Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = terahertz massive MIMO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 820 KB  
Article
Optimized Hybrid Precoding for Wideband Terahertz Massive MIMO Systems with Angular Spread
by Ye Wang, Chuxin Chen, Ran Zhang and Yiqiao Mei
Electronics 2025, 14(14), 2830; https://doi.org/10.3390/electronics14142830 - 15 Jul 2025
Viewed by 1151
Abstract
Terahertz (THz) communication is regarded as a promising technology for future 6G networks because of its advances in providing a bandwidth that is orders of magnitude wider than current wireless networks. However, the large bandwidth and the large number of antennas in THz [...] Read more.
Terahertz (THz) communication is regarded as a promising technology for future 6G networks because of its advances in providing a bandwidth that is orders of magnitude wider than current wireless networks. However, the large bandwidth and the large number of antennas in THz massive multiple-input multiple-output (MIMO) systems induce a pronounced beam split effect, leading to a serious array gain loss. To mitigate the beam split effect, this paper considers a delay-phase precoding (DPP) architecture in which a true-time-delay (TTD) network is introduced between radio-frequency (RF) chains and phase shifters (PSs) in the standard hybrid precoding architecture. Then, we propose a fast Riemannian conjugate gradient optimization-based alternating minimization (FRCG-AltMin) algorithm to jointly optimize the digital precoding, analog precoding, and delay matrix, aiming to maximize the spectral efficiency. Different from the existing method, which solves an approximated version of the analog precoding design problem, we adopt an FRCG method to deal with the original problem directly. Simulation results demonstrate that our proposed algorithm can improve the spectral efficiency, and achieve superior performance over the existing algorithm for wideband THz massive MIMO systems with angular spread. Full article
Show Figures

Figure 1

54 pages, 17044 KB  
Review
Perspectives and Research Challenges in Wireless Communications Hardware for the Future Internet and Its Applications Services
by Dimitrios G. Arnaoutoglou, Tzichat M. Empliouk, Theodoros N. F. Kaifas, Constantinos L. Zekios and George A. Kyriacou
Future Internet 2025, 17(6), 249; https://doi.org/10.3390/fi17060249 - 31 May 2025
Cited by 2 | Viewed by 3159
Abstract
The transition from 5G to 6G wireless systems introduces new challenges at the physical layer, including the need for higher frequency operations, massive MIMO deployment, advanced beamforming techniques, and sustainable energy harvesting mechanisms. A plethora of feature articles, review and white papers, and [...] Read more.
The transition from 5G to 6G wireless systems introduces new challenges at the physical layer, including the need for higher frequency operations, massive MIMO deployment, advanced beamforming techniques, and sustainable energy harvesting mechanisms. A plethora of feature articles, review and white papers, and roadmaps elaborate on the perspectives and research challenges of wireless systems, in general, including both unified physical and cyber space. Hence, this paper presents a comprehensive review of the technological challenges and recent advancements in wireless communication hardware that underpin the development of next-generation networks, particularly 6G. Emphasizing the physical layer, the study explores critical enabling technologies including beamforming, massive MIMO, reconfigurable intelligent surfaces (RIS), millimeter-wave (mmWave) and terahertz (THz) communications, wireless power transfer, and energy harvesting. These technologies are analyzed in terms of their functional roles, implementation challenges, and integration into future wireless infrastructure. Beyond traditional physical layer components, the paper also discusses the role of reconfigurable RF front-ends, innovative antenna architectures, and user-end devices that contribute to the adaptability and efficiency of emerging communication systems. In addition, the inclusion of application-driven paradigms such as digital twins highlights how new use cases are shaping design requirements and pushing the boundaries of hardware capabilities. By linking foundational physical-layer technologies with evolving application demands, this work provides a holistic perspective aimed at guiding future research directions and informing the design of scalable, energy-efficient, and resilient wireless communication platforms for the Future Internet. Specifically, we first try to identify the demands and, in turn, explore existing or emerging technologies that have the potential to meet these needs. Especially, there will be an extended reference about the state-of-the-art antennas for massive MIMO terrestrial and non-terrestrial networks. Full article
(This article belongs to the Special Issue Joint Design and Integration in Smart IoT Systems)
Show Figures

