Ductile Fracture Prediction in Mg-ZM51M Alloy Using Inverse-Calibrated Damage Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Material and Specimen Preparation
2.2. Testing Procedures
2.3. Analytical Approach of Stress–Strain
2.4. Finite Element Analysis
2.5. Finite Element Simulation by Inverse Analysis Approach
3. Results
3.1. Experimental Results
3.2. Finite Element Results
4. Fracture Modeling
4.1. Rice–Tracey Fracture Criterion
4.2. DF2014 Fracture Criterion
4.3. DF2016 Fracture Criterion
5. Prediction of Fracture Behavior
5.1. Assessment of Prediction Performance
5.2. Comparison of the Experimental and Predicted Results
6. Conclusions
- The Swift–Voce hardening law provided a consistent characterization of the strain hardening behavior for dogbone specimens, exhibiting good agreement with the experimental true stress–true plastic strain curves. This indicates the model’s capacity to represent the material’s plastic response.
- The inverse analysis methodology, as applied in the numerical simulations, resulted in a high degree of agreement with the experimental load–displacement responses across all specimen types. With a prediction error consistently below 0.21%, the simulation framework demonstrated its capability in modeling mechanical behavior under complex multiaxial loading conditions.
- The Rice–Tracey, DF2014, and DF2016 fracture models demonstrated the ability to represent the fracture behavior across a broad range of stress triaxiality values. Among these, the DF2016 criterion consistently showed the highest predictive accuracy, particularly in simulating fracture initiation and progression under various loading scenarios. This suggests its potential as a reliable tool for predicting ductile failure in structural applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bazhenov, V.E.; Saidov, S.S.; Tselovalnik, Y.V.; Voropaeva, O.O.; Plisetskaya, I.V.; Tokar, A.A.; Bazlov, A.I.; Bautin, V.A.; Komissarov, A.A.; Koltygin, A.V.; et al. Comparison of Castability, Mechanical, and Corrosion Properties of Mg-Zn-Y-Zr Alloys Containing LPSO and W Phases. Trans. Nonferrous Met. Soc. China 2021, 31, 1276–1290. [Google Scholar] [CrossRef]
- Yang, Y.; Xiong, X.; Chen, J.; Peng, X.; Chen, D.; Pan, F. Research Advances of Magnesium and Magnesium Alloys Worldwide in 2022. J. Magnes. Alloys 2023, 11, 2611–2654. [Google Scholar] [CrossRef]
- Jena, K.D.; Cao, P. Processing of Magnesium Alloys by Mechanical Alloying. In Mechanically Alloyed Novel Materials: Processing, Applications, and Properties; Rajendrachari, S., Ed.; Springer Nature: Singapore, 2024; pp. 293–339. ISBN 978-981-97-6504-1. [Google Scholar]
- Xu, T.; Yang, Y.; Peng, X.; Song, J.; Pan, F. Overview of Advancement and Development Trend on Magnesium Alloy. J. Magnes. Alloys 2019, 7, 536–544. [Google Scholar] [CrossRef]
- Perić, D.; de Souza Neto, E.A. A New Computational Model for Tresca Plasticity at Finite Strains with an Optimal Parametrization in the Principal Space. Comput. Methods Appl. Mech. Eng. 1999, 171, 463–489. [Google Scholar] [CrossRef]
