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Abstract: Millimeter wave (mmWave) and terahertz (THz) massive MIMO architectures are pivotal
in the advancement of mobile communications. These systems conventionally utilize codebooks to
facilitate initial connection and to manage information transmission tasks. Traditional codebooks,
however, are typically composed of numerous single-lobe beams, thus incurring substantial beam
training overhead. While neural network-based approaches have been proposed to mitigate the
beam training load, they sometimes fail to adequately consider the minority users dispersed across
various regions. The fairness of the codebook coverage relies on addressing this problem. Therefore,
we propose an imbalanced learning (IL) methodology for beam codebook construction, explicitly
designed for scenarios characterized by an imbalanced user distribution. Our method begins with a
pre-clustering phase, where user channels are divided into subsets based on their power response to
combining vectors across distinct subareas. Then, each subset is refined by a dedicated sub-model,
which contributes to the global model within each IL iteration. To facilitate the information exchange
among sub-models during global updates, we introduce the focal loss mechanism. Our simulation
results substantiate the efficacy of our IL framework in enhancing the performance of mmWave
and THz massive MIMO systems under the conditions of imperfect channel state information and
imbalanced user distribution.

Keywords: beam codebook design; imbalanced learning; millimeter wave; terahertz; massive MIMO

1. Introduction

Millimeter wave (mmWave) and terahertz (THz) multiple-input multiple-output (MIMO)
communication systems are crucial in driving the progress of the fifth generation (5G) mobile
communication and future Beyond 5G. These systems incorporate large-scale antenna arrays,
providing notable beamforming gains and adequate signal reception capability. Nonetheless,
the implementation of fully digital transceiver architectures, necessitating an RF chain for
each antenna, faces limitations due to the cost and power consumption issues linked with
high-frequency mixed-signal circuits [1]. As a result, mmWave and THz systems frequently
adopt either fully analog or hybrid analog/digital architectures for their combining opera-
tions [2,3]. In these configurations, transceivers utilize the networks of phase shifters. Due
to the challenges associated with channel estimation and feedback, they commonly employ
predefined single-lobe beamforming codebooks, such as DFT codebooks [4,5]. These classi-
cal pre-defined beamforming/beamsteering codebooks typically encompass a multitude of
single-lobe beams, with each beam capable of steering the signal in a specific direction. These
classical beamforming codebooks encounter two primary issues. Firstly, they involve extra
beam training costs by covering all possible directions, which includes the redundant beams for
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beam training. Secondly, they slightly accommodate specific scenarios such as non-line-of-sight
(NLOS) conditions or imbalanced user distribution.

Recent developments have focused on enhancing the adaptability of beam codebooks
to user distributions in both LOS and NLOS conditions using neural network (NN)-based
approaches [6,7]. Moreover, reinforcement learning has also been utilized to adapt the beam
patterns based on the surrounding environment [8]. Nevertheless, the challenges posed
by imbalanced or non-uniform user distribution, crucial for 5G deployment [9,10], remain
largely unexplored. Typically, in imbalanced user distribution, majority users significantly
outnumber the minority users. This is related to the imbalanced long-tail data challenge in
machine learning, which hampers the neural network’s ability to generalize for minority
classes [11]. In this case, imbalanced user distribution can lead to either overlooking or
underperforming combined gain for these minority users, especially when applying NN-
based methods in codebook design. Ensuring equitable codebook coverage necessitates
an effective approach to address the data imbalance-related problem. Outside the realm
of wireless communication, imbalanced learning (IL)-based solutions typically involve
resampling the different classes in [12,13] and re-weighting featured by adjusting the loss
calculated from the majority and minority classes in [14–16]. Furthermore, ensemble learn-
ing, a technique that aims to enhance the performance of a single classifier by integrating
multiple complementary classifiers, has demonstrated its effectiveness in adapting to and
generalizing from imbalanced data [17,18]. However, directly applying these strategies in
mmWave and THz communications overlooks the richness of the geometric and physical
attributes of the training data, i.e., the channels. Consequently, it is natural to propose an
IL-based codebook specifically designed for imbalanced user distributions in mmWave and
THz communication systems, which meets the following criteria. Firstly, the IL method
aims to fully exploit the physical features of the channels. This is achieved by implementing
pre-clustering, which is similar to a reverse process of DFT codebook-based combining.
Secondly, the method inherits the superior feature extraction capability of NN-based ap-
proaches. This is accomplished through the utilization of multiple sub-models to deal with
different classes of channels. Each of these sub-models contributes to the global model,
which is similar to the essentials of ensemble learning.

