Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (153)

Search Parameters:
Keywords = tent chaotic mapping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2076 KB  
Article
Parameter Identification of a Two-Degree-of-Freedom Lower Limb Exoskeleton Dynamics Model Based on Tent-GA-GWO
by Wei Li, Tianlian Pang, Zhengwei Yue, Zhenyang Qin and Dawen Sun
Processes 2026, 14(3), 406; https://doi.org/10.3390/pr14030406 - 23 Jan 2026
Abstract
Against the backdrop of intensifying global population aging, lower-limb exoskeleton robots serve as core devices for rehabilitation and power assistance. Their control accuracy and motion smoothness rely on precise dynamic models. However, parameter uncertainties caused by variations in human lower limbs, assembly errors, [...] Read more.
Against the backdrop of intensifying global population aging, lower-limb exoskeleton robots serve as core devices for rehabilitation and power assistance. Their control accuracy and motion smoothness rely on precise dynamic models. However, parameter uncertainties caused by variations in human lower limbs, assembly errors, and wear pose a critical bottleneck for accurate modeling. Aiming to achieve high-precision dynamic modeling for a two-degree-of-freedom lower-limb exoskeleton, this paper proposes a parameter identification method named Tent-GA-GWO. A dynamic model incorporating joint friction and link inertia was constructed and linearized. An excitation trajectory based on Fourier series, conforming to human physiological constraints, was designed. To enhance algorithm performance, Tent chaotic mapping was employed to optimize population initialization, a nonlinear control parameter was used to balance search behavior, and genetic algorithm operators were integrated to increase population diversity. Simulation results show that, compared to the traditional GWO algorithm, Tent-GA-GWO improved convergence efficiency by 32.1% and reduced the fitness value by 0.26%, demonstrating superior identification accuracy over algorithms such as GA and LIL-GWO. Validation on a physical prototype indicated a close agreement between the computed torque based on the identified parameters and the actual output torque, confirming the method’s effectiveness and engineering feasibility. This work provides support for precise control of exoskeletons. Full article
13 pages, 783 KB  
Article
Some New Maximally Chaotic Discrete Maps
by Hyojeong Choi, Gangsan Kim, Hong-Yeop Song, Sangung Shin, Chulho Lee and Hongjun Noh
Entropy 2026, 28(1), 131; https://doi.org/10.3390/e28010131 - 22 Jan 2026
Abstract
In this paper, we first prove (Theorem 1) that any two inputs producing the same output in a symmetric pair of discrete skew tent maps always have the same parity, meaning that they are either both even or both odd. Building on this [...] Read more.
In this paper, we first prove (Theorem 1) that any two inputs producing the same output in a symmetric pair of discrete skew tent maps always have the same parity, meaning that they are either both even or both odd. Building on this property, we then propose (Definition 1) a new discrete chaotic map and prove that (Theorem 2) the proposed map is a bijection for all control parameters. We further prove that (Theorem 3) the discrete Lyapunov exponent (dLE) of the proposed map is not only positive but also approaches the maximum value among all permutation maps over the integers {0,1,,2m1} as m gets larger. In other words, (Corollary 1) the proposed map asymptotically achieves the highest possible chaotic divergence among the permutation maps over the integers {0,1,,2m1}. To provide some further evidence that the proposed map is highly chaotic, we present at the end some results from the numerical experiments. We calculate the approximation and permutation entropy of the output integer sequences. We also show the NIST SP800-22 tests results and correlation properties of some derived binary sequences. Full article
(This article belongs to the Special Issue Discrete Math in Coding Theory, 2nd Edition)
Show Figures

