Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = tension/shear coupling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 13566 KB  
Article
A Unified Three-Dimensional Micromechanical Framework for Coupled Inelasticity and Damage Evolution in Diverse Composite Materials
by Suhib Abu-Qbeitah, Jacob Aboudi and Rami Haj-Ali
J. Compos. Sci. 2025, 9(12), 677; https://doi.org/10.3390/jcs9120677 - 5 Dec 2025
Viewed by 229
Abstract
This study introduces a comprehensive three-dimensional micromechanical framework to capture the nonlinear mechanical behavior of diverse composite materials, including coupled elastic degradation, inelastic strain evolution, and phenomenological failure in their constituents. The primary objective is to integrate a generalized elastic degradation–inelasticity (EDI) model [...] Read more.
This study introduces a comprehensive three-dimensional micromechanical framework to capture the nonlinear mechanical behavior of diverse composite materials, including coupled elastic degradation, inelastic strain evolution, and phenomenological failure in their constituents. The primary objective is to integrate a generalized elastic degradation–inelasticity (EDI) model into the parametric high-fidelity generalized method of cells (PHFGMC) micromechanical approach, enabling accurate prediction of nonlinear responses and failure mechanisms in multi-phase composites. To achieve this, a unified three-dimensional orthotropic EDI modeling formulation is developed and implemented in the PHFGMC. Grounded in continuum mechanics, the EDI employs scalar field variables to quantify material damage and defines an energy potential function. Thermodynamic forces are specified along three principal directions, decomposed into tensile and compressive components, with shear failure accounted for across the respective planes. Inelastic strain evolution is modeled using incremental anisotropic plasticity theory, coupling damage and inelasticity to maintain generality and flexibility for diverse phase behaviors. The proposed model offers a general, unified framework for modeling damage and inelasticity, which can be calibrated to operate in either coupled or decoupled modes. The PHFGMC micromechanics framework then derives the overall (macroscopic) nonlinear and damage responses of the multi-phase composite. A failure criterion can be applied for ultimate strength evaluation, and a crack-band type theory can be used for post-ultimate degradation. The method is applicable to different types of composites, including polymer matrix composites (PMCs) and ceramic matrix composites (CMCs). Applications demonstrate predictions of monotonic and cyclic loading responses for PMCs and CMCs, incorporating inelasticity and coupled damage mechanisms (such as crack closure and tension–compression asymmetry). The proposed framework is validated through comparisons with experimental and numerical results from the literature. Full article
(This article belongs to the Topic Numerical Simulation of Composite Material Performance)
Show Figures

Figure 1

23 pages, 4131 KB  
Article
Discrete Element Simulations of Fracture Mechanism and Energy Evolution Characteristics of Typical Rocks Subjected to Impact Loads
by Ding Deng, Lianjun Guo, Yuling Li, Gaofeng Liu and Jiawei Hua
Appl. Sci. 2025, 15(23), 12847; https://doi.org/10.3390/app152312847 - 4 Dec 2025
Viewed by 320
Abstract
The dynamic fracture behavior of rocks subjected to impact loading is a fundamental issue within the field of rock dynamics. This study aims to construct microstructure models of heterogeneous minerals representative of various typical rocks and establish a coupled SHPB impact simulation system [...] Read more.
The dynamic fracture behavior of rocks subjected to impact loading is a fundamental issue within the field of rock dynamics. This study aims to construct microstructure models of heterogeneous minerals representative of various typical rocks and establish a coupled SHPB impact simulation system with FLAC-PFC to examine the mechanisms of fracture, energy dissipation law, and the characteristics of acoustic emission (AE) responses in rocks acted upon by impact loads. The main results obtained reveal the following: (i) The fracture mechanisms of various lithologies under impact loading exhibit common characteristics, predominantly behaving as composite failure mechanisms. The observed distribution characteristics are mixed and interwoven with shear-tension-implosion failures, with a tendency to aggregate from the boundaries towards the interior of samples. (ii) The AE fracture strength of various lithologies predominantly ranges from −8.25 to −5.25, with peak frequencies observed between −7 to −6. The sequence of AE-based B-values, ranked from highest to lowest, is as follows: red sandstone > green sandstone > slate > granite > blue sandstone > basalt. (iii) The T-k distribution for various lithologies follows CLVD (+)-first. (iv) A significant correlation exists between the energy-time density and the B-value. Rocks exhibiting high energy dissipation capacity are characterized primarily by small-amplitude AE events and small-scale fractures, whereas those with low energy dissipation capacity are mostly marked by large-amplitude AE events and large-scale fractures. These research findings provide a fairly solid theoretical basis for understanding the fracture mechanisms and energy dissipation behaviors of rocks subjected to impact loading. Full article
Show Figures