Figure 1

25 pages, 2878 KB  
Review
Optimizing Spectral Utilization in Healthcare Internet of Things
by Adeel Iqbal, Ali Nauman, Yazdan Ahmad Qadri and Sung Won Kim
Sensors 2025, 25(3), 615; https://doi.org/10.3390/s25030615 - 21 Jan 2025
Cited by 6 | Viewed by 3202
Abstract
The mainstream adoption of Internet of Things (IoT) devices for health and lifestyle tracking has revolutionized health monitoring systems. Sixth-generation (6G) cellular networks enable IoT healthcare services to reduce the pressures on already resource-constrained facilities, leveraging enhanced ultra-reliable low-latency communication (eURLLC) to make [...] Read more.
The mainstream adoption of Internet of Things (IoT) devices for health and lifestyle tracking has revolutionized health monitoring systems. Sixth-generation (6G) cellular networks enable IoT healthcare services to reduce the pressures on already resource-constrained facilities, leveraging enhanced ultra-reliable low-latency communication (eURLLC) to make sure critical health data are transmitted with minimal delay. Any delay or information loss can result in serious consequences, making spectrum availability a crucial bottleneck. This study systematically identifies challenges in optimizing spectrum utilization in healthcare IoT (H-IoT) networks, focusing on issues such as dynamic spectrum allocation, interference management, and prioritization of critical medical devices. To address these challenges, the paper highlights emerging solutions, including artificial intelligence-based spectrum management, edge computing integration, and advanced network architectures such as massive multiple-input multiple-output (mMIMO) and terahertz (THz) communication. We identify gaps in the existing methodologies and provide potential research directions to enhance the efficiency and reliability of eURLLC in healthcare environments. These findings offer a roadmap for future advancements in H-IoT systems and form the basis of our recommendations, emphasizing the importance of tailored solutions for spectrum management in the 6G era. Full article
(This article belongs to the Special Issue Sensors and Smart City)
Show Figures

Figure 1

16 pages, 724 KB  
Article
Optimization of Signal Detection Using Deep CNN in Ultra-Massive MIMO
by Chittapon Keawin, Apinya Innok and Peerapong Uthansakul
Telecom 2024, 5(2), 280-295; https://doi.org/10.3390/telecom5020014 - 29 Mar 2024
Cited by 7 | Viewed by 2708
Abstract
This paper addresses the evolving landscape of communication technology, emphasizing the pivotal role of 5G and the emerging 6G networks in accommodating the increasing demand for high-speed and accurate data transmission. We delve into the advancements in 5G technology, particularly the implementation of [...] Read more.
This paper addresses the evolving landscape of communication technology, emphasizing the pivotal role of 5G and the emerging 6G networks in accommodating the increasing demand for high-speed and accurate data transmission. We delve into the advancements in 5G technology, particularly the implementation of millimeter wave (mmWave) frequencies ranging from 30 to 300 GHz. These advancements are instrumental in enhancing applications requiring massive data transmission and reception, facilitated by massive MIMO (multiple input multiple output) systems. Looking towards the future, this paper forecasts the necessity for faster data transmission technologies, shifting the focus toward the development of 6G networks. These future networks are projected to employ ultra-massive MIMO systems in the terahertz band, operating within 0.1–10 THz frequency ranges. A significant part of our research is dedicated to exploring advanced signal detection techniques, helping to mitigate the impact of interference and improve accuracy in data transmission and enabling more efficient communication, even in environments with high levels of noise, and including zero forcing (ZF) and minimum mean square error (MMSE) methods, which form the cornerstone of our proposed approach. Additionally, signal detection contributes to the development of new communication technologies such as 5G and 6G, which require a high data transmission efficiency and rapid response speeds. The core contribution of this study lies in the application of deep learning to signal detection in ultra-massive MIMO systems, a critical component of 6G technology. We compare this approach with existing ELMx-based machine learning methods, focusing on algorithmic efficiency and computational performance. Our comparative analysis included the regularized extreme learning machine (RELM) and the outlier robust extreme learning machine (ORELM), juxtaposed with ZF and MMSE methods. Simulation results indicated the superiority of our convolutional neural network for signal detection (CNN-SD) over the traditional ELMx-based, ZF, and MMSE methods, particularly in terms of channel capacity and bit error rate. Furthermore, we demonstrate the computational efficiency and reduced complexity of the CNN-SD method, underscoring its suitability for future expansive MIMO systems. Full article
Show Figures

