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Abstract: In this study, we introduce a new formulation based on Floquet (Fourier) spectral analysis
combined with a spectral modulation technique (and its spatial form) to study strongly coupled
sublattices predefined in the infinite and large finite extent of almost-periodic antenna arrays (e.g.,
metasurfaces). This analysis is very relevant for dense-massive-MIMO, intelligent-surfaces, 5G, and
6G applications (used for very small areas with a large number of elements such as millimeter and
terahertz waves applications). The numerical method that is adopted to model the structure is the
method of moments simplified by equivalent circuits MoM GEC. Other numerical methods (such
as the ASM-array scanning method and the windowing Fourier method) used this analysis in their
kernel to treat periodic and pseudo-periodic (or quasi-periodic) arrays.

Keywords: Floquet analysis; MoM method; almost-periodic antenna arrays; Fourier analysis; strong
mutual coupling; dense massive MIMO; mm and THz waves; 5G and 6G applications

1. Introduction

Antenna arrays, and in particular dense (or massive) coupled almost-periodic antenna
arrays, have been of great interest in telecommunications and RF electronic applications
(such as dense-massive-MIMO, smart-surfaces, 5G, and 6G applications) [1–4], including
those used for very small surfaces with large numbers of elements such as millimeter and
terahertz array applications. Therefore, the spectrum analysis based on a Fourier transfor-
mation (in the Floquet domain) is proposed to simplify the EM calculation on an elementary
cell surrounded by periodic walls, as explained in [1–7] (in other research, they use periodic
Green’s functions) [8–19]. In the bibliography and recent studies, only spatial modulation
techniques have been proposed to study periodic systems with large sizes [20–23]. Except
in our case, a Fourier spectral analysis is presented to introduce a spectral modulation tech-
nique and its spatial equivalent (Fourier and Fourier inverse) to study strongly coupled sub
arrays in an infinite and large finite almost-periodic support [24–27]. In this context, several
numerical methods such as FDTD and FEM and other integral methods like the method of
moments and full-wave methods [28] are proposed to resolve the given problem. In our
work, we are interested only in the method of moments combined with equivalent circuits
and Floquet analysis to study the suggested structure with the principle of modulation.
This work is divided into four parts: we start with an explication of the almost-periodic
modal (or spectral) modulation and its spatial equivalent to examine strongly coupled
cells [29–33]. Then, we applied MoM-GEC as a numerical method to solve the proposed
problem [1–7,34–36]. Next, several numerical results are presented to confirm the validity
of the approach. Finally, some conclusions are established.
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2. Almost-Periodic Modulation to Study Strongly Coupled Arrays

The concept is a signal-processing concept for a filter with a periodic spectral response,
as shown in [30–32]. Its response is described as an impulse response function that is
given by: ∫ ∞

−∞
K(Ω− α)u(α) dα = V(Ω) (1)

Its Fourier representation of Equation (1) (in the spatial domain) yields to

H(x)U(x) = V(x) (2)

From the transformations by way of analogy, which we took into account, we note that
x is a spatial coordinate and α ∈ [− π

dx
, π

dx
] is a spectral coordinate in the Brillouin domain

and dx is a spatial period. Note that Ω is a spectral coordinate, as α, where H(x) is the
Fourier transform of K(Ω) and is defined as the optical (or optoelectronic [30,31]) transfer
function; U(x) and V(x) are the Fourier transforms of u(α) and V(Ω), respectively. More
details are provided in [30].

2.1. Modulation in Infinite Almost-Periodic Arrays

Let us consider fα(x) as a spectral periodic response for an infinite array that is
written [4,33]:

fα(x) =
N=+∞

∑
n=−N

fn(x)e+jnαdx (3)

α is a continuous Floquet mode α ∈ [− π
dx

, π
dx
]; x (or xn = x(n) = ndx) represents the

position in the spatial domain (a spatial distribution) ; and n is the position index in the
periodic lattice.

with

fn(x) =
d

2π

∫ π
d

− π
d

fα(x)e−jαndx dα (4)

Considering f0 is built from x0, f1 is identically constructed from x0 ± dx. f0 is a
weight for x0. In the same way, f1 is a weight for x1 = x0 ± dx. Now, we can generalize
the construction towards n elements. Then, fn(x) = f0(x− ndx), n ∈ Z. fn(x) is a periodic
function [34].