Figure 1

18 pages, 2063 KB  
Article
Investigation of the Internal Solitary Wave Influence on Subsea Equipment Lowering with a Continuous Lowering Analysis Model
by Mingjie Li, Junliang Zhang, Guosong Chen, Mengjie He and Pan Gao
J. Mar. Sci. Eng. 2025, 13(11), 2177; https://doi.org/10.3390/jmse13112177 - 17 Nov 2025
Viewed by 292
Abstract
Deep-water payload lowering operations are highly sensitive to hydrodynamic disturbances, particularly to internal solitary waves (ISWs) that are frequently observed in the South China Sea and other stratified shelf regions. This study develops a two-dimensional lumped-mass cable-payload model to investigate the dynamic responses [...] Read more.
Deep-water payload lowering operations are highly sensitive to hydrodynamic disturbances, particularly to internal solitary waves (ISWs) that are frequently observed in the South China Sea and other stratified shelf regions. This study develops a two-dimensional lumped-mass cable-payload model to investigate the dynamic responses of a lowering system subjected to combined excitations of vessel heave, uniform background current, and ISW-induced velocity shear. With the variable-domain technique, the model incorporates variable boundary conditions through element activation, Morison-type hydrodynamic loading, and a simplified but physically consistent mode-1 ISW kinematic representation based on an extended KdV formulation with vertical modal decay. Numerical implementation is achieved using an explicit central-difference scheme with initialization through static equilibrium and ramped velocity conditions. Parametric simulations are performed to examine the coupled influence of ISW peak velocity, heave amplitude, and lowering speed on cable tension and lateral displacement. Results indicate that ISWs can significantly amplify dynamic loads. The continuous lowering analysis model provides a valuable tool for subsea equipment lowering simulation. And the findings provide quantitative evidence of ISW-induced risks in deep-water lowering. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 13809 KB  
Article
Full Orthotropic Mechanical Characterization of Pinus radiata Plywood Through Tensile, Compression and Shear Testing with Miniaturized Specimens
by Moisés Sandoval, Masoud Javadi, Paula Soto-Zúñiga, Juan Pablo Cárdenas-Ramírez, Michael Arnett, Angelo Oñate, Rodrigo Cancino, Erick I. Saavedra Flores and Víctor Tuninetti
Forests 2025, 16(11), 1676; https://doi.org/10.3390/f16111676 - 3 Nov 2025
Viewed by 521
Abstract
This study introduces and validates a miniaturized testing methodology for the complete orthotropic characterization of structural plywood, including out-of-plane directions that are typically difficult to access. Novel small-scale geometries were developed for tension and shear configurations, with compliance corrections applied to ensure accurate [...] Read more.
This study introduces and validates a miniaturized testing methodology for the complete orthotropic characterization of structural plywood, including out-of-plane directions that are typically difficult to access. Novel small-scale geometries were developed for tension and shear configurations, with compliance corrections applied to ensure accurate stress–strain responses. The method proved reliable and sensitive to mechanical differences arising from veneer architecture, adhesive type, and interfacial bonding. Two sets of 18 mm structural plywood panels—manufactured with distinct adhesive systems, one bio-based (F1) and one phenol-formaldehyde (F2)—were systematically tested under tensile, compressive, and shear loading in ten orthogonal configurations (Tx, Ty, Tz, Cx, Cy, Cz, τxy, τyx, τxz, τyz), following standards NCh 3617, EN 789, and ASTM B831. Tensile moduli were approximately twice the corresponding compressive values, while out-of-plane moduli reached only 6–11% of in-plane values. F1 exhibited higher stiffness in both tension and compression, particularly in transverse directions, due to thicker perpendicular veneers enhancing bending restraint and shear coupling. In contrast, F2 achieved greater peak shear strength owing to its more uniform veneer structure, which improved stress distribution and delayed interlaminar failure. Observed asymmetry between tension and compression reflected microstructural mechanisms such as fiber alignment and cell-wall buckling. The miniature-specimen data provide reliable input for constitutive calibration and finite-element modeling, while revealing clear links between veneer-thickness distribution, shear-transfer efficiency, and macroscopic performance. The proposed framework enables efficient, reproducible orthotropic characterization for optimized, lightweight, and carbon-efficient timber systems. Full article
Show Figures