- Alhalaybeh, T.S.; Akhtar, H.; Chowdhury, A.I.; Lou, Y. Anisotropic Hardening of HC420 Steel Sheet: Experiments and Analytical Modeling. Metals 2025, 15, 149. [Google Scholar] [CrossRef]
- Billington, E.W. Generalized Isotropic Yield Criterion for Incompressible Materials. Acta Mech. 1988, 72, 1–20. [Google Scholar] [CrossRef]
- Cazacu, O. New Yield Criteria for Isotropic and Textured Metallic Materials. Int. J. Solids Struct. 2018, 139–140, 200–210. [Google Scholar] [CrossRef]
- Szabó, L.; Kossa, A. A New Exact Integration Method for the Drucker–Prager Elastoplastic Model with Linear Isotropic Hardening. Int. J. Solids Struct. 2012, 49, 170–190. [Google Scholar] [CrossRef]
- Yoshida, F.; Hamasaki, H.; Uemori, T. A User-Friendly 3D Yield Function to Describe Anisotropy of Steel Sheets. Int. J. Plast. 2013, 45, 119–139. [Google Scholar] [CrossRef]
- Thamer, A.; Yilihaer, M.; Hongchun, S.; Xiaoqing, L.; Liucheng, Z.; Yanshan, L. Artificial Neural Network Based Stamping Process Design for Three-Point Bending. Acta Mech. Sin. 2026, 42, 424895. [Google Scholar] [CrossRef]
- Karafillis, A.P.; Boyce, M.C. A General Anisotropic Yield Criterion Using Bounds and a Transformation Weighting Tensor. J. Mech. Phys. Solids 1993, 41, 1859–1886. [Google Scholar] [CrossRef]
- Barlat, F.; Lege, D.J.; Brem, J.C. A Six-Component Yield Function for Anisotropic Materials. Int. J. Plast. 1991, 7, 693–712. [Google Scholar] [CrossRef]
- Cazacu, O.; Plunkett, B.; Barlat, F. Orthotropic Yield Criterion for Hexagonal Closed Packed Metals. Int. J. Plast. 2006, 22, 1171–1194. [Google Scholar] [CrossRef]
- Plunkett, B.; Cazacu, O.; Barlat, F. Orthotropic Yield Criteria for Description of the Anisotropy in Tension and Compression of Sheet Metals. Int. J. Plast. 2008, 24, 847–866. [Google Scholar] [CrossRef]
- Gorji, M.B.; Furmanski, J.; Mohr, D. From Macro—To Micro—Experiments: Specimen-Size Independent Identification of Plasticity and Fracture Properties. Int. J. Mech. Sci. 2021, 199, 106389. [Google Scholar] [CrossRef]
- Espeseth, V.; Morin, D.; Tekoğlu, C.; Børvik, T.; Hopperstad, O.S. Ductile Tearing of Aluminium Plates: Experiments and Modelling. Int. J. Fract. 2023, 242, 39–70. [Google Scholar] [CrossRef]
- Gao, B.; Huang, W.; Wang, S.; Liu, Z.; Chen, X.; Su, S. Uncoupled Ductile Fracture Criterion Motivated by Micromechanisms: Modeling and Experiments. Eng. Fract. Mech. 2025, 313, 110659. [Google Scholar] [CrossRef]
- Cazacu, O.; Barlat, F. A Criterion for Description of Anisotropy and Yield Differential Effects in Pressure-Insensitive Metals. Int. J. Plast. 2004, 20, 2027–2045. [Google Scholar] [CrossRef]
- Lou, Y.; Zhang, S.; Yoon, J.W. Strength Modeling of Sheet Metals from Shear to Plane Strain Tension. Int. J. Plast. 2020, 134, 102813. [Google Scholar] [CrossRef]
- McClintock, F.A. A Criterion for Ductile Fracture by the Growth of Holes. J. Appl. Mech. 1968, 35, 363–371. [Google Scholar] [CrossRef]