Now, let us put the given spectral modulation [30]:

U∞
mod(α) = u(α) fα(x) = u(α)

N=+∞

∑
n=−N

fn(x)e+jαndx (5)

Next, we are considering: TF(U∞
mod(α)) = U∞

mod(x)

It is possible to take TF−1(U∞
mod(α)) = U∞

mod(x) (it depends the Fourier notation);
As a result,

U∞
mod(x) =

N=+∞

∑
n=−N

fnU(x− ndx) (6)

A simple demonstration from (5) to (6) is provided:

U∞
mod(x) = TF−1(U∞

mod(α))

= TF−1(u(α)∑N=+∞
n=−N fne+jαx)

= ∑N=+∞
n=−N fnTF−1(u(α)e+jαx)

= ∑N=+∞
n=−N fn(

dx
2π

∫ π
dx
− π

dx
u(α)e+jαxe−jαndx dα)

(7)
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=
N=+∞

∑
n=−N

fn(
dx

2π

∫ π
dx

− π
dx

u(α)e+jα(x−ndx) dα)

=
N=+∞

∑
n=−N

fnU(x− ndx)

Equation (7) is established referring to the theorem of aliasing given in [37] and
Equation (6.107) of [38].

Finally, a spatial modulation is derived from Equation (2) [24,30]

V∞
mod(x) = H(x)U∞

mod(x) = H(x)
N=+∞

∑
n=−N

fnU(x− ndx) (8)

Notice that our old published work [34] on rectangular pulse functions can be a special
case of this process of analysis and development, where fn,α = W

2d sinc(( 2nπ
d + α)w

2 ) are the
Fourier series coefficients of the periodic pulse train (in the presence of Floquet modes), as
described in [39].

For more details, following the pulse (or impulse) trains, we can introduce the Floquet
phases as follows [4,33]:

fα(x) =
N=+∞

∑
n=−N

rect(x− ndx)e+jαx (9)

=
N=+∞

∑
n=−N

rectn(x)e+jαx

Note that: ∑N=+∞
n=−N rectn(x) = ∑N=+∞

n=−N fne+j 2nπ
dx

x (for a standard rectangular pulse
train), which explains how to recover (reconstruct) a pulse train by means the Fourier series,
as shown in Figure 1 and explained in [39,40] (see the subsection on periodic pulse and
impulse trains in [39]). By adding the Floquet contribution e+jαx, we obtain the definition
fα(x) = ∑N=+∞

n=−N rect(x− ndx)e+jαx (see Figure 1).

Figure 1. Construction of fα(x) as given in Equations (9)–(11).

Rect is a rectangular function with a width W.
Then, we can develop a series of rectangle functions into a series of Fourier functions,

which allows us to write: (see Figure 1 and [34])

fα(x) =
N=+∞

∑
n=−N

fn,αe+j 2nπ
dx

xe+jαx =
N=+∞

∑
n=−N

fn,αe+j( 2nπ
dx

+α)x (10)
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we can note: Kx,n = 2nπ
dx

+ α as a wavenumber that leads to decompose

fα(x) =
N=+∞

∑
n=−N

fn,αe+jKx,nx (11)

With
fn,α = 1

dx

∫ d
2
− d

2
fα(x)e−jKx,nx dx

= 1
dx

∫ w
2
− w

2
e−jKx,nx dx

= W
2dx

sinc(Kx,n
w
2 ) =

W
2dx

sinc(( 2nπ
dx

+ α)w
2 )

(12)