Figure 1

47 pages, 12662 KB  
Review
Strength in Adhesion: A Multi-Mechanics Review Covering Tensile, Shear, Fracture, Fatigue, Creep, and Impact Behavior of Polymer Bonding in Composites
by Murat Demiral
Polymers 2025, 17(19), 2600; https://doi.org/10.3390/polym17192600 - 25 Sep 2025
Cited by 7 | Viewed by 5088
Abstract
The growing demand for lightweight and reliable structures across aerospace, automotive, marine, and civil engineering has driven significant advances in polymer adhesive technology. These materials serve dual roles, functioning as matrices in composites and as structural bonding agents, where they must balance strength, [...] Read more.
The growing demand for lightweight and reliable structures across aerospace, automotive, marine, and civil engineering has driven significant advances in polymer adhesive technology. These materials serve dual roles, functioning as matrices in composites and as structural bonding agents, where they must balance strength, toughness, durability, and sometimes sustainability. Recent review efforts have greatly enriched understanding, yet most approach the topic from specialized angles—whether emphasizing nanoscale toughening, multifunctional formulations, sustainable alternatives, or microscopic failure processes in bonded joints. While such perspectives provide valuable insights, they often remain fragmented, leaving open questions about how nanoscale mechanisms translate into macroscopic reliability, how durability evolves under realistic service conditions, and how mechanical responses interact across different loading modes. To address this, the present review consolidates knowledge on the performance of polymer adhesives under tension, shear, fracture, fatigue, creep, and impact. By integrating experimental findings with computational modeling and emerging data-driven approaches, it situates localized mechanisms within a broader structure–performance framework. This unified perspective not only highlights persistent gaps—such as predictive modeling of complex failure, scalability of nanomodified systems, and long-term durability under coupled environments—but also outlines strategies for developing next-generation adhesives capable of delivering reliable, high-performance bonding solutions for demanding applications. Full article
(This article belongs to the Special Issue Polymer Composites: Design, Manufacture and Characterization)
Show Figures