- Rice, J.R.; Tracey, D.M. On the Ductile Enlargement of Voids in Triaxial Stress Fields∗. J. Mech. Phys. Solids 1969, 17, 201–217. [Google Scholar] [CrossRef]
- Gurson, A.L. Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media. J. Eng. Mater. Technol. 1977, 99, 2–15. [Google Scholar] [CrossRef]
- Bong, H.J.; Kim, D.; Kwon, Y.-N.; Lee, J. Predicting Hot Deformation Behaviors under Multiaxial Loading Using the Gurson-Tvergaard-Needleman Damage Model for Ti–6Al–4V Alloy Sheets. Eur. J. Mech.- A/Solids 2021, 87, 104227. [Google Scholar] [CrossRef]
- Kanvinde, A.M.; Deierlein, G.G. The Void Growth Model and the Stress Modified Critical Strain Model to Predict Ductile Fracture in Structural Steels. J. Struct. Eng. 2006, 132, 1907–1918. [Google Scholar] [CrossRef]
- Akhtar, H.; Alhalaybeh, T.S.; Fang, X.; Asbah, S.U.; Chao, S.; Lou, Y. Fracture Modeling of QP980 Steel: Evaluating the Rice–Tracey and DF2016 Criteria Under Diverse Loading States. Materials 2025, 18, 1303. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Fu, M.W.; Lu, J.; Yang, H. Ductile Fracture: Experiments and Computations. Int. J. Plast. 2011, 27, 147–180. [Google Scholar] [CrossRef]
- Xue, L. Constitutive Modeling of Void Shearing Effect in Ductile Fracture of Porous Materials. Eng. Fract. Mech. 2008, 75, 3343–3366. [Google Scholar] [CrossRef]
- Nahshon, K.; Hutchinson, J.W. Modification of the Gurson Model for Shear Failure. Eur. J. Mech.- A/Solids 2008, 27, 1–17. [Google Scholar] [CrossRef]
- Bai, Y.; Wierzbicki, T. Application of Extended Mohr–Coulomb Criterion to Ductile Fracture. Int. J. Fract. 2010, 161, 1–20. [Google Scholar] [CrossRef]
- Mirnia, M.J.; Vahdani, M. Calibration of Ductile Fracture Criterion from Shear to Equibiaxial Tension Using Hydraulic Bulge Test. J. Mater. Process. Technol. 2020, 280, 116589. [Google Scholar] [CrossRef]
- Göçmen, Y.; Erdogan, C.; Yalçinkaya, T. A Numerical Ballistic Performance Investigation of Armox 500T Steel through Ductile Damage Models. Eng. Fract. Mech. 2023, 292, 109658. [Google Scholar] [CrossRef]
- Barnwal, V.K.; Lee, S.-Y.; Choi, J.; Kim, J.-H.; Barlat, F. Performance Review of Various Uncoupled Fracture Criteria for TRIP Steel Sheet. Int. J. Mech. Sci. 2021, 195, 106269. [Google Scholar] [CrossRef]
- ASTM E8/E8M-21; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2021.
- Needleman, A.; Tvergaard, V. An Analysis of Ductile Rupture in Notched Bars. J. Mech. Phys. Solids 1984, 32, 461–490. [Google Scholar] [CrossRef]
- Peng, J.; Wang, Y.; Dai, Q.; Liu, X.; Liu, L.; Zhang, Z. Effect of Stress Triaxiality on Plastic Damage Evolution and Failure Mode for 316L Notched Specimen. Metals 2019, 9, 1067. [Google Scholar] [CrossRef]
- Thomason, P.F. Tensile Plastic Instability and Ductile Fracture Criteria in Uniaxial Compression Tests. Int. J. Mech. Sci. 1969, 11, 187–198. [Google Scholar] [CrossRef]
- Spulak, N.; Lowe, R.L.; Seidt, J.D.; Gilat, A.; Park, C.K.; Carney, K.S. Ductile Fracture under In-Plane Biaxial Tension and out-of-Plane Compression. Int. J. Solids Struct. 2020, 202, 234–242. [Google Scholar] [CrossRef]
