Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,023)

Search Parameters:
Keywords = temperature-sensitivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2566 KiB  
Article
Parameter Sensitivity Study of the Johnson–Cook Model in FEM Turning of Ti6Al4V Alloy
by Piotr Löschner, Piotr Niesłony and Szymon Kołodziej
Materials 2025, 18(14), 3351; https://doi.org/10.3390/ma18143351 (registering DOI) - 17 Jul 2025
Abstract
The aim of this study was to analyse in detail the effect of varying the parameters of the Johnson–Cook (JC) material model on the results of a numerical simulation of the orthogonal turning process of the Ti6Al4V titanium alloy. The first step involved [...] Read more.
The aim of this study was to analyse in detail the effect of varying the parameters of the Johnson–Cook (JC) material model on the results of a numerical simulation of the orthogonal turning process of the Ti6Al4V titanium alloy. The first step involved an experimental study, including the recording of cutting force components and temperature, as well as the measurement of chip geometry, which was used to validate the FEM simulation. This was followed by a sensitivity analysis of the JC model with respect to five parameters, namely A, B, C, m, and n, each modified independently by ±20%. The effects of these changes on cutting forces, cutting zone temperature, stresses, and chip geometry were evaluated. The results showed that parameters A, B, and m had the greatest influence on the physical quantities analysed, while C and n are of secondary importance. The analysis highlighted the need for precise calibration of the JC model parameters, especially when modelling machining processes involving difficult-to-machine materials. The results provided practical guidance for optimising the selection of constitutive parameters in machining simulations. Full article
Show Figures

Figure 1

17 pages, 3568 KiB  
Article
Visual Colorimetric Sensing of the Animal-Derived Food Freshness by Juglone-Loaded Agarose Hydrogel
by Lanjing Wang, Weiyi Yan, Aijun Li, Huayin Zhang and Qian Xu
Foods 2025, 14(14), 2505; https://doi.org/10.3390/foods14142505 (registering DOI) - 17 Jul 2025
Abstract
The visual colorimetric sensing of total volatile basic nitrogen (TVB-N) allows for convenient dynamic monitoring of animal-derived food freshness to ensure food safety. The agarose hydrogel loaded with the natural dye juglone (Jug@AG) prepared in this study exhibits visible multicolor changes from yellow [...] Read more.
The visual colorimetric sensing of total volatile basic nitrogen (TVB-N) allows for convenient dynamic monitoring of animal-derived food freshness to ensure food safety. The agarose hydrogel loaded with the natural dye juglone (Jug@AG) prepared in this study exhibits visible multicolor changes from yellow to grayish-yellow and then to brownish with increasing TVB-N gas concentration, achieving sensitive detection of TVB-N gas at concentrations as low as 0.05 mg/dm3 within 8 min. The minimum observable amounts of TVB-N in spiked pork and fish samples are 8.43 mg/100 g and 8.27 mg/100 g, respectively, indicating that the Jug@AG hydrogel possesses sensitive colorimetric sensing capability in practical applications. The Jug@AG hydrogel also shows significant changes in color difference value (∆C) under both room temperature (25 °C) and cold storage (4 °C) conditions, with the changing trends of ∆C showing consistency with the measured TVB-N and total viable counts (TVC) during the transition of pork and fish samples from freshness to early spoilage and then to spoilage. The results indicate that the Jug@AG hydrogel can be used as a colorimetric sensor to achieve real-time dynamic freshness monitoring of animal-derived food. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