Graphical abstract

24 pages, 9267 KB  
Article
Tendon Profile Layout Impact on the Shear Capacity of Unbonded Post-Tensioned Prestressed Concrete Bridge I-Girders
by Swar I. Hasib, Assim M. Lateef and Omar Q. Aziz
Infrastructures 2025, 10(9), 222; https://doi.org/10.3390/infrastructures10090222 - 22 Aug 2025
Viewed by 1163
Abstract
The main objective of this research is to investigate the impact of the tendon profile layout on the shear strength of unbonded post-tensioned prestressed concrete bridge I-girders. This study involves an experimental investigation where ten unbonded post-tensioned bridge girders are cast and subjected [...] Read more.
The main objective of this research is to investigate the impact of the tendon profile layout on the shear strength of unbonded post-tensioned prestressed concrete bridge I-girders. This study involves an experimental investigation where ten unbonded post-tensioned bridge girders are cast and subjected to four-point loads. The focus of the investigation is on the effect of different tendon profile layouts, including trapezoidal, parabolic, and harped shapes. The experimental results reveal that the shear behavior of the specimens progresses through three distinct stages: the elastic stage, the elastic–plastic stage, and the plastic stage, with all specimens ultimately failing due to shear. The results show that tendon profiles with higher eccentricity at the end of the beams (80 mm above the neutral axis) had the highest ultimate load capacity for each tendon profile shape, coupled with the largest deflection. Conversely, profiles with lower eccentricity (80 mm below the neutral axis) demonstrated the lower ultimate load capacity for each tendon profile shape and minimal deflection. Among the various tendon profile layouts that were tested, the specimen with the harped tendon profile (GF-1 HA) showed the highest ultimate load capacity, with an increasing rate of 17.52% in ultimate load and a 45.55% increase in ultimate deflection compared to the control beam (GF-1 ST) with a straight tendon profile. On the other hand, the harped tendon profile specimen (GF-1 HA) exhibited the lowest deflection among the various tendon profile shapes with an increasing rate of 5.7% in ultimate load deflection in comparison with the control beam (GF-1 ST) with a straight tendon profile. These improvements in stiffness, load capacity, and deflection are attributed to enhanced resistance, particularly at the supports. Consequently, the optimized tendon layouts offer an increase in the overall structural efficiency, leading to potential cost savings in bridge girder production. Full article
(This article belongs to the Section Infrastructures and Structural Engineering)
Show Figures

Figure 1

20 pages, 5957 KB  
Article
Plasticity and Fracture Behavior of High-Strength Bolts Considering Steel Shear Behavior
by Yajun Zhang, Longteng Liang, Jian Zhu and Ruilin Zhang
Buildings 2025, 15(14), 2430; https://doi.org/10.3390/buildings15142430 - 10 Jul 2025
Viewed by 802
Abstract
The accurate description of plasticity and fracture behavior is essential in numerically investigating the mechanical responses of high-strength bolts under tension, shear and coupling loads. However, based on the von Mises criterion, inputting the constitutive relation and damage model from the tensile coupon [...] Read more.
The accurate description of plasticity and fracture behavior is essential in numerically investigating the mechanical responses of high-strength bolts under tension, shear and coupling loads. However, based on the von Mises criterion, inputting the constitutive relation and damage model from the tensile coupon test into the finite element method cannot properly predict the shear behavior of high-strength bolts. Cylindrical tensile coupons and shear specimens of common and weathering high-strength bolts are tested to obtain the complete tensile and shear responses. The combined S-V model and the modified shear constitutive model are collaboratively used to calibrate and describe the tensile and shear constitutive relations of high-strength bolts, and then the Bao–Wierzbicki model is used to predict the tensile and shear fracture behaviors. Furthermore, the collaborating method is used to discuss the applicable range of tensile and shear constitutive models for high-strength bolts under a tensile–shear coupling load, based on numerical analysis against available experimental data in the literature. The loading angle of 30° along the bolt rod is defined as the cut-off to differentiate high-strength bolts under a tensile- or shear-dominated state, and the corresponding mechanical responses of high-strength bolts can be predicted well based on the tensile and shear constitutive models, respectively. Full article
Show Figures