Figure 1

17 pages, 1657 KB  
Article
Hybrid Model and Data-Driven Emergency Load Shedding Optimization for Frequency Security in Receiving-End Power Grids
by Lebing Zhao, Yixuan Peng, Wei Dong, Wen Hua, Ying Yang, Hang Qi and Changgang Li
Symmetry 2026, 18(1), 126; https://doi.org/10.3390/sym18010126 - 9 Jan 2026
Viewed by 176
Abstract
Aiming at the receiving-end power grid frequency security after HVDC blocking events, this paper proposes a hybrid model and data-driven optimization method of emergency load shedding (ELS). Firstly, a decision-making model of ELS considering multiple dynamic security constraints, e.g., frequency and rotor angle, [...] Read more.
Aiming at the receiving-end power grid frequency security after HVDC blocking events, this paper proposes a hybrid model and data-driven optimization method of emergency load shedding (ELS). Firstly, a decision-making model of ELS considering multiple dynamic security constraints, e.g., frequency and rotor angle, is constructed. Then, the particle swarm optimization (PSO) algorithm is improved by integrating with symmetric opposite learning and Tent chaotic mapping to obtain high-quality ELS schemes. Finally, to boost the optimization efficiency, a data-driven dynamic security assessment model based on the hybrid neural network is constructed and introduced into the solution process of PSO. To ensure the feasibility of the final ELS scheme, the model-driven time-domain simulation method is adopted for validation. The effectiveness of the proposed ELS optimization method is verified on a receiving-end power grid with multi-infeed HVDC lines. It can obtain a high-quality and feasible ELS scheme within 0.7 s. Full article
(This article belongs to the Special Issue New Power System and Symmetry)
Show Figures

Figure 1

31 pages, 3452 KB  
Article
Improved Chimpanzee Optimization Algorithm Based on Multi-Strategy Fusion and Its Application in Multiphysics Parameter Optimization
by Bin Zhou, Chaoyun Shi, Ning Yan and Yangyang Chu
Symmetry 2026, 18(1), 108; https://doi.org/10.3390/sym18010108 - 7 Jan 2026
Viewed by 169
Abstract
To address the challenges of high computational costs, susceptibility to local optima, and heavy reliance on manual intervention in multi-physics parameter optimization for symmetric acoustic metamaterials, an enhanced Chimp Optimization Algorithm (DADCOA) is proposed in this paper. This algorithm integrates the double chaotic [...] Read more.
To address the challenges of high computational costs, susceptibility to local optima, and heavy reliance on manual intervention in multi-physics parameter optimization for symmetric acoustic metamaterials, an enhanced Chimp Optimization Algorithm (DADCOA) is proposed in this paper. This algorithm integrates the double chaotic initialization strategy (DCS), adaptive multimodal convergence mechanism (AMC), and dual-weight pinhole imaging update operator (DWPI). It employs a Logistic–Tent composite chaotic mapping strategy for population initialization, significantly enhancing distribution uniformity within high-dimensional parameter spaces. An AMC factor is then introduced to dynamically balance global exploration and local exploitation based on the real-time evolutionary state of the population. A dual-weight population update mechanism, incorporating distance and historical contributions, is integrated with a pinhole imaging opposition-based learning strategy to improve population diversity. Additionally, a composite single objective error feedback local differential mutation operation is introduced to improve optimization accuracy for coupled multi-physics objectives. Experimental validation based on the CEC 2022 test function suite and an acoustic metamaterial parameter optimization model demonstrates that compared to the standard COA algorithm and existing improved algorithms, the DADCOA algorithm reduces simulation time by 28.46% to 60.76% while maintaining high accuracy. This approach effectively addresses the challenges of high computational cost, stringent accuracy requirements, and composite single objective coupling in COMSOL physical parameter optimization, providing an effective solution for the design of acoustic metamaterials based on symmetric structures. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