In this paper, our work centers around the advancement of codebook design en-
hanced by the IL framework, particularly in scenarios where user distribution is notably
imbalanced. The proposed approach commences with a pre-clustering of user channels
based on the power responses of distinct combining vectors across various subregions,
which enables a distinction between channels associated with majority and minority users.
The classification creates multiple subsets. Moving forward, we introduced an innovative
IL architecture to process these identified subsets. Each subset is then associated with a
phase shift sub-model, which contributes to the global model after undergoing sub-forward
and sub-backpropagation passes. To bolster information exchange across sub-models, we
employ the focal loss function during global updating. Ultimately, iterative IL updating
rounds for both global and sub-models allow the IL-based codebook to adapt to the im-
balanced user distribution under imperfect channel conditions, which outperforms the
NN-based baseline in the achievable rate metric.

Throughout this paper, vectors and matrices are represented by lower-case and upper-
case boldface letters, respectively. The sets RM×K and CM×K denote the real and complex
spaces of dimensions M× K. The Hermitian transpose and the transpose of a matrix A
are indicated by A† and AT, respectively. We denote an M×M identity matrix by IM and
an M× N zero matrix by 0M×N . A complex Gaussian random vector x is characterized
as x ∼ NC(x̄, Σ), where x̄ and Σ represent the mean vector and the covariance matrix,
respectively. The notation ‖ · ‖n denotes the n-norm of a vector.

The rest of this paper is organized as follows: Section 2 details the system model. Section 3
provides the problem description and defines the optimization objective. In Section 4, we
introduce the proposed IL scheme. Section 5 describes the experimental setup and discusses
the simulation results. Finally, Section 6 concludes the paper.
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2. System Model
2.1. Channel Model

This study investigates a mmWave and THz massive MIMO communication system
that accommodates U single-antenna users dispersed over F subregions, which utilizes
a base station (BS) equipped with a uniform linear array (ULA) comprising M antennas.
The single-cluster geometric channel vector between the single antenna uth user and a
M-antenna BS can be written as [19]

hu =

√
M
L

L

∑
l=1

αu,la(ψu,l), (1)

where
√

M
L is the normalization factor, αu,l denotes the complex gain of the lth path,

and there are L paths in total. Also, the term ψu,l represents the angle of arrival (AOA) of
the lth path in the angle domain Ψ , [0, π). The array response vector a(·) is given by the
ULA geometric structure of the M-antennas as

a(ψu,l) =
1√
M

[1, . . . , e−j 2π
λ d(m−1) cos(ψu,l), . . . , e−j 2π

λ d(M−1) cos(ψu,l)]T ∈ CM×1, (2)

where λ is the wavelength and d signifies the spacing between antennas. To comprehen-
sively characterize the channel states of all U users, we introduce the concept of a channel

set denoted asH. It is formally defined asH ,
U⋃

u=1
hu and hence |H| = U.

2.2. User Distribution

To streamline the representation of user distribution, we divide the channel set H

into F subsets. This can be expressed as: H =
F⋃

f=1
H f . Here, each user channel group

H f encompasses the channels of designated users belonging to class f ( f = 1, ..., F).
In more detail, by employing the mean AOA of the user’s channel as the feature of a
cluster [19], the channel subsetH f comprises channels with the same mean AOA values
that fall within the interval Ψ f ,

[
( f − 1)π

F , f π
F
)
. Here, Ψ is partitioned into F non-

overlapping subregions. Subsequently, an imbalanced user distribution is manifested
by a substantial difference in the cardinality between one subset and the others, i.e.,
∃n ∈ {1, ..., F} s.t. ∀ f ∈ {1, ..., F} and f 6= n, |Hn| � |H f |. Consequently, we can
interpretHn asHmjr, representing the channel set of the majority of users. The channels not
encompassed byHmjr are collectively categorized underHmnr, which denotes the channel
subsets corresponding to the minority user groups.

2.3. Uplink Transmission

In the uplink data transmission stage, the uth user sends the uplink symbol xu ∈ C to
the BS. After combining in BS, the processed signal zu ∈ C can be represented as

zu = c†
εu huxu + c†

εu nu, (3)

where the symbol xu has a mean power limitation E[|xu|2] = Pxu . Also, the noise vector nu
at the BS follows NC(0M×1, σ2IM). Next, the combining vector cεu is the εuth beam of the

N-beam codebook C, i.e., C ,
N⋃

n=1
{cn}, |C| = N, and εu ∈ {1, . . . , n, . . . , N}. In particular,

cεu is given as

cεu =
1√
M

[
ejγεu ,1 , ..., ejγεu ,m , ..., ejγεu ,M

]T
, (4)
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where γεu ,m represents the phase shift applied at the mth BS antenna. Importantly, cεu is
only responsible for modifying the phase of the signal and does not affect the processed
signal power. To this end, it is possible to optimize the configuration of cεu .