Figure 1

21 pages, 6854 KB  
Article
Ductile Fracture Prediction in Mg-ZM51M Alloy Using Inverse-Calibrated Damage Models
by Thamer Sami Alhalaybeh, Ashiq Iqbal Chowdhury, Hammad Akhtar and Yanshan Lou
Metals 2025, 15(7), 722; https://doi.org/10.3390/met15070722 - 28 Jun 2025
Cited by 1 | Viewed by 713
Abstract
Magnesium (Mg) alloys are gaining widespread use in the automotive and construction industries for their potential to enhance performance and lower manufacturing costs, making them ideal for lightweight structural applications. However, despite these advantages, extruding Mg alloys remains technically challenging due to their [...] Read more.
Magnesium (Mg) alloys are gaining widespread use in the automotive and construction industries for their potential to enhance performance and lower manufacturing costs, making them ideal for lightweight structural applications. However, despite these advantages, extruding Mg alloys remains technically challenging due to their inherently limited formability and the strong crystallographic textures that form during deformation. This study aimed to comprehensively characterize the ductile fracture behavior of ZM51M Mg alloy round bars under various stress states and to improve the reliability of ductile failure predictions through the application and calibration of multiple uncoupled damage criteria. Tensile and compressive tests were conducted on specimens of varying geometries (dogbone, notched R5, shear, uniaxial compression, and plane strain compression specimens) and dimensions, meticulously cut along the extrusion direction of the round bar. These tests encompassed a wide spectrum of stress–strain responses and fracture characteristics, including uniaxial tension, uniaxial compression, and shear-dominated states. An inverse analysis approach, involving iterative numerical simulation coupled with experimental data, was employed to precisely determine fracture strains from the test results. The plastic deformation behavior was accurately modeled using the combined Swift–Voce hardening law. Subsequently, three prominent uncoupled ductile fracture criteria—Rice–Tracey, DF2014, and DF2016—were calibrated against the experimental data. The DF2016 criterion demonstrated superior predictive accuracy, consistently yielding the most accurate fracture strain predictions and significantly outperforming the Rice–Tracey and DF2014 criteria across the tested stress states. The findings of this work provide significant insights for improving the assessment of formability and fracture prediction in Mg alloys. This research directly contributes to overcoming the challenges associated with their inherent formability limitations and complex deformation textures, thereby facilitating more reliable design and broader adoption of Mg alloys in advanced lightweight structural solutions. Full article
Show Figures

Figure 1

16 pages, 5503 KB  
Article
Bending Stress and Deformation Characteristics of Gas Pipelines in Mountainous Terrain Under the Influence of Subsidence
by Guozhen Zhao, Jiadong Li and Haoyan Liang
Energies 2025, 18(13), 3323; https://doi.org/10.3390/en18133323 - 24 Jun 2025
Viewed by 778
Abstract
Aiming at the problem that the surface subsidence caused by coal mining in mountainous areas will pose a potential threat to the safe operation of gas pipelines in goaf subsidence areas, taking the geological conditions of Mugua Coal Mine in Shanxi Province as [...] Read more.
Aiming at the problem that the surface subsidence caused by coal mining in mountainous areas will pose a potential threat to the safe operation of gas pipelines in goaf subsidence areas, taking the geological conditions of Mugua Coal Mine in Shanxi Province as the research background, through the combination of similar simulation and finite element simulation, the deformation and stress characteristics of gas pipelines affected by subsidence in mountainous terrain are analyzed, and the failure law of gas pipelines in different terrains of the coal mining area is revealed. The results demonstrate that topographic stress convergence creates a maximum compression zone at the valley base of the central subsidence basin, causing significant pipeline depression. Hillslope areas primarily experience tension from soil slippage, while slope–valley transition zones exhibit a high-risk shear–tension coupling. Analysis via the pipe–soil interaction model reveals concentrated mid-subsidence pipeline stresses with subsequent relaxation through redistribution. Accordingly, the following zoned protection strategy is proposed: enhanced compression monitoring in valley segments, tensile reinforcement for slope sections, and prioritized shear prevention in transition zones. The research provides a theoretical basis for the safe operation and maintenance of gas pipeline networks in mountainous areas. Full article
Show Figures