23 pages, 12620 KB  
Article
The Color Image Watermarking Algorithm Based on Quantum Discrete Wavelet Transform and Chaotic Mapping
by Yikang Yuan, Wenbo Zhao, Zhongyan Li and Wanquan Liu
Symmetry 2026, 18(1), 33; https://doi.org/10.3390/sym18010033 - 24 Dec 2025
Viewed by 321
Abstract
Quantum watermarking is a technique that embeds specific information into a quantum carrier for the purpose of digital copyright protection. In this paper, we propose a novel color image watermarking algorithm that integrates quantum discrete wavelet transform with Sinusoidal–Tent mapping and baker mapping. [...] Read more.
Quantum watermarking is a technique that embeds specific information into a quantum carrier for the purpose of digital copyright protection. In this paper, we propose a novel color image watermarking algorithm that integrates quantum discrete wavelet transform with Sinusoidal–Tent mapping and baker mapping. Initially, chaotic sequences are generated using Sinusoidal–Tent mapping to determine the channels suitable for watermark embedding. Subsequently, a one-level quantum Haar wavelet transform is applied to the selected channel to decompose the image. The watermarked image is then scrambled via discrete baker mapping, and the scrambled image is embedded into the High-High subbands. The invisibility of the watermark is evaluated by calculating the peak signal-to-noise ratio, Structural similarity index measure, and Learned Perceptual Image Patch Similarity, with comparisons made against the color histogram. The robustness of the proposed algorithm is assessed through the calculation of Normalized Cross-Correlation. In the simulation results, PSNR is close to 63, SSIM is close to 1, LPIPS is close to 0.001, and NCC is close to 0.97. This indicates that the proposed watermarking algorithm exhibits excellent visual quality and a robust capability to withstand various attacks. Additionally, through ablation study, the contribution of each technique to overall performance was systematically evaluated. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

25 pages, 3630 KB  
Article
When Droplets Can “Think”: Intelligent Testing in Digital Microfluidic Chips
by Zhijie Luo, Shaoxin Li, Wufa Long, Rui Chen and Jianhua Zheng
Biosensors 2026, 16(1), 3; https://doi.org/10.3390/bios16010003 - 19 Dec 2025
Viewed by 308
Abstract
Digital microfluidic biochips (DMFBs) find extensive applications in biochemical experiments, medical diagnostics, and safety-critical domains, with their reliability dependent on efficient online testing technologies. However, traditional random search algorithms suffer from slow convergence and susceptibility to local optima under complex fluidic constraints. This [...] Read more.
Digital microfluidic biochips (DMFBs) find extensive applications in biochemical experiments, medical diagnostics, and safety-critical domains, with their reliability dependent on efficient online testing technologies. However, traditional random search algorithms suffer from slow convergence and susceptibility to local optima under complex fluidic constraints. This paper proposes a hybrid optimization method based on priority strategy and an improved sparrow search algorithm for DMFB online test path planning. At the algorithmic level, the improved sparrow search algorithm incorporates three main components: tent chaotic mapping for population initialization, cosine adaptive weights together with Elite Opposition-based Learning (EOBL) to balance global exploration and local exploitation, and a Gaussian perturbation mechanism for fine-grained refinement of promising solutions. Concurrently, this paper proposes an intelligent rescue strategy that integrates global graph-theoretic pathfinding, local greedy heuristics, and space–time constraint verification to establish a closed-loop decision-making system. The experimental results show that the proposed algorithm is efficient. On the standard 7 × 7–15 × 15 DMFB benchmark chips, the shortest offline test path length obtained by the algorithm is equal to the length of the Euler path, indicating that, for these regular layouts, the shortest test path has reached the known optimal value. In both offline and online testing, the shortest paths found by the proposed method are better than or equal to those of existing mainstream algorithms. In particular, for the 15 × 15 chip under online testing, the proposed method reduces the path length from 543 and 471 to 446 compared with the IPSO and IACA algorithms, respectively, and reduces the standard deviation by 53.14% and 39.4% compared with IGWO in offline and online testing. Full article
(This article belongs to the Special Issue Intelligent Microfluidic Biosensing)
Show Figures