3. Problem Definition
In this paper, our primary goal is to devise a design for an N-beam codebook, referred

to as C, which can adeptly accommodate the imbalanced user distribution outlined in
Section 2.2. Given the substantial generalization and adaptability attributes inherent in
NN architectures, we selected this approach as the backbone network to create an adaptive
codebook. Hence, we aim to reframe the construction of codebook C into an optimization
problem based on NNs in this section.

First of all, our aim is to formulate a beamforming codebook C with the target of
optimizing the combining gain. This gain is defined as gu,εu ,

∣∣c†
εu hu

∣∣2 [6]. To this end,
the optimal εu is determined by exhaustively searching through cn in the codebook, i.e.,

ε∗u = arg max
n

gu,n = arg max
n

∣∣∣c†
nhu

∣∣∣2, (5)

s.t. n = 1, . . ., N,

where ε∗u signifies the selection of the most suitable codeword selected from the codebook C.
Following this, the optimization problem is elucidated. Specifically, the task is to maximize
the combining gain across the entire dataset of user channels with the designed codebook.
The expression of the superlative codebook Copt can be rewritten as

Copt = arg max
C

U

∑
u=1

∣∣∣c†
ε∗u

hu

∣∣∣2, (6)

s.t.
∣∣[cε∗u ]m

∣∣ = 1√
M

, m = 1, ..., M.

The above-mentioned restriction is introduced to ensure adherence to power limitations
imposed by the combining vectors.

Furthermore, a prominent challenge inherent in optimizing this problem lies in the
imbalanced distribution of users, notably the substantial imbalance between the majority
and minority subsets. This disproportionality leads to a faint combining gain improvement
for minority user channels when employing conventional NN-based methods. This phe-
nomenon can be attributed to the fact that the loss values computed from the minority user
channels contribute insignificantly to the overall loss during batch updates in traditional
NN-based methods. Consequently, the associated combining gains for the minority users
from these updates remain almost the same. In the subsequent section, we will conduct an
in-depth analysis of the underlying causes for the limited contribution of the minority user
losses and propose an innovative IL-based solution to effectively mitigate this issue.

4. Imbalanced Learning
In this section, we employ IL to construct a more adaptive codebook in scenarios char-

acterized by imbalanced user distribution, as compared to the NN-based approach. This
adaptability arises from the independent updates of sub-models and the fair aggregation
process applied to the global model. To achieve this, we introduce an initial pre-clustering
method that capitalizes on the channel properties to effectively differentiate betweenHmnr
and Hmjr, subsequently assigning them to separate subsets. Following this, we propose
an IL framework to attain the desired beam patterns for these diverse subsets. Finally, we
present a global model structure ensuring the equitable integration of the sub-models.

4.1. Model Architecture
4.1.1. Pre-Clustering Process

According to the user distribution elucidated in Section 2.2, our primary objective is to
categorize users and their associated channels into F′ distinct clusters. This process results
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in distinguishing betweenHmnr and the correspondingHmjr. Additionally, segmentingH
into F′ clusters can be likened to partitioning Ψ into F′ discrete regions. This segmentation
effectively characterizes each cluster by the median angle, denoted by θ f ′ , of subregion

f ′ (θ f ′ ,
(2 f ′−1)π

2F′ ) [20]. Consequently, by defining the median angle of each cluster as a
distinctive feature, we can express the pre-clustered index f ′ ∈ {1, ..., F′} as follows

f ′ = arg max
i

[PPRE]i = arg max
i

[∣∣∣C†
PREhu

∣∣∣2]
i
, (7)

where the pre-clustering power vector PPRE = [P1, ...,P f ′ , ...,PF′ ]
T ∈ RF′×1, the power

response to each combining vector is defined as P f ′ ,
∣∣∣a(θ f ′)

†hu

∣∣∣2 and the pre-clustering

codebook matrix CPRE =
[
a(θ1), ..., a(θ f ′), ..., a(θF′)

]
∈ CM×F′ . Also, the function a(·)

signifies the array response for a given AOA. This further signifies that the channels in
H f ′ share analogous power responses to the respective featured combining vector within
the f ′th subregion. To implement the above equation in the form of NN, the complex
matrix multiplication, power computation, and argmax can be mapped into the basic
NN components. These components will be introduced in the next subsection. Then, the
pre-clustered channels, which belong to the subset H f ′ , will be stored in the f ′th subset
register waiting to be processed by the corresponding sub-model. After partitioning H
into F′ distinct types, the next step involves deploying a model to acquire the features of
H f ′ . Specifically, this paper adopts a focal loss and cross entropy loss combined IL model
improved from the original NN-based self-supervised method outlined in [7]. The details
of the IL forward pass architecture will be elaborated in the subsequent parts.