Figure 1

22 pages, 9724 KB  
Article
Study on the Mechanical Properties and Degradation Mechanisms of Damaged Rock Under the Influence of Liquid Saturation
by Bowen Wu, Jucai Chang, Jianbiao Bai, Chao Qi and Dingchao Chen
Appl. Sci. 2025, 15(13), 7054; https://doi.org/10.3390/app15137054 - 23 Jun 2025
Viewed by 670
Abstract
To investigate the degradation mechanisms of the surrounding rock in abandoned mine roadways used for oil storage, this study combined uniaxial compression tests with digital image correlation (DIC), scanning electron microscopy (SEM), and other techniques to analyze the evolution of the rock mechanical [...] Read more.
To investigate the degradation mechanisms of the surrounding rock in abandoned mine roadways used for oil storage, this study combined uniaxial compression tests with digital image correlation (DIC), scanning electron microscopy (SEM), and other techniques to analyze the evolution of the rock mechanical properties under the coupled effects of oil–water soaking and initial damage. The results indicate that oil–water soaking induces the loss of silicon elements and the deterioration of microstructure, leading to surface peeling, crack propagation, and increased porosity of the sample. The compressive strength decreases linearly with the soaking time. Acoustic emission (AE) monitoring showed that after 24 h of soaking, the maximum ringing count rate and cumulative count decreased by 81.7% and 80.4%, respectively, compared to the dry state. As the liquid saturation increases, the failure mode transitions from tension dominated to shear failure. The synergistic effect of initial damage and oil–water erosion weakens the rock’s energy storage capacity, with the energy storage limit decreasing by 45.6%, leading to reduced resistance to external forces. Full article
(This article belongs to the Special Issue Novel Technologies in Intelligent Coal Mining)
Show Figures

Figure 1

22 pages, 9093 KB  
Article
Numerical Investigation of the Pull-Out and Shear Mechanical Characteristics and Support Effectiveness of Yielding Bolt in a Soft Rock Tunnel
by Yan Zhu, Mingbo Chi, Yanyan Tan, Ersheng Zha and Yuwei Zhang
Appl. Sci. 2025, 15(12), 6933; https://doi.org/10.3390/app15126933 - 19 Jun 2025
Viewed by 948
Abstract
Conventional bolts frequently fail under large deformations due to stress concentration in soft rock tunnels. In contrast, yielding bolts incorporate energy-absorbing mechanisms to sustain controlled plastic deformation. This study employed FLAC3D to numerically investigate the pull-out, shear, and bending behaviors of yielding bolts, [...] Read more.
Conventional bolts frequently fail under large deformations due to stress concentration in soft rock tunnels. In contrast, yielding bolts incorporate energy-absorbing mechanisms to sustain controlled plastic deformation. This study employed FLAC3D to numerically investigate the pull-out, shear, and bending behaviors of yielding bolts, evaluating their support effectiveness in soft rock tunnels. Three-dimensional finite difference models incorporating nonlinear coupling springs and the Mohr–Coulomb criterion were developed to simulate bolt–rock interactions under multifactorial loading. Validation against experimental pull-out tests and field measurements confirmed the model accuracy. Under pull-out loading, the axial forces in yielding bolts decreased more rapidly along the bolt length, reducing stress concentration at the head. The central position of the maximum load-bearing capacity in conventional bolts fractured under tension, resulting in an hourglass-shaped axial force distribution. Conversely, the yielding bolts maintained yield strength for an extended period after reaching it, exhibiting a spindle-shaped axial force distribution. Parametric analyses reveal that bolt spacing exerts a greater influence on support effectiveness than length. This study bridges critical gaps in understanding yielding bolt behavior under combined loading and provides a validated framework for optimizing energy-absorbing support systems in soft rock tunnels. Full article
(This article belongs to the Special Issue Recent Advances in Rock Mass Engineering)
Show Figures