Equation (12) is proven based on the example (Example 3.17) of [39].
Now let us apply the superposition theorem of Equation (10) (based on Floquet states)

to generate the spatial solution [9,19]: it is also called modulation (see Equation (7))

dx
2π

∫ π
dx
− π

dx
fα(x)e−jαx dα = TF−1( fα(x))

= dx
2π

∫ π
dx
− π

dx
(∑N=+∞

n=−N fn,αe+j( 2nπ
dx

+α)x)e−jαx dα

= dx
2π

∫ π
dx
− π

dx
(∑N=+∞

n=−N fn,αe+j( 2nπ
dx

)x) dα

= dx
2π

∫ π
dx
− π

dx
∑N=+∞

n=−N rectn(x) dα

= dx
2π

∫ π
dx
− π

dx
∑N=+∞

n=−N rect(x− ndx) dα

= dx
2π ∑N=+∞

n=−N rect(x− ndx)
∫ π

dx
− π

dx
dα

= ∑N=+∞
n=−N rect(x− nd)

= ∑N=+∞
n=−N rect(x− ndx)

The spatial solution is a periodic pulses series
and is similar to = U∞

mod(x) when(u(α) = 1)

(13)

What we get in (13) is similar to Equation (14) of our published work [34] (and
Equation (4) of the WATANABE reference [24]). Additionally, it is of the same type as
Equation (6) and the expansion that follows in Equation (7). Then, a spatial modulation
that was performed in Equation (8) follows.

2.2. Modulation in Finite Almost-Periodic Arrays

As previously explained in [4,6], the interactions between cells in the spectral domain
for periodic finite arrays are governed by a discrete phase law such that αp = 2πpdx

D = 2πp
Nx

(with −Nx
2 ≤ p ≤ −Nx

2 − 1), which comes from a rule-of-three math reasoning.
For a large period of finite arrays, D −→ 2π (2π is the hole interval of phases).
For a local period of finite arrays, pdx −→ αp =? (is the spectral contribution for one

cell in position pdx) (p is the index position in a finite array, and d is the local period).
So, =⇒ αp = 2πp

Nx
, where Nx is the total number of elements in finite array, and p is the

index position [13].
Figure 2 explains how to discretize the phases from the infinite case to the finite case.

According to the same Figure 2, each cell interacts spectrally with its neighbors through
the continuous Floquet modes α (or the phase shift e+jαx) in the infinite case and αp (or the
phase shift e+jαpx) in the finite case.

This allows writing the spectral solution as the sum of discrete Floquet states [4,33],

fαp(x) =
1√
Nx

Nx
2 −1

∑
n=− Nx

2

fn(x)e+jαpndx (14)
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and

fn(x) =
1√
Nx

Nx
2 −1

∑
p=− Nx

2

fαp(x)e−jαpndx (15)

Contribution of continuous Floquet modes α in an infinite array

Contribution of discrete Floquet modes αp in a finite array.

Figure 2. Spectral representation of the interactions of a unit cell with its neighbors (infinite and finite
cases) (valid for strong coupling interaction by using Floquet phases).

In the same way, fn(x) = f0(x− ndx) with −Nx
2 ≤ n ≤ −Nx

2 − 1, and we can rewrite
the spectral modulation law for a discrete Floquet mode [30],

UFinite
mod (αp) = u(αp) fαp(x) (16)

= u(αp)
1√
Nx

Nx
2 −1

∑
n=− Nx

2

fn(x)e+jαpndx

Thus, the DFT is written as DFT(UFinite
mod (αp)) = UFinite

mod (xi) with xi = idx and −Nx
2 ≤

i ≤ −Nx
2 − 1

from which

UFinite
mod (x) =

1√
Nx

Nx
2 −1

∑
n=− Nx

2

fnU(x− ndx) (17)
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Eventually

VFinite
mod (x) = H(x)UFinite

mod (x) (18)

= H(x)
1√
Nx

Nx
2 −1

∑
n=− Nx

2

fnU(x− ndx)

3. MoM-GeC Modelization Based on Floquet Analysis

The problem formulation is already explained in [1–7]. It explains the development
of the method of moments combined with Floquet spectral analysis to determine the
electromagnetic performance in the presence of strong mutual couplings such as input
impedance, surface current, surface electric field, radiated field, and directivity. . . etc.