Figure 1

41 pages, 7185 KB  
Article
Two-Stage Dam Displacement Analysis Framework Based on Improved Isolation Forest and Metaheuristic-Optimized Random Forest
by Zhihang Deng, Qiang Wu and Minshui Huang
Buildings 2025, 15(24), 4467; https://doi.org/10.3390/buildings15244467 - 10 Dec 2025
Viewed by 352
Abstract
Dam displacement monitoring is crucial for assessing structural safety; however, conventional models often prioritize single-task prediction, leading to an inherent difficulty in balancing monitoring data quality with model performance. To bridge this gap, this study proposes a novel two-stage analytical framework that synergistically [...] Read more.
Dam displacement monitoring is crucial for assessing structural safety; however, conventional models often prioritize single-task prediction, leading to an inherent difficulty in balancing monitoring data quality with model performance. To bridge this gap, this study proposes a novel two-stage analytical framework that synergistically integrates an improved isolation forest (iForest) with a metaheuristic-optimized random forest (RF). The first stage focuses on data cleaning, where Kalman filtering is applied for denoising, and a newly developed Dynamic Threshold Isolation Forest (DTIF) algorithm is introduced to effectively isolate noise and outliers amidst complex environmental loads. In the second stage, the model’s predictive capability is enhanced by first employing the LASSO algorithm for feature importance analysis and optimal subset selection, followed by an Improved Reptile Search Algorithm (IRSA) for fine-tuning RF hyperparameters, thereby significantly boosting the model’s robustness. The IRSA incorporates several key improvements: Tent chaotic mapping during initialization to ensure population diversity, an adaptive parameter adjustment mechanism combined with a Lévy flight strategy in the encircling phase to dynamically balance global exploration and convergence, and the integration of elite opposition-based learning with Gaussian perturbation in the hunting phase to refine local exploitation. Validated against field data from a concrete hyperbolic arch dam, the proposed DTIF algorithm demonstrates superior anomaly detection accuracy across nine distinct outlier distribution scenarios. Moreover, for long-term displacement prediction tasks, the IRSA-RF model substantially outperforms traditional benchmark models in both predictive accuracy and generalization capability, providing a reliable early risk warning and decision-support tool for engineering practice. Full article
(This article belongs to the Special Issue Structural Health Monitoring Through Advanced Artificial Intelligence)
Show Figures

Figure 1

19 pages, 4702 KB  
Article
How Far Can We Trust Chaos? Extending the Horizon of Predictability
by Alexandros K. Angelidis, Georgios C. Makris, Evangelos Ioannidis, Ioannis E. Antoniou and Charalampos Bratsas
Mathematics 2025, 13(23), 3851; https://doi.org/10.3390/math13233851 - 1 Dec 2025
Viewed by 722
Abstract
Chaos reveals a fundamental paradox in the scientific understanding of Complex Systems. Although chaotic models may be mathematically deterministic, they are practically non-determinable due to the finite precision that is inherent in all computational machines. Beyond the horizon of predictability, numerical computations accumulate [...] Read more.
Chaos reveals a fundamental paradox in the scientific understanding of Complex Systems. Although chaotic models may be mathematically deterministic, they are practically non-determinable due to the finite precision that is inherent in all computational machines. Beyond the horizon of predictability, numerical computations accumulate errors, often undetectable. We investigate the possibility of reliable (error-free) time series of chaos. We prove that this is feasible for two well-studied isomorphic chaotic maps, namely the Tent map and the Logistic map. The generated chaotic time series have an unlimited horizon of predictability. A new linear formula for the horizon of predictability of the Analytic Computation of the Logistic map, for any given precision and acceptable error, is obtained. Reliable (error-free) time series of chaos serve as the “gold standard” for chaos applications. The practical significance of our findings include: (i) the ability to compare the performance of neural networks that predict chaotic time series; (ii) the reliability and numerical accuracy of chaotic orbit computations in encryption, maintaining high cryptographic strength; and (iii) the reliable forecasting of future prices in chaotic economic and financial models. Full article
Show Figures