Figure 1

19 pages, 3215 KB  
Article
Study on Elastoplastic Damage and Crack Propagation Mechanisms in Rock Based on the Phase Field Method
by Jie Zhang, Guang Qin and Bin Wang
Appl. Sci. 2025, 15(11), 6206; https://doi.org/10.3390/app15116206 - 31 May 2025
Cited by 3 | Viewed by 945
Abstract
To overcome the limitation of traditional elastic phase field models that neglect plastic deformation in rock compressive-shear failure, this study developed an elastoplastic phase field fracture model incorporating plastic strain energy and established a coupling framework for plastic deformation and crack evolution. By [...] Read more.
To overcome the limitation of traditional elastic phase field models that neglect plastic deformation in rock compressive-shear failure, this study developed an elastoplastic phase field fracture model incorporating plastic strain energy and established a coupling framework for plastic deformation and crack evolution. By introducing the non-associated flow rule and plastic damage variable, an energy functional comprising elastic strain energy, plastic work, and crack surface energy was constructed. The phase field governing equation considering plastic-damage coupling was obtained, enabling the simulation of the energy evolution in rock from the elastic stage to plastic damage and unstable failure. Validation was carried out through single-edge notch tension tests and uniaxial compression tests with prefabricated cracks. Results demonstrate that the model accurately captures characteristics such as the linear propagation of tensile cracks, the initiation of wing-like cracks under compressive-shear conditions, and the evolution of mixed-mode failure modes, which are highly consistent with classical experimental observations. Specifically, the model provides a more detailed description of local damage evolution and residual strength caused by stress concentration in compressive-shear scenarios, thereby quantifying the influence of plastic deformation on crack driving force. These findings offer theoretical support for crack propagation analysis in rock engineering applications, including hydraulic fracturing and the construction of underground energy storage caverns. The proposed plastic phase field model can be effectively utilized to simulate rock failure processes under complex stress states. Full article
Show Figures

Figure 1

14 pages, 2108 KB  
Article
Strain-Mode Rockburst Dynamics in Granite: Mechanisms, Evolution Stages, and Acoustic Emission-Based Early Warning Strategies
by Chuanyu Hu, Zhiheng Mei, Zhenhang Xiao and Fuding Mei
Appl. Sci. 2025, 15(9), 4884; https://doi.org/10.3390/app15094884 - 28 Apr 2025
Cited by 2 | Viewed by 764
Abstract
Granite is widely used in laboratory rockburst simulations due to its exceptional strength, brittleness, and uniform composition. This study employs a true triaxial loading system to replicate asymmetric stress states near free surfaces, allowing precise control of three-dimensional stresses to simulate strain-mode rockbursts. [...] Read more.
Granite is widely used in laboratory rockburst simulations due to its exceptional strength, brittleness, and uniform composition. This study employs a true triaxial loading system to replicate asymmetric stress states near free surfaces, allowing precise control of three-dimensional stresses to simulate strain-mode rockbursts. Advanced monitoring tools, such as acoustic emission (AE) and high-speed imaging, were used to investigate the evolution process, failure mechanisms, and monitoring strategies. The evolution of strain-mode rockbursts is divided into five stages: stress accumulation, crack initiation, critical instability, rockburst occurrence, and residual stress adjustment. Each stage exhibits dynamic responses and progressive energy release. Failure is governed by a tension–shear coexistence mechanism, where vertical splitting and diagonal shear fractures near free surfaces lead to V-shaped craters and violent rock fragment ejection. This reflects the brittle nature of granite under high-stress conditions. The AE monitoring proved highly effective in identifying rockburst precursors, with key indicators including quiet periods of low AE activity and sudden surges in AE counts, coupled with ‘V-shaped’ b-value troughs, offering reliable early warning signals. These findings provide critical insights into strain-mode rockburst dynamics, highlighting the transition from elastic deformation to dynamic failure and the role of energy release mechanisms. Full article
Show Figures