Figure 1

29 pages, 1070 KB  
Review
6G Networks and the AI Revolution—Exploring Technologies, Applications, and Emerging Challenges
by Robin Chataut, Mary Nankya and Robert Akl
Sensors 2024, 24(6), 1888; https://doi.org/10.3390/s24061888 - 15 Mar 2024
Cited by 147 | Viewed by 28313
Abstract
In the rapidly evolving landscape of wireless communication, each successive generation of networks has achieved significant technological leaps, profoundly transforming the way we connect and interact. From the analog simplicity of 1G to the digital prowess of 5G, the journey of mobile networks [...] Read more.
In the rapidly evolving landscape of wireless communication, each successive generation of networks has achieved significant technological leaps, profoundly transforming the way we connect and interact. From the analog simplicity of 1G to the digital prowess of 5G, the journey of mobile networks has been marked by constant innovation and escalating demands for faster, more reliable, and more efficient communication systems. As 5G becomes a global reality, laying the foundation for an interconnected world, the quest for even more advanced networks leads us to the threshold of the sixth-generation (6G) era. This paper presents a hierarchical exploration of 6G networks, poised at the forefront of the next revolution in wireless technology. This study delves into the technological advancements that underpin the need for 6G, examining its key features, benefits, and key enabling technologies. We dissect the intricacies of cutting-edge innovations like terahertz communication, ultra-massive MIMO, artificial intelligence (AI), machine learning (ML), quantum communication, and reconfigurable intelligent surfaces. Through a meticulous analysis, we evaluate the strengths, weaknesses, and state-of-the-art research in these areas, offering a wider view of the current progress and potential applications of 6G networks. Central to our discussion is the transformative role of AI in shaping the future of 6G networks. By integrating AI and ML, 6G networks are expected to offer unprecedented capabilities, from enhanced mobile broadband to groundbreaking applications in areas like smart cities and autonomous systems. This integration heralds a new era of intelligent, self-optimizing networks that promise to redefine the parameters of connectivity and digital interaction. We also address critical challenges in the deployment of 6G, from technological hurdles to regulatory concerns, providing a holistic assessment of potential barriers. By highlighting the interplay between 6G and AI technologies, this study maps out the current landscape and lights the path forward in this rapidly evolving domain. This paper aims to be a cornerstone resource, providing essential insights, addressing unresolved research questions, and stimulating further investigation into the multifaceted realm of 6G networks. By highlighting the synergy between 6G and AI technologies, we aim to illuminate the path forward in this rapidly evolving field. Full article
Show Figures

Figure 1

15 pages, 3651 KB  
Article
Imbalanced Learning-Enhanced Beam Codebooks towards Imbalanced User Distribution in Millimeter Wave and Terahertz Massive MIMO Systems
by Zhiheng Chen, Pei Liu and Kehao Wang
Electronics 2023, 12(23), 4768; https://doi.org/10.3390/electronics12234768 - 24 Nov 2023
Viewed by 1682
Abstract
Millimeter wave (mmWave) and terahertz (THz) massive MIMO architectures are pivotal in the advancement of mobile communications. These systems conventionally utilize codebooks to facilitate initial connection and to manage information transmission tasks. Traditional codebooks, however, are typically composed of numerous single-lobe beams, thus [...] Read more.
Millimeter wave (mmWave) and terahertz (THz) massive MIMO architectures are pivotal in the advancement of mobile communications. These systems conventionally utilize codebooks to facilitate initial connection and to manage information transmission tasks. Traditional codebooks, however, are typically composed of numerous single-lobe beams, thus incurring substantial beam training overhead. While neural network-based approaches have been proposed to mitigate the beam training load, they sometimes fail to adequately consider the minority users dispersed across various regions. The fairness of the codebook coverage relies on addressing this problem. Therefore, we propose an imbalanced learning (IL) methodology for beam codebook construction, explicitly designed for scenarios characterized by an imbalanced user distribution. Our method begins with a pre-clustering phase, where user channels are divided into subsets based on their power response to combining vectors across distinct subareas. Then, each subset is refined by a dedicated sub-model, which contributes to the global model within each IL iteration. To facilitate the information exchange among sub-models during global updates, we introduce the focal loss mechanism. Our simulation results substantiate the efficacy of our IL framework in enhancing the performance of mmWave and THz massive MIMO systems under the conditions of imperfect channel state information and imbalanced user distribution. Full article
(This article belongs to the Special Issue Advanced Digital Signal Processing for Future Digital Communications)
Show Figures