Figure 1

49 pages, 20846 KB  
Article
An Improved Red-Billed Blue Magpie Algorithm and Its Application to Constrained Optimization Problems
by Ying Qiao, Zhixin Han, Hongxin Fu and Yuelin Gao
Biomimetics 2025, 10(11), 788; https://doi.org/10.3390/biomimetics10110788 - 20 Nov 2025
Cited by 1 | Viewed by 919
Abstract
The Red-Billed Blue Magpie Optimization (RBMO) algorithm is a metaheuristic method inspired by the foraging behavior of red-billed blue magpies. However, the conventional RBMO often suffers from premature convergence and performance degradation when solving high-dimensional constrained optimization problems due to its over-reliance on [...] Read more.
The Red-Billed Blue Magpie Optimization (RBMO) algorithm is a metaheuristic method inspired by the foraging behavior of red-billed blue magpies. However, the conventional RBMO often suffers from premature convergence and performance degradation when solving high-dimensional constrained optimization problems due to its over-reliance on population mean vectors. To address these limitations, this study proposes an Improved Red-Billed Blue Magpie Optimization (IRBMO) algorithm through a multi-strategy fusion framework. IRBMO enhances population diversity through Logistic-Tent chaotic mapping, coordinates global and local search capabilities via a dynamic balance factor, and integrates a dual-mode perturbation mechanism that synergizes Jacobi curve strategies with Lévy flight strategies to balance exploration and exploitation. To validate IRBMO’s efficacy, comprehensive comparisons with 16 algorithms were conducted on the CEC-2017 (30D, 50D, 100D) and CEC-2022 (10D, 20D) benchmark suites. Subsequently, IRBMO was rigorously evaluated against ten additional competing algorithms across four constrained engineering design problems to validate its practical effectiveness and robustness in real-world optimization scenarios. Finally, IRBMO was applied to 3D UAV path planning, successfully avoiding hazardous zones while outperforming 15 alternative algorithms. Experimental results confirm that IRBMO exhibits statistically significant improvements in robustness, convergence accuracy, and speed compared to classical RBMO and other peers, offering an efficient solution for complex optimization challenges. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

21 pages, 4215 KB  
Article
Lifetime Prediction of SiC MOSFET by LSTM Based on IGWO Algorithm
by Peng Dai, Junyi Bao, Zheng Gong, Mingchang Gao and Qing Xu
Electronics 2025, 14(22), 4486; https://doi.org/10.3390/electronics14224486 - 17 Nov 2025
Viewed by 445
Abstract
SiC MOSFETs face prominent reliability issues due to higher voltage resistance requirements and continued device miniaturization. The lifetime prediction of SiC MOSFET plays a crucial role in improving the reliability of devices and systems. However, existing methods still face challenges in terms of [...] Read more.
SiC MOSFETs face prominent reliability issues due to higher voltage resistance requirements and continued device miniaturization. The lifetime prediction of SiC MOSFET plays a crucial role in improving the reliability of devices and systems. However, existing methods still face challenges in terms of adaptability, stability, and accuracy due to the complexity of the failure process in SiC MOSFET. This article proposes an improved grey wolf optimizer-based long short-term memory (IGWO-LSTM) model for SiC MOSFET lifetime prediction. The model introduces a Tent chaotic mapping to generate an initial population with optimal distribution, ensuring comprehensive search space coverage and enhancing dynamic search adaptability. Then, a nonlinear control parameter strategy and the principle of particle swarm optimization (PSO) are added. The feature extraction capability of the model is strengthened, and the exploration and exploitation phases are dynamically balanced. The optimizations enable faster discovery of the global optimum while maintaining solution quality, thereby improving prediction accuracy and stability. Finally, power cycling experiments were conducted on two types of SiC MOSFETs with different internal resistances to validate the effectiveness of the proposed model. The proposed IGWO-LSTM model achieves high prediction accuracy, with R2 values of 96.2%, 94.8%, 94.1%, and 93.9% for four SiC MOSFETs, and RMSE values as low as 0.0117, 0.0143, 0.0152, and 0.0158, respectively. This represents an average improvement in R2 by 16%, 8%, and 4%, and a reduction in RMSE by up to 67.03%, 50.39%, and 31.57% compared with other intelligent models. Similarly, IGWO-LSTM achieves reductions in MAE of approximately 68%, 50%, and 30%, with corresponding reductions in MAPE of about 70%, 48%, and 26%, respectively. The results demonstrate superior performance in prediction accuracy, stability, and adaptability of the proposed model. Full article
Show Figures