20 pages, 3164 KiB  
Review
Is Hydra Axis Definition a Fluctuation-Based Process Picking Up External Cues?
by Mikhail A. Zhukovsky, Si-Eun Sung and Albrecht Ott
J. Dev. Biol. 2025, 13(3), 24; https://doi.org/10.3390/jdb13030024 (registering DOI) - 17 Jul 2025
Abstract
Axis definition plays a key role in the establishment of animal body plans, both in normal development and regeneration. The cnidarian Hydra can re-establish its simple body plan when regenerating from a random cell aggregate or a sufficiently small tissue fragment. At the [...] Read more.
Axis definition plays a key role in the establishment of animal body plans, both in normal development and regeneration. The cnidarian Hydra can re-establish its simple body plan when regenerating from a random cell aggregate or a sufficiently small tissue fragment. At the beginning of regeneration, a hollow cellular spheroid forms, which then undergoes symmetry breaking and de novo body axis definition. In the past, we have published related work in a physics journal, which is difficult to read for scientists from other disciplines. Here, we review our work for readers not so familiar with this type of approach at a level that requires very little knowledge in mathematics. At the same time, we present a few aspects of Hydra biology that we believe to be linked to our work. These biological aspects may be of interest to physicists or members of related disciplines to better understand our approach. The proposed theoretical model is based on fluctuations of gene expression that are triggered by mechanical signaling, leading to increasingly large groups of cells acting in sync. With a single free parameter, the model quantitatively reproduces the experimentally observed expression pattern of the gene ks1, a marker for ‘head forming potential’. We observed that Hydra positions its axis as a function of a weak temperature gradient, but in a non-intuitive way. Supposing that a large fluctuation including ks1 expression is locked to define the head position, the model reproduces this behavior as well—without further changes. We explain why we believe that the proposed fluctuation-based symmetry breaking process agrees well with recent experimental findings where actin filament organization or anisotropic mechanical stimulation act as axis-positioning events. The model suggests that the Hydra spheroid exhibits huge sensitivity to external perturbations that will eventually position the axis. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Developmental Biology 2025)
Show Figures

Figure 1

14 pages, 1743 KiB  
Article
Unravelling Metazoan and Fish Community Patterns in Yujiang River, China: Insights from Beta Diversity Partitioning and Co-Occurrence Network
by Yusen Li, Dapeng Wang, Yuying Huang, Jun Shi, Weijun Wu, Chang Yuan, Shiqiong Nong, Chuanbo Guo, Wenjian Chen and Lei Zhou
Diversity 2025, 17(7), 488; https://doi.org/10.3390/d17070488 (registering DOI) - 17 Jul 2025
Abstract
Understanding the biodiversity of aquatic communities and the underlying mechanisms that shape biodiversity patterns and community dynamics is crucial for the effective conservation and management of freshwater ecosystems. However, traditional survey methods often fail to comprehensively capture species diversity, particularly for low-abundance taxa. [...] Read more.
Understanding the biodiversity of aquatic communities and the underlying mechanisms that shape biodiversity patterns and community dynamics is crucial for the effective conservation and management of freshwater ecosystems. However, traditional survey methods often fail to comprehensively capture species diversity, particularly for low-abundance taxa. Moreover, studies integrating both metazoan and fish communities at fine spatial scales remain limited. To address these gaps, we employed a multi-marker eDNA metabarcoding approach, targeting both the 12S and 18S rRNA gene regions, to comprehensively investigate the composition of metazoan and fish communities in the Yujiang River. A total of 12 metazoan orders were detected, encompassing 15 families, 21 genera, and 19 species. For the fish community, 32 species were identified, belonging to 25 genera, 10 families, and 7 orders. Among these, Adula falcatoides and Coptodon zillii were identified as the most prevalent and abundant metazoan and fish species, respectively. Notably, the most prevalent fish species, C. zillii and Oreochromis niloticus, are both recognized as invasive species. The Bray–Curtis distance of metazoa (average: 0.464) was significantly lower than that of fish communities (average: 0.797), suggesting higher community heterogeneity among fish assemblages. Beta-diversity decomposition indicated that variations in the metazoan and fish communities were predominantly driven by species replacement (turnover) (65.4% and 70.9% for metazoa and fish, respectively) rather than nestedness. Mantel tests further revealed that species turnover in metazoan communities was most strongly influenced by water temperature, while fish community turnover was primarily affected by water transparency, likely reflecting the physiological sensitivity of metazoans to thermal gradients and the dependence of fish on visual cues for foraging and habitat selection. In addition, a co-occurrence network of metazoan and fish species was constructed, highlighting potential predator-prey interactions between native species and Corbicula fluminea, which emerged as a potential keystone species. Overall, this study demonstrates the utility of multi-marker eDNA metabarcoding in characterizing aquatic community structures and provides new insights into the spatial dynamics and species interactions within river ecosystems. Full article
Show Figures