Figure 1

22 pages, 8728 KB  
Perspective
Technology Trends for Massive MIMO towards 6G
by Yiming Huo, Xingqin Lin, Boya Di, Hongliang Zhang, Francisco Javier Lorca Hernando, Ahmet Serdar Tan, Shahid Mumtaz, Özlem Tuğfe Demir and Kun Chen-Hu
Sensors 2023, 23(13), 6062; https://doi.org/10.3390/s23136062 - 30 Jun 2023
Cited by 66 | Viewed by 13205
Abstract
At the dawn of the next-generation wireless systems and networks, massive multiple-input multiple-output (MIMO) in combination with leading-edge technologies, methodologies, and architectures are poised to be a cornerstone technology. Capitalizing on its successful integration and scalability within 5G and beyond, massive MIMO has [...] Read more.
At the dawn of the next-generation wireless systems and networks, massive multiple-input multiple-output (MIMO) in combination with leading-edge technologies, methodologies, and architectures are poised to be a cornerstone technology. Capitalizing on its successful integration and scalability within 5G and beyond, massive MIMO has proven its merits and adaptability. Notably, a series of evolutionary advancements and revolutionary trends have begun to materialize in recent years, envisioned to redefine the landscape of future 6G wireless systems and networks. In particular, the capabilities and performance of future massive MIMO systems will be amplified through the incorporation of cutting-edge technologies, structures, and strategies. These include intelligent omni-surfaces (IOSs)/intelligent reflecting surfaces (IRSs), artificial intelligence (AI), Terahertz (THz) communications, and cell-free architectures. In addition, an array of diverse applications built on the foundation of massive MIMO will continue to proliferate and thrive. These encompass wireless localization and sensing, vehicular communications, non-terrestrial communications, remote sensing, and inter-planetary communications, among others. Full article
(This article belongs to the Special Issue Massive MIMO Systems for 5G and beyond 5G Communication Networks)
Show Figures

Figure 1

10 pages, 1421 KB  
Article
Adaptive Beam Splitting-Based Broadband Hybrid Precoding for Terahertz Massive MIMO
by Lei Xu, Yu Liu, Jing Chang, Hongyu Fang and Xiaohui Li
Sensors 2023, 23(4), 1968; https://doi.org/10.3390/s23041968 - 9 Feb 2023
Cited by 2 | Viewed by 2644
Abstract
Terahertz massive MIMO systems can be used in the local area network (LAN) scene of maritime communication and has great application prospects. To solve the problems of excessive beam training overhead in beam tracking and beam splitting in beam aggregation, a broadband hybrid [...] Read more.
Terahertz massive MIMO systems can be used in the local area network (LAN) scene of maritime communication and has great application prospects. To solve the problems of excessive beam training overhead in beam tracking and beam splitting in beam aggregation, a broadband hybrid precoding (HP) is proposed. First, an additional delayer is introduced between each phase shifter and the corresponding antenna in the classical sub-connected HP structure. Then, by precisely designing the time delay of the delayer and the phase shift of the phase shifter, broadband beams with flexible and controllable coverage can be generated. Finally, the simulation results verify that the proposed HP can achieve fast-tracking and high-energy-efficient communication for multiple mobile users. Full article
(This article belongs to the Special Issue Enabling Technologies for 6G Maritime Communications)
Show Figures

