly RNs, and sheds new light on the scientization and rationalization of the use of AMF agents in the ecological planting of medicinal plants. Full article
(This article belongs to the Special Issue Chromatography and Extraction Techniques for Chemical Applications)
Show Figures

Graphical abstract

46 pages, 1890 KiB  
Review
Antimicrobial Metabolites of Caucasian Medicinal Plants as Alternatives to Antibiotics
by Marta Fik-Jaskółka, Valentina Mittova, Catherine Motsonelidze, Malkhaz Vakhania, Caterina Vicidomini and Giovanni N. Roviello
Antibiotics 2024, 13(6), 487; https://doi.org/10.3390/antibiotics13060487 - 24 May 2024
Cited by 15 | Viewed by 2959
Abstract
This review explores the potential of antimicrobial metabolites derived from Caucasian medicinal plants as alternatives to conventional antibiotics. With the rise of antibiotic resistance posing a global health threat, there is a pressing need to investigate alternative sources of antimicrobial agents. Caucasian medicinal [...] Read more.
This review explores the potential of antimicrobial metabolites derived from Caucasian medicinal plants as alternatives to conventional antibiotics. With the rise of antibiotic resistance posing a global health threat, there is a pressing need to investigate alternative sources of antimicrobial agents. Caucasian medicinal plants have traditionally been used for their therapeutic properties, and recent research has highlighted their potential as sources of antimicrobial compounds. Representatives of 15 families of Caucasian medicinal plant extracts (24 species) have been explored for their efficacy against these pathogens. The effect of these plants on Gram-positive and Gram-negative bacteria and fungi is discussed in this paper. By harnessing the bioactive metabolites present in these plants, this study aims to contribute to the development of new antimicrobial treatments that can effectively combat bacterial infections while minimizing the risk of resistance emergence. Herein we discuss the following classes of bioactive compounds exhibiting antimicrobial activity: phenolic compounds, flavonoids, tannins, terpenes, saponins, alkaloids, and sulfur-containing compounds of Allium species. The review discusses the pharmacological properties of selected Caucasian medicinal plants, the extraction and characterization of these antimicrobial metabolites, the mechanisms of action of antibacterial and antifungal plant compounds, and their potential applications in clinical settings. Additionally, challenges and future directions in the research of antimicrobial metabolites from Caucasian medicinal plants are addressed. Full article
Show Figures

Figure 1

40 pages, 12153 KiB  
Review
Antimicrobial Activity of Arthrospira (Former Spirulina) and Dunaliella Related to Recognized Antimicrobial Bioactive Compounds
by Yana Ilieva, Maya Margaritova Zaharieva, Hristo Najdenski and Alexander Dimitrov Kroumov
Int. J. Mol. Sci. 2024, 25(10), 5548; https://doi.org/10.3390/ijms25105548 - 19 May 2024
Cited by 17 | Viewed by 5532
Abstract
With the increasing rate of the antimicrobial resistance phenomenon, natural products gain our attention as potential drug candidates. Apart from being used as nutraceuticals and for biotechnological purposes, microalgae and phytoplankton have well-recognized antimicrobial compounds and proved anti-infectious potential. In this review, we [...] Read more.
With the increasing rate of the antimicrobial resistance phenomenon, natural products gain our attention as potential drug candidates. Apart from being used as nutraceuticals and for biotechnological purposes, microalgae and phytoplankton have well-recognized antimicrobial compounds and proved anti-infectious potential. In this review, we comprehensively outline the antimicrobial activity of one genus of cyanobacteria (Arthrospira, formerly Spirulina) and of eukaryotic microalgae (Dunaliella). Both, especially Arthrospira, are mostly used as nutraceuticals and as a source of antioxidants for health supplements, cancer therapy and cosmetics. Their diverse bioactive compounds provide other bioactivities and potential for various medical applications. Their antibacterial and antifungal activity vary in a broad range and are strain specific. There are strains of Arthrospira platensis with very potent activity and minimum inhibitory concentrations (MICs) as low as 2–15 µg/mL against bacterial fish pathogens including Bacillus and Vibrio spp. Arthrospira sp. has demonstrated an inhibition zone (IZ) of 50 mm against Staphylococcus aureus. Remarkable is the substantial amount of in vivo studies of Arthrospira showing it to be very promising for preventing vibriosis in shrimp and Helicobacter pylori infection and for wound healing. The innovative laser irradiation of the chlorophyll it releases can cause photodynamic destruction of bacteria. Dunaliella salina has exhibited MIC values lower than 300 µg/mL and an IZ value of 25.4 mm on different bacteria, while Dunaliella tertiolecta has demonstrated MIC values of 25 and 50 μg/mL against some Staphylococcus spp. These values fulfill the criteria for significant antimicrobial activity and sometimes are comparable or exceed the activity of the control antibiotics. The bioactive compounds which are responsible for that action are fatty acids including PUFAs, polysaccharides, glycosides, peptides, neophytadiene, etc. Cyanobacteria, such as Arthrospira, also particularly have antimicrobial flavonoids, terpenes, alkaloids, saponins, quinones and some unique-to-them compounds, such as phycobiliproteins, polyhydroxybutyrate, the peptide microcystin, etc. These metabolites can be optimized by using stress factors in a two-step process of fermentation in closed photobioreactors (PBRs). Full article
(This article belongs to the Special Issue Current Research in Antimicrobial Natural Products)
Show Figures