Remark 1. The pre-clustering process draws inspiration from the DFT codebook CDFT, denoted

by cDFT
n = 1√

M

[
1, ..., ej 2πn

M , ..., ej 2πn(M−1)
M

]T
, n= 0, 1, ..., N − 1. Given that the angle domain

Ψ is defined as the range [0, π), it is divided into M subareas, each with an equal interval of 2π
M .

Consequently, when a channel’s mean AOA is congruent with a combining vector for a specific
interval within Ψ, a superior power response is realized. In essence, the DFT codebook covers the
entire angular space, which ensures that there is a combining vector catering to the specific channel,
and thus the highest power response is attained among the pre-defined combining vectors. However,
the best power response within the pre-defined combining vectors may not be optimal and requires
the more adaptive NN-based method to optimize.

Informed by the exhaustive angular coverage of the DFT codebook, the initial step of our method
involves calculating the power response for each channel across the subdivided angular sectors.
Through this assessment, we identify the superior combining vector that results in the highest
power P f ′ among the pre-defined combining vectors. This process facilitates the determination of a
channel’s pre-clustering class f ′ where the channels share similar power responses.

4.1.2. Complex-Valued Fully Connected and Power Computation Layer

The layer is designed to perform complex-valued multiplicative and additive op-
erations in the neural network backbone. In this context, the signal post-combining is
represented by the resultant inner product, i.e.,

y = C†
f ′h, (8)

where y =
[
y1, ..., yn, ..., yN f ′

]T
∈ CN f ′×1 signifies the received signal vector after combining

and h ∈ CM×1 denotes a channel from the subsetH f ′ . Also, the term C f ′ ∈ CM×N f ′ denotes
the f ′th sub-model codebook matrix. Moreover, unlike the conventional NN approaches in
computer vision, the elements of the codebook matrix do not function as parameters of the
fully connected layer. Instead, the codebook matrices are generated based on the real NN
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weights [6]. This operation is conducted through the phase-to-complex conversion, scaled
by 1√

M
, which is given as

C f ′ =
1√
M

(
cos
(

Γ f ′
)
+ j ∗ sin

(
Γ f ′
))

, (9)

where Γ f ′ =
[
γ1, . . ., γn, . . ., γN f ′

]
∈ RM×N f ′ denotes the phase shift matrix and γn =

[γ1,n, ...,γM,n], n ∈
{

1, ..., N f ′
}

represents a phase shift vector.
Following this, the power received from each combining vector is determined by

evaluating the square modulus of every complex value in the received signal vector. This
leads to the formulation of the received signal power p ∈ RN f ′×1, which is defined as

p =
[

p1, . . ., pn, . . ., pN f ′

]T
=
[
|y1|2, . . ., |yn|2, . . ., |yN f ′

|2
]T

. (10)

4.1.3. Softmax and Argmax Layer

This layer commences with a softmax operation to estimate the alignment ’probability’
between a combining vector and the current channel h, which is indicated by the received
power p. Accordingly, the softmax vector, represented by s = [s1, . . . , sn, . . . , sN f ′

]T ∈
RN f ′×1, is formulated as

sn =
epn

N f ′

∑
i=1

epi

. (11)

On the other hand, the argmax layer is tasked with conducting the one-hot vector, denoted
by o = [o1, . . . , on, . . . , oN f ′

]T ∈ RN f ′×1, and it is given as

on =

1, n = arg max
i

[s]i, i ∈ {1, ..., N f ′},

0, otherwise,
, (12)

where the arg max operation is to identify the position of the maximum value within
the softmax vector. Additionally, the self-generated label vector o plays a crucial role in
adjusting and updating the phase shifts in the codebook. This adaptation is achieved
through the utilization of the cross-entropy loss during sub-updating and the focal loss
during global updating. Also, it is worth noting that a similar arg max operation is also
required in the pre-clustering process to determine the class index f ′ associated with the
optimal power response.