Figure 1

23 pages, 18584 KB  
Article
System-Level Assessment of Low Complexity Hybrid Precoding Designs for Massive MIMO Downlink Transmissions in Beyond 5G Networks
by João Pedro Pavia, Vasco Velez, Nuno Souto, Marco Ribeiro, Pedro Sebastião and Américo Correia
Appl. Sci. 2022, 12(6), 2812; https://doi.org/10.3390/app12062812 - 9 Mar 2022
Cited by 2 | Viewed by 2902
Abstract
The fast growth experienced by the telecommunications field during the last few decades has been motivating the academy and the industry to invest in the design, testing and deployment of new evolutions of wireless communication systems. Terahertz (THz) communication represents one of the [...] Read more.
The fast growth experienced by the telecommunications field during the last few decades has been motivating the academy and the industry to invest in the design, testing and deployment of new evolutions of wireless communication systems. Terahertz (THz) communication represents one of the possible technologies to explore in order to achieve the desired achievable rates above 100 Gbps and the extremely low latency required in many envisioned applications. Despite the potentialities, it requires proper system design, since working in the THz band brings a set of challenges, such as the reflection and scattering losses through the transmission path, the high dependency with distance and the severe hardware constraints. One key approach for overcoming some of these challenges relies on the use of massive/ultramassive antenna arrays combined with hybrid precoders based on fully connected phase-shifter architectures or partially connected architectures, such as arrays of subarrays (AoSAs) or dynamic AoSAs (DAoSAs). Through this strategy, it is possible to obtain very high-performance gains while drastically simplifying the practical implementation and reducing the overall power consumption of the system when compared to a fully digital approach. Although these types of solutions have been previously proposed to address some of the limitations of mmWave/THz communications, a lack between link-level and system-level analysis is commonly verified. In this paper, we present a thorough system-level assessment of a cloud radio access network (C-RAN) for beyond 5G (B5G) systems where the access points (APs) operate in the mmWave/THz bands, supporting multi-user MIMO (MU-MIMO) transmission with massive/ultra-massive antenna arrays combined with low-complexity hybrid precoding architectures. Results showed that the C-RAN deployments in two indoor office scenarios for the THz were capable of achieving good throughput and coverage performances, with only a small compromise in terms of gains when adopting reduced complexity hybrid precoders. Furthermore, we observed that the indoor-mixed office scenario can provide higher throughput and coverage performances independently of the cluster size when compared to the indoor-open office scenario. Full article
(This article belongs to the Special Issue Transmission Techniques for 5G and Beyond, Volume Ⅱ)
Show Figures

Figure 1

29 pages, 4191 KB  
Review
Revolution or Evolution? Technical Requirements and Considerations towards 6G Mobile Communications
by Saddam Alraih, Ibraheem Shayea, Mehran Behjati, Rosdiadee Nordin, Nor Fadzilah Abdullah, Asma’ Abu-Samah and Dalia Nandi
Sensors 2022, 22(3), 762; https://doi.org/10.3390/s22030762 - 20 Jan 2022
Cited by 129 | Viewed by 12208
Abstract
Ever since the introduction of fifth generation (5G) mobile communications, the mobile telecommunications industry has been debating whether 5G is an “evolution” or “revolution” from the previous legacy mobile networks, but now that 5G has been commercially available for the past few years, [...] Read more.
Ever since the introduction of fifth generation (5G) mobile communications, the mobile telecommunications industry has been debating whether 5G is an “evolution” or “revolution” from the previous legacy mobile networks, but now that 5G has been commercially available for the past few years, the research direction has recently shifted towards the upcoming generation of mobile communication system, known as the sixth generation (6G), which is expected to drastically provide significant and evolutionary, if not revolutionary, improvements in mobile networks. The promise of extremely high data rates (in terabits), artificial intelligence (AI), ultra-low latency, near-zero/low energy, and immense connected devices is expected to enhance the connectivity, sustainability, and trustworthiness and provide some new services, such as truly immersive “extended reality” (XR), high-fidelity mobile hologram, and a new generation of entertainment. Sixth generation and its vision are still under research and open for developers and researchers to establish and develop their directions to realize future 6G technology, which is expected to be ready as early as 2028. This paper reviews 6G mobile technology, including its vision, requirements, enabling technologies, and challenges. Meanwhile, a total of 11 communication technologies, including terahertz (THz) communication, visible light communication (VLC), multiple access, coding, cell-free massive multiple-input multiple-output (CF-mMIMO) zero-energy interface, intelligent reflecting surface (IRS), and infusion of AI/machine learning (ML) in wireless transmission techniques, are presented. Moreover, this paper compares 5G and 6G in terms of services, key technologies, and enabling communications techniques. Finally, it discusses the crucial future directions and technology developments in 6G. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