4. Numerical Results

A part of our results was presented in [4,6,34,35]. Let us now display the other
obtained results.

This approach can be applied to frequency-modulated continuous-wave (FMCW)
radar antennas (to scan the radiation beam produced by very small areas of an antenna
system) as well as to antennas that are massively placed in a coupled almost-periodic
antenna array. The provided antenna example can be used to show how to model a
77 GHz (2 × 4) antenna array for frequency-modulated continuous-wave (FMCW) radar
applications. The availability of antennas and antenna arrays in and on vehicles has become
ordinary with the inclusion of remote crash-recognition-and-aversion systems, as well as
lane-departure alerting systems. The two frequency bands appropriate for these systems are
approximately 24 GHz and 77 GHz, respectively. In this model, we consider the microstrip
patch antenna as a phased-array radiator. The dielectric substrate is air. According to
Figures 3 and 4, the patch antenna has its first resonance (parallel resonance) at 24.52 and
77.9 GHz (after adjusting the length of the used antenna) . It is a common practice to shift
this resonance to 24 and 77 GHz by scaling the length of the planar dipole antenna, as
described in [35].

The next stage is to reconfirm the reflection coefficient of the planar antenna dipole,
as depicted in Figure 5 and Figure 1 of [34]. The purpose of this check is to consider a
good impedance match. It is very common to highlight the value as a limit value for the
calculation of the bandwidth of the antenna. The deepest minima at 24 GHz and 77 GHz
indicated a good fit with 120π. The bandwidths of the antennas are roughly 1 GHz and
2 GHz, respectively. Thus, the spectrum bands are 23.5 GHz to 25.5 GHz and 76.5 GHz
to 77.5 GHz. Finally, in terms of input impedances and S parameters, a good comparison
between the adopted MoM GeC method and the references [41,42] is obtained.

5 10 15 20 25 30 35 40
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o
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Figure 3. Impedance variation against frequency band around 24 GHz: obtained by the MoM-
GEC method.
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Figure 4. Impedance variation against frequency band around 77 GHz: obtained by the MoM
GEC method.
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-5

0

S
1
1
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)

S-parameter

S
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 (dB) (MoM-GEC)

S
11

 (dB) using

 FMCW matlab software tool

X: 23.2

Y: -23.14

X: 24.03

Y: -13.09

Figure 5. S11-parameter (dB) variation against frequency band around 24 GHz: a comparison between
the MoM-GEC and a MATLAB tool (see references [41,42]).

Therefore, the radiation pattern response for a small 2 × 4 antenna array is proposed
based on the Floquet analysis (via the superposition theorem). Let us assume that the
radar antenna system operates at 77 GHz with a bandwidth of 700 MHz. The following
Figure 1 of [35] shows the spatial-radiation pattern of the resulting planar antenna using the
superposition theorem of 2 × 4 Floquet radiation examples. Then, the sum of the discrete
Floquet radiation patterns assigned to the FMCW radar permits the prediction of the global
spatial-radiation pattern (what is called spatial modulation). A good comparison of the
given numerical radiation pattern and the radiation obtained by patch array and cosine
array is presented in Figure 3 of [35]. After validating the FMCW radar, we propose to
evaluate the approach for a very large number of elements that uses the same frequency
band at 24 and 77 GHz (for example, a lattice of 100 elements). Figure 6 gives an example of
the superposition theorem (or a spatial modulation) for a large array to generate a spatial
radiation pattern through the addition of the radiation patterns of Floquet states. After
that, Figure 4 of [35] presents the variation of the spatial-radiation pattern (obtained using
Floquet analysis) in the function of steering angles for 100 antenna elements that are dis-
tributed in a uni-dimensional configuration (for 5G application). In the same way, Figure 7
and Figure 5 of [35] show the variation of the 3D radiation pattern against different steering
angles that are described with (θ0 = 45◦, φ0 = 0◦), and (θ0 = 90◦, φ0 = 0◦), in Cartesian
coordinates and (u,v) space, respectively. Following the same study, Tables 1 and 2 show
the directivity values for each Floquet state and the superposition theorem (in the two cases
of the FMCW radar and the 5G application), with two different steering angles and at the
frequencies of 24 GHz and 77 GHz. From Figure 1 of [35] and Figure 6, we can see that
the radiation patterns are nearly identical and verify the condition where the directivities
are similar for both the Floquet states and the superposition theorem. This is why, in both
Tables 1 and 2, we find that all directivity values are identical (for the Floquet states as well
as for the superposition), even when we change the steering angle. Knowing that generally,
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the directivity value close to 20 dB satisfies a narrow beam angle of about 20 degrees, as
shown graphically in Figure 7a.