Transitioning to the process of learning the IL-based codebook, the subsequent subsec-
tion will delve into the details of sub-backpropagation and the comprehensive IL solution.

4.2. Learning the IL-Based Codebooks
After establishing the architecture for the forward pass of the sub-model, the subse-

quent phase entails the application of sub-backpropagation to enhance the performance
of the sub-model Γ f ′ . Following the sub-backpropagation, the sub-models are aggregated
to assess the overall performance of the global model, which then performs the global
updating through the focal loss. Ultimately, the global model is partitioned into sub-models
to initiate the next round of IL.

4.2.1. Sub-Backpropagation

The corresponding sub-model undergoes a series of forward-backward updating
iterations based on H f ′ . Within each iteration, as delineated in the preceding section,
the forward processes obtain the softmax vectors s and one-hot labels o for a batch of
channel vectors. In each of these iterations, the efficacy of the codebook is evaluated by
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quantifying the divergence between the obtained softmax vector s and the target one-hot
vector o, utilizing the cross-entropy loss function, i.e.,

LCE
B =

B

∑
b=1
LCE

b = −
B

∑
b=1

N f ′

∑
n=1

onblog snb, (13)

where snb and onb represent the nth element of the bth tuple sb, ob in a batch with the size
of B. Moreover, channels for a single batch are indiscriminately chosen from bothHmjr and
Hmnr, which constitute the comprehensive dataset H. In contrast, in the IL-based batch,
the batch exclusively comprises channels from eitherHmjr orHmnr.

Particularly, the aforementioned loss function considers the one-hot encoded label
o as the target distribution for the model. Its objective is to minimize this value through
the adjustment of phase shift vectors γn ∈ Γ f ′ with the aim of minimizing the discrepancy
between s and o to the utmost degree. Subsequently, the backpropagation gradient of
phase shift vectors g(γn) is computed through the chain rule, i.e., [7]

g(γn) =

(
∂LB
∂γn

)T
=

B

∑
b=1

(
∂Lb
∂sb

)T
· ∂sb

∂pb
· ∂pb

∂yb
· ∂yb

∂γn
. (14)

Hence, the stochastic gradient descent (SGD) based method can be employed to update the
sub-model phase matrix Γ f ′ , which is given as

γnnew = γncurrent − β · g(γn)
T, (15)

where β denotes the learning rate of the SGD-based process. In conclusion, the pre-clustering
process and sub-model updating are demonstrated in Figure 1. After the sub-model updates,
the next stage will introduce the process of global aggregation and updating.

Complex Fully

Connected
Power

Calculation
Loss

Function

Pre-clustering

Codebook

Phase to complex layer

SGD

Updating

SGD

Updating

SGD

Updating

SGD

Updating

...
...

Power

Calculation Argmax

subset register

...

Sub-model

Selection

Pre-clustering pass

Sub-forward pass

Sub-backpropagation pass

Softmax

Argmax

Complex Fully

Connected

...

Figure 1. The pre-clustering process and sub-model updating.
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4.2.2. Global Updating

After the sub-model updating epochs, the phase shift matrices Γ f ′ are fused into the
global model. As previously explained, Γ f ′ consists of N f ′ distinct phase shift vectors, each
corresponding to the number of combining vectors within the correlated codebook. Our
objective is to evenly integrate the model across the various N f ′ distributions, thereby ad-
dressing the challenge of imbalanced combining gain elevation in the NN-based approach.

Driven by the specified objective, the global model is constructed by concatenating the
phase shift matrices of varying dimensions N f ′ to create a unified model, which is expressed by

Γ =
[
Γ1, ..., Γ f ′ , ..., ΓF′

]
, (16)

where Γ ∈ RM×N (N =
F′

∑
a=1

Na) represents the global phase shift matrix model and C

denotes the corresponding global codebook. The above equation ensures the specialization
of different sub-models.

Nonetheless, the process of concatenation introduces the invalid exchange of infor-
mation among different sub-models, potentially sub-optimal in nature. The information
exchange implies that a small proportion of the channels from a subsetH f ′ tend to have
better power responses on combining vectors in the adjacent sub-model after global updat-
ing, instead of its own sub-model Γ f ′ . Consequently, to adapt the global user distribution
within H, the global model should undergo updates akin to the sub-model. However,
the cross-entropy loss function is supposed to be replaced with a more adaptive focal loss
function in [21]. The adaptive method is supposed to automatically rectify the imbalance in
loss calculations, stemming from the imbalance of quantity between two types of channels:
those seeking to change their assigned sub-models and those already well adapted to their
sub-models. Specifically, the focal loss mechanism notes the lower received power (re-
flected on the softmax probabilities) of the exchanged channels, compared with the received
power of a sub-model’s originally well-adapted channels. To this end, the mechanism will
introduce a more balanced loss function by improving the proportion of the losses of the
low received power channels. Therefore, the focal loss function is utilized and given as [21]