Figure 1

33 pages, 1960 KiB  
Review
Unleashed Treasures of Solanaceae: Mechanistic Insights into Phytochemicals with Therapeutic Potential for Combatting Human Diseases
by Saima Jan, Sana Iram, Ommer Bashir, Sheezma Nazir Shah, Mohammad Azhar Kamal, Safikur Rahman, Jihoe Kim and Arif Tasleem Jan
Plants 2024, 13(5), 724; https://doi.org/10.3390/plants13050724 - 4 Mar 2024
Cited by 10 | Viewed by 4816
Abstract
Plants that possess a diverse range of bioactive compounds are essential for maintaining human health and survival. The diversity of bioactive compounds with distinct therapeutic potential contributes to their role in health systems, in addition to their function as a source of nutrients. [...] Read more.
Plants that possess a diverse range of bioactive compounds are essential for maintaining human health and survival. The diversity of bioactive compounds with distinct therapeutic potential contributes to their role in health systems, in addition to their function as a source of nutrients. Studies on the genetic makeup and composition of bioactive compounds have revealed them to be rich in steroidal alkaloids, saponins, terpenes, flavonoids, and phenolics. The Solanaceae family, having a rich abundance of bioactive compounds with varying degrees of pharmacological activities, holds significant promise in the management of different diseases. Investigation into Solanum species has revealed them to exhibit a wide range of pharmacological properties, including antioxidant, hepatoprotective, cardioprotective, nephroprotective, anti-inflammatory, and anti-ulcerogenic effects. Phytochemical analysis of isolated compounds such as diosgenin, solamargine, solanine, apigenin, and lupeol has shown them to be cytotoxic in different cancer cell lines, including liver cancer (HepG2, Hep3B, SMMC-772), lung cancer (A549, H441, H520), human breast cancer (HBL-100), and prostate cancer (PC3). Since analysis of their phytochemical constituents has shown them to have a notable effect on several signaling pathways, a great deal of attention has been paid to identifying the biological targets and cellular mechanisms involved therein. Considering the promising aspects of bioactive constituents of different Solanum members, the main emphasis was on finding and reporting notable cultivars, their phytochemical contents, and their pharmacological properties. This review offers mechanistic insights into the bioactive ingredients intended to treat different ailments with the least harmful effects for potential applications in the advancement of medical research. Full article
(This article belongs to the Special Issue Bioactivities of Nature Products)
Show Figures

Figure 1

16 pages, 1223 KiB  
Article
Phytochemical Study, FTIR and GC-MS Characterization and Evaluation of the Antioxidant Activity of Letestua durissima Extracts
by Ley-Fleury Ella Nkogo, Marlain Stevy Mikala Mouendou, Stéphane Dumarçay, Prosper Edou Engonga and Philippe Gérardin
Forests 2024, 15(3), 429; https://doi.org/10.3390/f15030429 - 23 Feb 2024
Cited by 1 | Viewed by 1550
Abstract
The current study focused on extract content, phytochemical screening, GC-MS analysis, infrared analysis and antioxidant activity evaluation of bark, sapwood and heartwood of Letestua durissima, commonly called Kong Afane in Gabon, using DPPH and ABTS methods. The highest extract contents, reaching 37.3%, [...] Read more.
The current study focused on extract content, phytochemical screening, GC-MS analysis, infrared analysis and antioxidant activity evaluation of bark, sapwood and heartwood of Letestua durissima, commonly called Kong Afane in Gabon, using DPPH and ABTS methods. The highest extract contents, reaching 37.3%, were observed in the bark. Phytochemical tests revealed the presence of alkaloids, polyphenols, sterols, terpenes, flavonoids and saponins in the extracts. The quantitative results highlighted high concentrations of polyphenols (95.56 mg GAE g−1 of dry extract in the acetone extract), condensed tannins (113.45 mg CE g−1 of dry extract in the extract toluene–ethanol) and flavonoids (20.26 mg CE g−1 of dry extract in the toluene–ethanol extract) in the bark. Regarding the evaluation of antioxidant activity, the results showed a significant capacity of the extracts to scavenge free radicals. This activity was more pronounced in the toluene–ethanol extracts, with an IC50 of 0.66 for the ABTS method and 2.39 for that of DPPH. The GC-MS identification of phenolic compounds such as hydroxybenzoic acid, protocatechuic acid, gallic acid, catechin and triterpenes could explain the high reactivity of our extracts as antioxidants. Full article
(This article belongs to the Special Issue Wood Chemistry in a Changing Global Environment)
Show Figures