Figure 1

20 pages, 2062 KB  
Article
Optimization Design of Excavator Stick Based on Improved Mayfly Optimization Algorithm
by Jing Tao, Hua Ye, Guangzhong Hu, Shuai Xiang, Teng Zhang and Shuijiang Zheng
Appl. Sci. 2025, 15(21), 11658; https://doi.org/10.3390/app152111658 - 31 Oct 2025
Viewed by 349
Abstract
More than 60% of earth excavation operations have been accomplished by various excavators. However, complex working loads always cause the fracture failure of excavator sticks because of insufficient strength. For prolonging the service life of excavator stick, a structural optimization design method based [...] Read more.
More than 60% of earth excavation operations have been accomplished by various excavators. However, complex working loads always cause the fracture failure of excavator sticks because of insufficient strength. For prolonging the service life of excavator stick, a structural optimization design method based on the improved mayfly optimization algorithm (TTL-MA) is proposed to improve the stiffness of excavator stick. Firstly, by using the central composite design (CCD) method, 161 sets of simulation samples are obtained with eight selected structural design parameters of excavator stick. Then, relying on the simulation samples, an agent model between the excavator stick’s structural design parameters and the structural quality objectives, deformation, first-order minimum intrinsic frequency, and stress is constructed by using a Backpropagation neural network (BPNN). Finally, to further enhance the optimization search capability of the Mayfly Algorithm (MA), three improvement strategies were incorporated: Tent chaotic mapping for mayfly population initialization, adaptive t-distribution perturbation for velocity updating, and Lévy flight strategy for enhanced position updating. The results show that under the three constraints of the maximum equivalent von Mises stress σmax ≤ 150 MPa, maximum deformation δmax ≤ 2.5 mm, and the first-order minimum intrinsic frequency Hmin ≥ 55 Hz, the optimized excavator stick reduces the mass and maximum stress by 7.9% and 11.9%, respectively. The improved mayfly optimization algorithm has strong optimization ability for the optimization design of excavator stick structure, which can provide a reference for similar complex engineering machinery structure optimization problems. Full article
Show Figures

Figure 1

30 pages, 3402 KB  
Article
Research on Parameter Identification for Primary Frequency Regulation of Steam Turbine Based on Improved Bayesian Optimization-Whale Optimization Algorithm
by Wei Li, Weizhen Hou, Siyuan Wen, Yang Jiang, Jiaming Sun and Chengbing He
Energies 2025, 18(21), 5685; https://doi.org/10.3390/en18215685 - 29 Oct 2025
Viewed by 376
Abstract
To address the problems of local optima and insufficient convergence accuracy in parameter identification of primary frequency regulation (PFR) for steam turbines, this paper proposed a hybrid identification method that integrated an Improved Bayesian Optimization (IBO) algorithm and an Improved Whale Optimization Algorithm [...] Read more.
To address the problems of local optima and insufficient convergence accuracy in parameter identification of primary frequency regulation (PFR) for steam turbines, this paper proposed a hybrid identification method that integrated an Improved Bayesian Optimization (IBO) algorithm and an Improved Whale Optimization Algorithm (IWOA). By initializing the Bayesian parameter population using Tent chaotic mapping and the reverse learning strategy, employing a radial basis kernel function hyperparameter training mechanism based on the Adam optimizer and optimizing the Expected Improvement (EI) function using the Limited-memory Broyden–Fletcher– Goldfarb–Shanno with Bounds (L-BFGS-B) method, IBO was proposed to obtain the optimal candidate set with the smallest objective function value. By introducing a nonlinear convergence factor and the adaptive Levy flight perturbation strategy, IWOA was proposed to obtain locally optimized optimal solutions. By using the reverse-guided optimization mechanism and employing a fitness-oriented selection strategy, the optimal solution was chosen to complete the closed-loop process of reverse learning feedback. Nine standard test functions and the Proportional Integral Derivative (PID) parameter identification of the electro-hydraulic servo system in a 330 MW steam turbine were presented as examples. Compared with Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), Bayesian Optimization (BO) and Particle Swarm Optimization-Grey Wolf Optimizer (PSO-GWO), the Improved Bayesian Optimization-Whale Optimization Algorithm (IBO-WOA) proposed in this paper has been validated to effectively avoid the problem of getting stuck in local optima during complex optimization and has high parameter recognition accuracy. Meanwhile, an Out-Of-Distribution (OOD) Test based on noise injection had demonstrated that IBO-WOA had good robustness. The time constant identification of the steam turbine were carried out using IBO-WOA under two experimental conditions, and the identification results were input into the PFR model. The simulated power curve can track the experimental measured curve well, proving that the parameter identification results obtained by IBO-WOA have high accuracy and can be used for the modeling and response characteristic analysis of the steam turbine PFR. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