LFL
B = −

B

∑
b=1

N

∑
n=1

(1− snb)
ζ onblog snb, (17)

where the modulating factor (1− snb)
ζ is added to the cross-entropy loss, with a tunable

focusing parameter ζ > 0. In scenarios where the received power is relatively high (i.e.,
snb → 1), the modulating factor approaches zero. Conversely, for channels with lower
received power, the modulating factor tends towards unity. As a result, when contrasted
with the standard cross-entropy loss, the focal loss maintains its effectiveness for channels
with lower received power while reducing the loss for those with higher received power.
In essence, this adjustment amplifies the contribution of channels with lower receiver
power that seeks to alter the serving sub-model within the loss function.

To initiate the subsequent IL iteration, Γ is separated at the columns corresponding
to the prior concatenation, reverting to their pre-fusion dimensions. This step can be
considered the reverse operation of Equation (16). To date, Algorithm 1 has summarized
the overall IL process.
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Algorithm 1 Imbalanced Learning.

1: Pre-clusterH and return F′ different subsets
2: Initialize F′ sub-models
3: for each IL round do
4: for each subsetH f ′ and the selected sub-model Γ f ′ do
5: for each sub-model updating epoch do
6: for each batch with size of B inH f ′ do
7: for each channel in a batch indexed by b ∈ {1, ..., B} do
8: Execute the sub-forward pass and obtain sb, ob
9: Execute the sub-backpropagation pass:

LCE
B ← LCE

B −
N f ′

∑
n=1

onb log snb

10: end for
11: for each n ∈ {1, ..., N f ′} do
12: Update the selected sub-model Γ f ′ in the sub-backpropagation pass:

γnnew ← γncurrent − β · ∂LCE
B

∂γn
13: end for
14: end for
15: end for
16: end for
17: Obtain the global model Γ =

[
Γ1, ..., Γ f ′ , ..., ΓF′

]
18: for each global updating epoch do
19: for each batch with size of B inH do
20: for each channel in a batch indexed by b ∈ {1, ..., B} do
21: Execute the global forward pass and obtain sb, ob
22: Execute the global backpropagation pass:

LFL
B ← LFL

B −
N
∑

n=1
(1− snb)

ζ onb log snb, N =
F′

∑
a=1

Na

23: end for
24: for each n ∈ {1, ..., N} do
25: Update the global model Γ in the global backpropagation pass:

γnnew ← γncurrent − β · ∂LFL
B

∂γn
26: end for
27: end for
28: end for
29: Execute the reverse operation of Γ =

[
Γ1, ..., Γ f ′ , ..., ΓF′

]
and get the global-updated

sub-models
30: end for

Remark 2. While the loss function in the NN-based approach effectively quantifies the disparity
between the current model and the desired response for users equally distributed, its primary
limitation becomes apparent when applied in a batch-based context. Even though only the best-
performing combining vectors associated with the current channel will be updated based on the
one hot label, it is quite common for the same combining vector to serve both the majority and
minority during a single batch. For instance, it arises when the codebook size is relatively small,
and the previous batch update only contains the majority user channels and the current batch update
contains minority user channels. To this end, in cases where there is an imbalance in the number
of users across different regions, the loss associated with channels from Hmnr might be unfairly
averaged and consequently downplayed.

To illustrate this, it is reasonable to consider a NN-based updating process for a phase shift
matrix Γ ∈ RM×N based on the global dataset H. Let the number of channels from Hmjr in
a batch be denoted by Bmjr and the number of channels from Hmnr as Bmnr, with Bmjr > Bmnr
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and Bmjr + Bmnr = B. In such scenarios, the loss function for NN with a batch size of B can be
represented as follows

LB = −

Bmnr

∑
b=1

N

∑
n=1

onblog snb +

Bmjr

∑
b=1

N

∑
n=1

onblog snb

. (18)

If Bmjr � Bmnr, the equation above is approximated as

LB ≈ LBmjr = −
Bmjr

∑
b=1

N

∑
n=1

onblog snb. (19)