- Zhang, D.F.; Shi, G.L.; Zhao, X.B.; Qi, F.G. Microstructure Evolution and Mechanical Properties of Mg-X%Zn-1%Mn (X=4, 5, 6, 7, 8, 9) Wrought Magnesium Alloys. Trans. Nonferrous Met. Soc. China 2011, 21, 15–25. [Google Scholar] [CrossRef]
- Kiran, R.; Khandelwal, K. Computational Models for Ductile Fracture Prediction in Structural Engineering Applications. Procedia Mater. Sci. 2014, 3, 1947–1955. [Google Scholar] [CrossRef]
- Li, F.-F.; Fang, G. Establishment and Verification of Two-Component Ductile Fracture Criteria with High Estimation Accuracy. Eng. Fract. Mech. 2018, 204, 221–234. [Google Scholar] [CrossRef]
- Lou, Y.; Huh, H. Extension of a Shear-Controlled Ductile Fracture Model Considering the Stress Triaxiality and the Lode Parameter. Int. J. Solids Struct. 2013, 50, 447–455. [Google Scholar] [CrossRef]
- Lou, Y.; Yoon, J.W.; Huh, H. Modeling of Shear Ductile Fracture Considering a Changeable Cut-off Value for Stress Triaxiality. Int. J. Plast. 2014, 54, 56–80. [Google Scholar] [CrossRef]
- Lou, Y.; Chen, L.; Calusmeyer, T.; Tekkaya, A.E.; Yoon, J. Modeling of ductile fracture from shear to balanced biaxial tension for sheet metals. Int. J. Solids Struct. 2017, 112, 169–184. [Google Scholar] [CrossRef]
Mg | Zn | Mn | Other |
---|---|---|---|
94.30 | 4.75 | 0.93 | 0.01 |
Function | K [MPa] | e0 | n | A [MPa] | B [MPa] | C | α |
---|---|---|---|---|---|---|---|
Dogbone | 605.50 | 0.0096 | 0.4309 | 296.82 | 86.39 | 11.85 | 0.05 |
UC | 586.55 | 0.0047 | 0.3834 | 260.69 | 79.80 | 20.29 | 0.50 |
Specimens | K [MPa] | e0 | n | A [MPa] | B [MPa] | C | α | Error (%) |
---|---|---|---|---|---|---|---|---|
NR5 | 667.80 | 0.0086 | 0.5434 | 331.50 | 84.90 | 13.64 | 0.50 | 0.3170 |
Shear | 605.20 | 0.0108 | 0.5811 | 329.30 | 60.70 | 12.45 | 0.50 | 1.0481 |
UC | 326.30 | 0.0156 | 0.4954 | 307.90 | 78.70 | 20.89 | 0.50 | 0.3034 |
PSC | 548.30 | 0.0136 | 0.5732 | 277.80 | 89.10 | 12.81 | 0.50 | 0.1886 |
Parameter | Rice–Tracey | DF2014 | DF2016 |
---|---|---|---|
C | / | 1.00 | 0.3330 |
C1 | / | −0.5579 | −0.8132 |
C2 | / | 2.7239 | 0.6778 |
C3 | / | 0.0693 | 0.0771 |
C4 | / | / | 0.5919 |
C5 | 0.0372 | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhalaybeh, T.S.; Chowdhury, A.I.; Akhtar, H.; Lou, Y. Ductile Fracture Prediction in Mg-ZM51M Alloy Using Inverse-Calibrated Damage Models. Metals 2025, 15, 722. https://doi.org/10.3390/met15070722
Alhalaybeh TS, Chowdhury AI, Akhtar H, Lou Y. Ductile Fracture Prediction in Mg-ZM51M Alloy Using Inverse-Calibrated Damage Models. Metals. 2025; 15(7):722. https://doi.org/10.3390/met15070722
Chicago/Turabian StyleAlhalaybeh, Thamer Sami, Ashiq Iqbal Chowdhury, Hammad Akhtar, and Yanshan Lou. 2025. "Ductile Fracture Prediction in Mg-ZM51M Alloy Using Inverse-Calibrated Damage Models" Metals 15, no. 7: 722. https://doi.org/10.3390/met15070722
APA StyleAlhalaybeh, T. S., Chowdhury, A. I., Akhtar, H., & Lou, Y. (2025). Ductile Fracture Prediction in Mg-ZM51M Alloy Using Inverse-Calibrated Damage Models. Metals, 15(7), 722. https://doi.org/10.3390/met15070722