31 pages, 7912 KB  
Article
A FIG-IWOA-BiGRU Model for Bus Passenger Flow Fluctuation Trend and Spatial Prediction
by Jie Zhang, Qingling He, Xiaojuan Lu, Shungen Xiao and Ning Wang
Mathematics 2025, 13(19), 3204; https://doi.org/10.3390/math13193204 - 6 Oct 2025
Cited by 1 | Viewed by 417
Abstract
To capture bus passenger flow fluctuations and address the problems of slow convergence and high error in machine learning parameter optimization, this paper develops an improved Whale Optimization Algorithm (IWOA) integrated with a Bidirectional Gated Recurrent Unit (BiGRU). First, a Logistic–Tent chaotic mapping [...] Read more.
To capture bus passenger flow fluctuations and address the problems of slow convergence and high error in machine learning parameter optimization, this paper develops an improved Whale Optimization Algorithm (IWOA) integrated with a Bidirectional Gated Recurrent Unit (BiGRU). First, a Logistic–Tent chaotic mapping is introduced to generate a diverse and high-quality initial population. Second, a hybrid mechanism combining elite opposition-based learning and Cauchy mutation enhances population diversity and reduces premature convergence. Third, a cosine-based adaptive convergence factor and inertia weight strategy improve the balance between global exploration and local exploitation. Based on the correlation analysis between bus passenger flow and weather condition data in Harbin, and combined with the fluctuation characteristics of bus passenger flow, the data were divided into windows with a 7-day weekly cycle and processed by fuzzy information granulation to obtain three groups of fuzzy granulated window data, namely LOW, R, and UP, representing the fluctuation trend and spatial characteristics of bus passenger flow. The IWOA was employed to optimize and solve parameters such as the hidden layer weights and bias vectors of the BiGRU, thereby constructing a bus passenger flow fluctuation trend and spatial prediction model based on FIG-IWOA-BiGRU. Simulation experiments with 21 benchmark functions and real bus data verified its effectiveness. Results show that IWOA significantly improves optimization accuracy and convergence speed. For bus passenger flow forecasting, the average MAE, RMSE, and MAPE of LOW, R, and UP data are 2915, 3075, and 8.1%, representing improvements over existing classical models. The findings provide reliable decision support for bus scheduling and passenger travel planning. Full article
Show Figures