This insight reveals a tendency of the NN-based method to underestimate the calculated loss in
specific regions when the size of subsets in those regions is significantly smaller than the region
with the predominant users. In the IL-based approaches, the shortcomings of the loss function are
effectively mitigated. During the update phase of the phase shift matrix in NN, the enhancement in
combining gain for minority users can be measured by the contribution ofHminor to the overall loss
function, expressed as

QNN ,
LBmnr

LB
=

Bmnr
∑

b=1

N
∑

n=1
onblog snb

B
∑

b=1

N
∑

n=1
onblog snb

, (20)

where Q denotes the fraction of the loss derived from Hmnr in the cumulative loss. For a com-
parative perspective, by assuming the update processes of all sub-models forHmnr are considered,
the proportional contribution QIL in the IL framework can be given as

QIL =
LBmnr

LBmnr

=

Bmnr
∑

b=1

N
∑

n=1
onblog snb

Bmnr
∑

b=1

N
∑

n=1
onblog snb

, (21)

where QIL exceeds QNN is evident in the stipulated scenario. Consequently, from Equations (20)
and (21), it is inferred that minority users contribute more significantly to the loss function within
the proposed framework. This ensures a more pronounced combining gain enhancement for minority
users in comparison to the NN approach.

5. Simulation Result
In this section, we begin by providing an in-depth exposition of the dataset generation,

model training, and testing configurations for the proposed algorithms. The simulation
was conducted in a setting with imperfect channel conditions and a notably imbalanced
user distribution.

5.1. Scenarios, Datasets, and Training Parameters

To assess the validity of the IL method in addressing the challenges posed by the
imbalance within the channel setH, we create a scenario featuring 10 non-overlapping and
equally spaced subregions. The numbers of pre-clustering subsets F′ in pre-clustering, BS
antennas M and paths L are set as 5, 64 and 5, respectively. The AOA within each subregion
follows a Laplacian distribution, all sharing the same mean angle and an angle spread of
10 degrees. More precisely, the mean AOAs in subregion n fall within the interval [ π

10 (n−
1), ..., π

10 n). We generate a total of 10,000 realizations of h in the 10th subregion, representing
the majority of users. In contrast, the minority group is represented by 250 realizations of h,
with subregions 1,3,4,5 containing 100, 50, 50, and 50 realizations, respectively. The average

achievable rate for all users is denoted by 1
U

U
∑

u=1
log2

(
1 + Pxu

σ2

∣∣∣c†
ε∗u

hu

∣∣∣2) and the term Pxu /σ2

is the received SNR. For assessing the performance under imperfect channel conditions,
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we introduce synthetic additive white Gaussian noise to each channel’s data and define

SNRtr = 20 log10
[|hu ]i |2

σ′2
[20]. For simulations, SNRtr is set as 10 dB. To assess the efficacy of

our proposed method, we perform a comparative analysis. Our method is compared with

the N-beam DFT codebook cDFT
n = 1√

M
[1, ..., ej 2πn

M , ..., ej 2πn(M−1)
M ]T, n = 0, 1, ..., N− 1 and with

the self-supervised NN solution outlined in prior work [7]. In addition, we define the upper

bound equal-gain combining vector as cu,egc =
1√
M

[
ej∠hu,1 , ej∠hu,2 , . . ., ej∠hu,M

]T
. This upper

bound vector is defined based on the corresponding received power for each user, given as

p =
∣∣∣c†

u,egchu

∣∣∣2 = 1
M ||hu||21 [22]. To simplify the IL model training, we maintain uniform

codebook sizes across all sub-models. In a given training instance, the batch sizes during
the sub-model and global updates are configured to 10 and 1000, respectively. Similarly,
the epochs are set to 20 for sub-model updating and 5 for global updating. Moreover,
the learning rate, the focal loss focusing parameter ζ, and the validation rates are set as 0.001,
2, and 0.1, respectively.

5.2. Performance Analysis
5.2.1. Pre-Clustering Result

As delineated in Section 5.1, the constructed dataset comprises 10,000 realizations
for region 10, while all other regions consist of 250 realizations. After pre-clustering,
the channel setsH1,H2,H3, andH5 encompass 125, 49, 95, and 9981 channels, respectively.
These outcomes suggest that certain non-ideal conditions, such as constrained subregion
segmentation, imperfect channel state information, and angle spacing, may impede precise
clustering. However, the distinction betweenHmjr andHmnr remains generally discernible.