Figure 1

26 pages, 8150 KB  
Article
Coefficients of Thermal Expansion in Aligned Carbon Staple Fiber-Reinforced Polymers: Experimental Characterization with Numerical Investigation
by Julian Kupski, Lucian Zweifel, Miriam Preinfalck, Stephan Baz, Mohammad Hajikazemi and Christian Brauner
Polymers 2025, 17(8), 1088; https://doi.org/10.3390/polym17081088 - 17 Apr 2025
Cited by 2 | Viewed by 1821
Abstract
Carbon staple fiber composites are materials reinforced with discrete-length carbon fibers processed using traditional textile technologies, offering moderate mechanical properties and flexibility in manufacturing. These composites can be produced from recycled carbon staple fibers, aligned into yarn and tape-like structures, providing a more [...] Read more.
Carbon staple fiber composites are materials reinforced with discrete-length carbon fibers processed using traditional textile technologies, offering moderate mechanical properties and flexibility in manufacturing. These composites can be produced from recycled carbon staple fibers, aligned into yarn and tape-like structures, providing a more sustainable alternative while balancing performance, cost-effectiveness, and environmental impact. Aligning staple fibers into tape-like structures enables similar applications to those of continuous-fiber-based products, while allowing control over fiber orientation distribution, fiber volume fraction, and length distribution, which are all critical factors influencing both mechanical and thermo-mechanical properties. This study focuses on the experimental characterization and numerical investigation of Coefficients of Thermal Expansion (CTEs) in aligned carbon staple fiber composites. The effects of fiber orientation and volume fraction on coefficients of thermal expansion under different fiber alignment parameters are analyzed, revealing distinct thermal expansion behavior compared to typical aligned unidirectional continuous carbon fiber composite laminates. Unlike continuous unidirectional laminates, which typically exhibit transversely isotropic behavior without tensile–shear coupling, staple fiber composites demonstrate different in-plane axial, transverse, and out-of-plane CTE characteristics. To explain these deviations, a modeling approach is introduced, incorporating detailed experimental information on fiber distributions and microstructural features rather than averaged fiber orientation values. This involves a multi-scale analysis based on a laminate analogy through which all composite thermo-elastic properties can be predicted, accounting for variations in fiber orientations, volume fractions, and tape thicknesses. It is shown that while the local variation of fiber volume fraction has a small effect on the homogenized value of the coefficients of thermal expansion, fiber misalignment, tape thickness, and asymmetry in fiber orientation distribution will significantly affect the measurements of CTEs. For the case of carbon staple fiber composites, the asymmetry in fiber orientation distribution significantly influences the measurements of axial CTE. Fiber orientation asymmetry causes tensile–shear coupling under mechanical and thermal loading, leading to an unbalanced laminate with in-plane shear–tensile deformation. This coupling disrupts uniform displacement, complicating strain measurements and the determination of composite properties. Full article
Show Figures

Figure 1

18 pages, 3086 KB  
Article
Earth Fissures During Groundwater Depletion and Recovery: A Case Study at Shitangwan, Wuxi, Jiangsu, China
by Guang-Ya Wang, Jin-Qi Zhu, Greg G. You, Dan Zhang, Jun Yu, Fu-Gang Gou and Jian-Qiang Wu
Hydrology 2025, 12(3), 62; https://doi.org/10.3390/hydrology12030062 - 19 Mar 2025
Viewed by 1066
Abstract
The Shitangwan earth fissure is a resultant geological hazard due to prolonged groundwater depletion and land subsidence in Wuxi, China, since the 1980s. Initially observed in 1991, the earth fissure experienced continuous development over the next several decades. Employing a diverse array of [...] Read more.
The Shitangwan earth fissure is a resultant geological hazard due to prolonged groundwater depletion and land subsidence in Wuxi, China, since the 1980s. Initially observed in 1991, the earth fissure experienced continuous development over the next several decades. Employing a diverse array of techniques, including field monitoring via multilayered borehole extensometers, earth fissure monitoring for lateral and vertical movements, advanced geophysical exploration, and conventional geological investigations, this study aims to mitigate the risks associated with land subsidence and earth fissures. It is found that the groundwater has recovered to the levels in the 1980s, land subsidence and earth fissuring have ceased, and the earth fissuring is closely linked to the land subsidence. A bedrock ridge and a river course are underlying porous Quaternary sediments beneath the earth fissure. The formation of the earth fissure is the result of a combination of factors, including spatial and temporal variations in strata compression, rugged bedrock terrain, and the heterogeneity of the strata profile. Land subsidence is primarily attributed to the deep pumping aquifer and its adjacent aquitards, which are responsive to groundwater recovery with a time lag of a decade, and the land rebound accounts for 2% of the accumulated land subsidence. Estimations suggest that the depth of the earth fissure may have reached the bedrock ridge. The mechanism of the earth fissuring is the coupled effect of tension from the rotation of shallow soil strata along the bedrock ridge and shearing of strata driven by the differential compression of deep strata below the ridge level. Full article
(This article belongs to the Section Soil and Hydrology)
Show Figures

Figure 1

Back to TopTop