Figure 1

35 pages, 10740 KB  
Article
Contextual Real-Time Optimization on FPGA by Dynamic Selection of Chaotic Maps and Adaptive Metaheuristics
by Rabab Ouchker, Hamza Tahiri, Ismail Mchichou, Mohamed Amine Tahiri, Hicham Amakdouf and Mhamed Sayyouri
Appl. Sci. 2025, 15(19), 10695; https://doi.org/10.3390/app151910695 - 3 Oct 2025
Viewed by 879
Abstract
In dynamic and information-rich contexts, systems must be capable of making instantaneous, context-aware decisions. Such scenarios require optimization methods that are both fast and flexible. This paper introduces an innovative hardware-based intelligent optimization framework, deployed on FPGAs, designed to support autonomous decisions in [...] Read more.
In dynamic and information-rich contexts, systems must be capable of making instantaneous, context-aware decisions. Such scenarios require optimization methods that are both fast and flexible. This paper introduces an innovative hardware-based intelligent optimization framework, deployed on FPGAs, designed to support autonomous decisions in real-time systems. In contrast to conventional methods based on a single chaotic map, our scheme brings together six separate chaotic generators in simultaneous operation, orchestrated by an adaptive voting system based on past results. The system, in conjunction with the Secretary Bird Optimization Algorithm (SBOA), constantly adjusts its optimization approach according to the changing profile of the objective function. This delivers first-rate, timely solutions with improved convergence, resistance to local minima, and a high degree of adaptability to a variety of decision-making contexts. Simulations carried out on reference standards and engineering problems have demonstrated the scalability, responsiveness, and efficiency of the proposed model. These characteristics make it particularly suitable for use in embedded intelligence applications in sectors such as intelligent production, robotics, and IoT-based infrastructures. The suggested solution was tested using post-synthesis simulations on Vivado 2022.2 and experimented on three concrete engineering challenges: welded beam design, pressure equipment design, and tension/compression spring refinement. In each situation, the adaptive selection process dynamically determined the most suitable chaotic map, such as the logistics map for the Welded Beam Design Problem (WBDP) and the Tent map for the Pressure Vessel Design Problem (PVDP). This led to ideal results that exceed both conventional static methods and recent references in the literature. The post-synthesis results on the Nexys 4 DDR (Artix-7 XC7A100T, Digilent Inc., Pullman, WA, USA) show that the initial Q16.16 implementation exceeded the device resources (128% LUTs and 100% DSPs), whereas the optimized Q4.8 representation achieved feasible deployment with 80% LUT utilization, 72% DSP usage, and 3% FF occupancy. This adjustment reduced resource consumption by more than 25% while maintaining sufficient computational accuracy. Full article
Show Figures

Figure 1

21 pages, 4360 KB  
Article
Chaos-Enhanced Harris Hawks Optimizer for Cascade Reservoir Operation with Ecological Flow Similarity
by Zhengyang Tang, Shuai Liu, Hui Qin, Yongchuan Zhang, Xin Zhu, Xiaolin Chen and Pingan Ren
Sustainability 2025, 17(19), 8616; https://doi.org/10.3390/su17198616 - 25 Sep 2025
Viewed by 479
Abstract
In the pursuit of sustainable development, optimizing water resources management while maintaining ecological balance is crucial. This study introduces a Chaos-enhanced Harris Hawks Optimizer (CEHHO) aimed at optimizing natural flow patterns in cascade reservoirs. First, an ecological scheduling model considering ensuring guaranteed output [...] Read more.
In the pursuit of sustainable development, optimizing water resources management while maintaining ecological balance is crucial. This study introduces a Chaos-enhanced Harris Hawks Optimizer (CEHHO) aimed at optimizing natural flow patterns in cascade reservoirs. First, an ecological scheduling model considering ensuring guaranteed output is established based on the similarity of ecological flows. Subsequently, the CEHHO algorithm is proposed, which uses tilted skew chaos mapping for population initialization, improving the quality of the initial population. In the exploration phase, an adaptive strategy enhances the efficiency of group search algorithms, enabling effective navigation of the complex solution space. A random difference mutation strategy, combined with the Q-learning algorithm, mitigates premature convergence and maintains algorithmic diversity. Comparative analysis with the existing technology under different typical hydrological frequency shows that the search accuracy and convergence efficiency of the proposed method are significantly improved. Under the guaranteed output limit of 1000 MW, the proposed method enhances the optimal, median, mean, and worst values by 293.92, 493.23, 422.14, and 381.15, respectively, compared to the HHO. Furthermore, the results of the multi-purpose guaranteed output scenario highlight the superior detection and exploitation capabilities of this algorithm. These findings highlight the great potential of the proposed method for practical engineering applications, providing a reliable tool for optimizing water resources management while maintaining ecological balance. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

Back to TopTop