Figure 1

14 pages, 6874 KiB  
Article
PgDDS Changes the Plant Growth of Transgenic Aralia elata and Improves the Production of Re and Rg3 in Its Leaves
by Wenhua Guo, Yue Zhao, Honghao Xu, Yuxin Xia, Lei Tao and Xiangling You
Int. J. Mol. Sci. 2024, 25(3), 1945; https://doi.org/10.3390/ijms25031945 - 5 Feb 2024
Cited by 3 | Viewed by 1913
Abstract
Aralia elata (Miq.) Seem is a medicinal plant that shares a common pathway for the biosynthesis of triterpenoid saponins with Panax ginseng. Here, we transferred the dammarenediol-II synthase gene from P. ginseng (PgDDS; GenBank: AB122080.1) to A. elata. The [...] Read more.
Aralia elata (Miq.) Seem is a medicinal plant that shares a common pathway for the biosynthesis of triterpenoid saponins with Panax ginseng. Here, we transferred the dammarenediol-II synthase gene from P. ginseng (PgDDS; GenBank: AB122080.1) to A. elata. The growth of 2-year-old transgenic plants (L27; 9.63 cm) was significantly decreased compared with wild-type plants (WT; 74.97 cm), and the leaflet shapes and sizes of the transgenic plants differed from those of the WT plants. Based on a terpene metabolome analysis of leaf extracts from WT, L13, and L27 plants, a new structural skeleton for ursane-type triterpenoid saponins was identified. Six upregulated differentially accumulated metabolites (DAMs) were detected, and the average levels of Rg3 and Re in the leaves of the L27 plants were 42.64 and 386.81 μg/g, respectively, increased significantly compared with the WT plants (15.48 and 316.96 μg/g, respectively). Thus, the expression of PgDDS in A. elata improved its medicinal value. Full article
(This article belongs to the Special Issue Omics Study to Uncover Signalling and Gene Regulation in Plants 2.0)
Show Figures

Graphical abstract

20 pages, 6080 KiB  
Article
Enhancement of Female Rat Fertility via Ethanolic Extract from Nigella sativa L. (Black Cumin) Seeds Assessed via HPLC-ESI-MS/MS and Molecular Docking
by Ahmed M. Nagy, Mohamed F. Abdelhameed, Asmaa S. Abd Elkarim, Tushar C. Sarker, Ahmed M. Abd-ElGawad, Abdelsamed I. Elshamy and Abdelmohsen M. Hammam
Molecules 2024, 29(3), 735; https://doi.org/10.3390/molecules29030735 - 5 Feb 2024
Cited by 9 | Viewed by 3740
Abstract
The characteristic chemical composition of Nigella seeds is directly linked to their beneficial properties. This study aimed to investigate the phytochemical composition of Nigella sativa seeds using a 100% ethanolic extract using HPLC-ESI-MS/MS. Additionally, it explored the potential biological effects of the extract [...] Read more.
The characteristic chemical composition of Nigella seeds is directly linked to their beneficial properties. This study aimed to investigate the phytochemical composition of Nigella sativa seeds using a 100% ethanolic extract using HPLC-ESI-MS/MS. Additionally, it explored the potential biological effects of the extract on female rat reproduction. Follicle Stimulating Hormone (FSH), Luteinizing Hormone (LH), Estrogen (E2), and Progesterone (P4) hormone levels were also assessed, along with the morphological and histological effects of the extract on ovarian, oviductal, and uterine tissues. Molecular docking was performed to understand the extract’s activity and its role in regulating female reproduction by assessing its binding affinity to hormonal receptors. Twenty metabolites, including alkaloids, saponins, terpenes, flavonoids, phenolic acids, and fatty acids, were found in the ethanolic extract of N. sativa seeds through the HPLC-ESI-MS/MS study. The N. sativa seed extract exhibited strong estrogenic and LH-like activities (p < 0.05) with weak FSH-like activity. Furthermore, it increased the serum levels of LH (p < 0.05), P4 hormones (p < 0.001), and E2 (p < 0.0001). Molecular docking results displayed a strong interaction with Erβ, LH, GnRH, and P4 receptors, respectively. Based on these findings, N. sativa seeds demonstrated hormone-like activities, suggesting their potential as a treatment for improving female fertility. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Product in Food)
Show Figures

Figure 1

Back to TopTop