11 pages, 658 KB  
Article
Floquet Spectral Almost-Periodic Modulation of Massive Finite and Infinite Strongly Coupled Arrays: Dense-Massive-MIMO, Intelligent-Surfaces, 5G, and 6G Applications
by Hamdi Bilel and Aguili Taoufik
Electronics 2022, 11(1), 36; https://doi.org/10.3390/electronics11010036 - 23 Dec 2021
Cited by 4 | Viewed by 4965
Abstract
In this study, we introduce a new formulation based on Floquet (Fourier) spectral analysis combined with a spectral modulation technique (and its spatial form) to study strongly coupled sublattices predefined in the infinite and large finite extent of almost-periodic antenna arrays (e.g., metasurfaces). [...] Read more.
In this study, we introduce a new formulation based on Floquet (Fourier) spectral analysis combined with a spectral modulation technique (and its spatial form) to study strongly coupled sublattices predefined in the infinite and large finite extent of almost-periodic antenna arrays (e.g., metasurfaces). This analysis is very relevant for dense-massive-MIMO, intelligent-surfaces, 5G, and 6G applications (used for very small areas with a large number of elements such as millimeter and terahertz waves applications). The numerical method that is adopted to model the structure is the method of moments simplified by equivalent circuits MoM GEC. Other numerical methods (such as the ASM-array scanning method and the windowing Fourier method) used this analysis in their kernel to treat periodic and pseudo-periodic (or quasi-periodic) arrays. Full article
(This article belongs to the Topic Antennas)
Show Figures

Figure 1

15 pages, 2770 KB  
Article
Phase Shift Optimization Algorithm for Achievable Rate Maximization in Reconfigurable Intelligent Surface-Assisted THz Communications
by João Praia, João Pedro Pavia, Nuno Souto and Marco Ribeiro
Electronics 2022, 11(1), 18; https://doi.org/10.3390/electronics11010018 - 22 Dec 2021
Cited by 11 | Viewed by 4471
Abstract
Terahertz (THz) band communications are considered a crucial technology to support future applications, such as ultra-high bit rate wireless local area networks, in the next generation of wireless communication systems. In this work, we consider an ultra-massive multiple-input multiple-output (UM-MIMO) THz communication system [...] Read more.
Terahertz (THz) band communications are considered a crucial technology to support future applications, such as ultra-high bit rate wireless local area networks, in the next generation of wireless communication systems. In this work, we consider an ultra-massive multiple-input multiple-output (UM-MIMO) THz communication system operating in a typical indoor scenario where the direct link between the transmitter and receiver is obstructed due to surrounding obstacles. To help establish communication, we assume the aid of a nearby reconfigurable intelligent surface (RIS) whose phase shifts can be adjusted. To configure the individual phase shifts of the RIS elements, we formulate the problem as a constrained achievable rate maximization. Due to the typical large dimensions of this optimization problem, we apply the accelerated proximal gradient (APG) method, which results in a low complexity algorithm that copes with the non-convex phase shift constraint through simple element-wise normalization. Our numerical results demonstrate the effectiveness of the proposed algorithm even when considering realistic discrete phase shifts’ quantization and imperfect channel knowledge. Furthermore, comparison against existing alternatives reveals improvements between 30% and 120% in terms of range, for a reference rate of 100 Gbps when using the proposed approach with only 81 RIS elements. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

26 pages, 2593 KB  
Article
Low Complexity Hybrid Precoding Designs for Multiuser mmWave/THz Ultra Massive MIMO Systems
by João Pedro Pavia, Vasco Velez, Renato Ferreira, Nuno Souto, Marco Ribeiro, João Silva and Rui Dinis
Sensors 2021, 21(18), 6054; https://doi.org/10.3390/s21186054 - 9 Sep 2021
Cited by 15 | Viewed by 4263
Abstract
Millimeter-wave and terahertz technologies have been attracting attention from the wireless research community since they can offer large underutilized bandwidths which can enable the support of ultra-high-speed connections in future wireless communication systems. While the high signal attenuation occurring at these frequencies requires [...] Read more.
Millimeter-wave and terahertz technologies have been attracting attention from the wireless research community since they can offer large underutilized bandwidths which can enable the support of ultra-high-speed connections in future wireless communication systems. While the high signal attenuation occurring at these frequencies requires the adoption of very large (or the so-called ultra-massive) antenna arrays, in order to accomplish low complexity and low power consumption, hybrid analog/digital designs must be adopted. In this paper we present a hybrid design algorithm suitable for both mmWave and THz multiuser multiple-input multiple-output (MIMO) systems, which comprises separate computation steps for the digital precoder, analog precoder and multiuser interference mitigation. The design can also incorporate different analog architectures such as phase shifters, switches and inverters, antenna selection and so on. Furthermore, it is also applicable for different structures, namely fully-connected structures, arrays of subarrays (AoSA) and dynamic arrays of subarrays (DAoSA), making it suitable for the support of ultra-massive MIMO (UM-MIMO) in severely hardware constrained THz systems. We will show that, by using the proposed approach, it is possible to achieve good trade-offs between spectral efficiency and simplified implementation, even as the number of users and data streams increases. Full article
(This article belongs to the Special Issue Transmission Techniques for Future Global Mobile Systems)
Show Figures