-100 -80 -60 -40 -20 0 20 40 60 80 100
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||
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Variation of radiation pattern against Floquet states

 and application of superposition theorem for 10 elements of antenna array

Superposition

-5

-4

-3

-2

-1

0

+1

+2

+3

+4

Figure 6. Variation of radiation pattern against Floquet states and application of superposition
theorem for 10 elements of antenna array (uni-dimentionnal configuration) at 77 GHz: obtained by
the MoM-GEC method.

Figure 7. Variation of radiation pattern against Floquet states and application of superposition
theorem for 100 elements of antenna array (uni-dimentionnal configuration) at 77 GHz: obtained by
the MoM-GEC method.

Table 1. Directivity versus some Floquet states (considering 100 antenna arrays) and the superposition
theorem (or the modulation as explained in Formula (13), which transformed to study a finite array)
for φs = 0, θs = 30◦ steering angles (used for 5G application).

Floquet States Directivity Values (dB) at 24 GHz

(α−49, β = 0) 23.0200
(α−10, β = 0) 22.5953
(α+20, β = 0) 22.8874
(α+30, β = 0) 23.2055

Superposition 23.3009

Floquet States Directivity Values (dB) at 77 GHz

(α−49, β = 0) 22.8771
(α−10, β = 0) 24.1083
(α+20, β = 0) 23.4323
(α+30, β = 0) 23.1353

Superposition 23.5783
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Table 2. Directivity versus Floquet states and the superposition theorem (or the modulation as
explained in Formula (13), which transformed to study a finite array) for φs = 0, θs = 45◦ steering
angles (FMCW radar application).

Floquet States Directivity Values (dB) at 24 GHz

(α−2, β−1) 21.7249
(α−1, β−1) 26.7351
(α0, β−1) 21.1290
(α+1β−1) 20.8615
(α−2, β0) 20.6344
(α−1, β0) 21.0667
(α0, β0) 14.8990
(α+1, β0) 21.0737

Superposition 21.0455

Floquet States Directivity Values (dB) at 77 GHz

(α−2, β−1) 22.3762
(α−1, β−1) 18.0573
(α0, β−1) 21.9229
(α+1β−1) 22.1662
(α−2, β0) 20.9345
(α−1, β0) 21.3088
(α0, β0) 13.7990
(α+1, β0) 21.3088

Superposition 21.7022

5. Conclusions

In this article, we illustrated the principle of Floquet spectral modulation based on the
Fourier analysis (and its spatial form) to study almost-periodic sub-arrays (with finite size)
in the presence of strong mutual coupling interaction, defined on infinite support (or a really
large finite size). This study is very useful for the new generation of technologies based on
millimeter and terahertz waves in phased arrays, for example, in dense-massive-MIMO,
smart-surfaces, 5G, and 6G applications. In future work, we are interested to investigate
the randomly modulated almost-periodic arrays (also in the presence of strong coupling).
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