5.2.2. Achievable Rate and Model Convergence

Figure 2a depicts the average achievable rate against the codebook size at received
SNRs of 0 dB and 5 dB. The equal-gain receiver serves as the performance upper bound.
Observations from the results indicate that increased codebook size leads to augmented gains
and achievable rates, which implies enhanced feature extraction during updates. Notably,
saturation in the achievable rate is observed at a 64-beam codebook size, which suggests
marginal gains when transitioning from 32 to 64 beams. In terms of the proposed IL method’s
efficacy, it surpasses the NN-based approach in the achievable rate for all cases except the
64-beam codebook. Specifically, with smaller codebooks (sizes of 8, 12, or 16 beams), the IL
method demonstrates superior adaptability toHmnr and the imbalanced user distribution.
For codebooks exceeding 16 beams, the IL method’s performance is commensurate with
that of the 64-beam DFT codebook, whereas the NN-based codebooks lag behind. Moreover,
Figure 2b depicts the validation losses for the 16-beam IL codebook over the IL rounds, each
comprising sub-model and global updating cycles. It is close to saturation in the 8th round.



Electronics 2023, 12, 4768 12 of 14

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of Beams in the codebook

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

A
ch

ie
v
ab

le
 R

at
e(

b
p
s/

H
z)

IL-0db

IL-5db

NN-0db

NN-5db

EGC-0db

EGC-5db

64-beam-DFT-0db

64-beam-DFT-5db

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Round

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

V
a
li

d
 L

o
s
s

IL

(b)

Figure 2. The figures of achievable rate comparison utilizing different methods and the model
convergence of IL-based methods: (a) average achievable rate versus the number of beams of the
codebook utilizing different methods; and (b) valid loss versus the IL round.

5.2.3. Beam Pattern

Figure 3 showcases the beam patterns emanating from six learned codebooks of sizes 20,
32, and 64, which demonstrates the learning outcomes for both the proposed and NN-based
methods. Notably, unlike the DFT codebook, these patterns reveal that beams do not span
the entire azimuth plane but are instead oriented toward user locations. However, the NN
codebook tends to overlook minority channel groups in region 1, and the magnitude of
beams for user channels in regions 3, 4, and 5 are not significantly enhanced after updating.
This is particularly evident in the 64-beam NN codebook, where most beams cater to the
majority user channels. Consequently, it fails to capture the desired beam pattern, which
corroborates the analysis presented in Remark 2 . In contrast, the IL-based method flexibly
adapt to the minority user channels in multipath scenarios using multi-lobe beams or
precisely aligns with the minority users’ orientation with a magnitude exceeding 0.7.
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Figure 3. Beam patterns for the codebook with 20, 32, 64 beams learned by the self-supervised
NN and the IL solution in multipath setting: (a) 20-beam NN codebook; (b) 20-beam IL codebook;
(c) 32-beam NN codebook; (d) 32-beam IL codebook; (e) 64-beam NN codebook; and (f) 64-beam
IL codebook.

6. Conclusions

In this paper, our focus was on the design of codebooks aided by the IL framework
in the mmWave and THz massive MIMO communication systems with imbalanced user
distribution. The primary contributions of our work to the field of machine learning-
enhanced mmWave and THz massive MIMO communication lie in revealing the negative
impact of imbalanced datasets in practical communication on the overall performance of
NN-based codebook design and proposing an IL-based method to handle the imbalanced
samples. We began by pre-clusteringH based on the power responses of distinct combining
vectors across various subregions, which allows us to differentiate between channels
associated with majority and minority users. This classification resulted in multiple subsets.
Subsequently, we introduced an innovative IL architecture to process these F′ subsets.
Each subset was associated with a phase shift sub-model Γ f ′ , which contributed to the
global model after undergoing sub-forward and sub-backpropagation passes. To enhance
the information exchange across different sub-models, we utilized the focal loss function,
which improved the balance during global updating. Compared to the NN-based method
in previous work, the IL process ensured combining gain improvement during updates by
augmenting the minority user channel’s contribution to the overall loss function in each
batch. Through iterative IL updating rounds for both global and sub-models, our IL-based
approach effectively adapted to the imbalanced user distribution under imperfect channel
conditions, surpassing the performance of the NN-based baseline in terms of achievable
rate. Moreover, the depicted beam patterns further intuitively confirmed the method’s
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effectiveness in accommodating minority user channels. In future work, we plan to broaden
the scope of our methodology to encompass hybrid beamforming techniques. This expansion
will involve integrating additional modules in the backbone network for designing baseband
precoders. Additionally, to test the validation of the proposed IL framework in a more practical
scenario, we will consider the potential hardware impairments on the antenna array geometric
that are prevalent in the real-world mmWave and THz massive MIMO systems.
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