Figure 1

12 pages, 1985 KB  
Article
On the 5G and Beyond
by Mário Marques da Silva and João Guerreiro
Appl. Sci. 2020, 10(20), 7091; https://doi.org/10.3390/app10207091 - 12 Oct 2020
Cited by 65 | Viewed by 8053
Abstract
This article provides an overview of the fifth generation of cellular communications (5G) and beyond. It presents the transmission techniques of current 5G communications and those expected of future developments, namely a brief study of non-orthogonal multiple access (NOMA) using the single carrier [...] Read more.
This article provides an overview of the fifth generation of cellular communications (5G) and beyond. It presents the transmission techniques of current 5G communications and those expected of future developments, namely a brief study of non-orthogonal multiple access (NOMA) using the single carrier with frequency domain equalization (SC-FDE) block transmission technique, evidencing its added value in terms of spectral efficiency. An introduction to the sixth generation of cellular communications (6G) is also provided. The insertion of 5G and 6G within the Fourth Industrial Revolution framework (also known as Industry 4.0) is also dealt with. Consisting of a change in paradigm, when compared to previous generations, 5G supports a myriad of new services based on the Internet of things (IoT) and on vehicle-to-vehicle (V2V) communications, supporting technologies such as autonomous driving, smart cities, and remote surgery. The new services provided by 5G are supported by new techniques, such as millimeter waves (mm-wave), in addition to traditional microwave communication, and by massive multiple-input multiple-output (m-MIMO) technology. These techniques were not employed in the fourth generation of cellular communications (4G). While 5G plays an important role in the initial implementation of the Fourth Industrial Revolution, 6G will address a number of new services such as virtual reality (VR), augmented reality (AR), holographic services, the advanced Internet of things (IoT), AI-infused applications, wireless brain–computer interaction (BCI), and mobility at higher speeds. The current research on systems beyond 5G indicates that these applications shall be supported by new MIMO techniques and make use of terahertz (THz) bands. Full article
(This article belongs to the Special Issue Transmission Techniques for 5G and Beyond)
Show Figures

Figure 1

35 pages, 3074 KB  
Review
Massive MIMO Systems for 5G and beyond Networks—Overview, Recent Trends, Challenges, and Future Research Direction
by Robin Chataut and Robert Akl
Sensors 2020, 20(10), 2753; https://doi.org/10.3390/s20102753 - 12 May 2020
Cited by 470 | Viewed by 47526
Abstract
The global bandwidth shortage in the wireless communication sector has motivated the study and exploration of wireless access technology known as massive Multiple-Input Multiple-Output (MIMO). Massive MIMO is one of the key enabling technology for next-generation networks, which groups together antennas at both [...] Read more.
The global bandwidth shortage in the wireless communication sector has motivated the study and exploration of wireless access technology known as massive Multiple-Input Multiple-Output (MIMO). Massive MIMO is one of the key enabling technology for next-generation networks, which groups together antennas at both transmitter and the receiver to provide high spectral and energy efficiency using relatively simple processing. Obtaining a better understating of the massive MIMO system to overcome the fundamental issues of this technology is vital for the successful deployment of 5G—and beyond—networks to realize various applications of the intelligent sensing system. In this paper, we present a comprehensive overview of the key enabling technologies required for 5G and 6G networks, highlighting the massive MIMO systems. We discuss all the fundamental challenges related to pilot contamination, channel estimation, precoding, user scheduling, energy efficiency, and signal detection in a massive MIMO system and discuss some state-of-the-art mitigation techniques. We outline recent trends such as terahertz communication, ultra massive MIMO (UM-MIMO), visible light communication (VLC), machine learning, and deep learning for massive MIMO systems. Additionally, we discuss crucial open research issues that direct future research in massive MIMO systems for 5G and beyond networks. Full article
(This article belongs to the Special Issue 5G and beyond Cellular Networks for Intelligent Sensing Systems)
Show Figures

Graphical abstract

Back to TopTop