Figure 1

11 pages, 3627 KiB  
Article
The Influence of Traps on the Self-Heating Effect and THz Response of GaN HEMTs
by Huichuan Fan, Xiaoyun Wang, Xiaofang Wang and Lin Wang
Photonics 2025, 12(7), 719; https://doi.org/10.3390/photonics12070719 - 16 Jul 2025
Abstract
This study systematically investigates the effects of trap concentration on self-heating and terahertz (THz) responses in GaN HEMTs using Sentaurus TCAD. Traps, inherently unavoidable in semiconductors, can be strategically introduced to engineer specific energy levels that establish competitive dynamics between the electron momentum [...] Read more.
This study systematically investigates the effects of trap concentration on self-heating and terahertz (THz) responses in GaN HEMTs using Sentaurus TCAD. Traps, inherently unavoidable in semiconductors, can be strategically introduced to engineer specific energy levels that establish competitive dynamics between the electron momentum relaxation time and the carrier lifetime. A simulation-based exploration of this mechanism provides significant scientific value for enhancing device performance through self-heating mitigation and THz response optimization. An AlGaN/GaN heterojunction HEMT model was established, with trap concentrations ranging from 0 to 5×1017 cm3. The analysis reveals that traps significantly enhance channel current (achieving 3× gain at 1×1017 cm3) via new energy levels that prolong carrier lifetime. However, elevated trap concentrations (>1×1016 cm3) exacerbate self-heating-induced current collapse, reducing the min-to-max current ratio to 0.9158. In THz response characterization, devices exhibit a distinct DC component (Udc) under non-resonant detection (ωτ1). At a trap concentration of 1×1015 cm3, Udc peaks at 0.12 V when VgDC=7.8 V. Compared to trap-free devices, a maximum response attenuation of 64.89% occurs at VgDC=4.9 V. Furthermore, Udc demonstrates non-monotonic behavior with concentration, showing local maxima at 4×1015 cm3 and 7×1015 cm3, attributed to plasma wave damping and temperature-gradient-induced electric field variations. This research establishes trap engineering guidelines for GaN HEMTs: a concentration of 4×1015 cm3 optimally enhances conductivity while minimizing adverse impacts on both self-heating and the THz response, making it particularly suitable for high-sensitivity terahertz detectors. Full article
Show Figures

Figure 1

30 pages, 7278 KiB  
Article
Techno-Economic Evaluation of Geothermal Energy Utilization of Co-Produced Water from Natural Gas Production
by Lianzhong Sun, Hongyu Xiao, Zheng Chu, Lin Qiao, Yingqiang Yang, Lei Wang, Wenzhong Tian, Yinhui Zuo, Ting Li, Haijun Tang, Liping Chen and Dong Xiao
Energies 2025, 18(14), 3766; https://doi.org/10.3390/en18143766 - 16 Jul 2025
Abstract
The utilization of thermal energy from co-produced water during natural gas production offers a promising pathway to enhance energy efficiency and reduce carbon emissions. This study proposes a techno-economic evaluation model to assess the feasibility and profitability of geothermal energy recovery from co-produced [...] Read more.
The utilization of thermal energy from co-produced water during natural gas production offers a promising pathway to enhance energy efficiency and reduce carbon emissions. This study proposes a techno-economic evaluation model to assess the feasibility and profitability of geothermal energy recovery from co-produced water in marginal gas wells. A wellbore fluid flow and heat transfer model is developed and validated against field data, with deviations in calculated wellhead temperature and pressure within 10%, demonstrating the model’s reliability. Sensitivity analyses are conducted to investigate the influence of key technical and economic parameters on project performance. The results show that electricity price, heat price, and especially government one-off subsidies have a significant impact on the net present value (NPV), whereas the effects of insulation length and annular fluid thermal conductivity are comparatively limited. Under optimal conditions—including 2048 m of insulated tubing, annular protection fluid with a thermal conductivity of 0.4 W/(m·°C), a 30% increase in heat and electricity prices, and a 30% government capital subsidy—the project breaks even in the 14th year, with the 50-year NPV reaching 0.896 M$. This study provides a practical framework for evaluating and optimizing geothermal energy recovery from co-produced water, offering guidance for future sustainable energy development. Full article
Show Figures

Figure 1

16 pages, 1002 KiB  
Article
Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery
by Michael Herraiz, Saida Moumen, Kevin Lemoine, Laurent Jouffret, Katia Guérin, Elodie Petit, Nathalie Gaillard, Laure Bertry, Reka Toth, Thierry Le Mercier, Valérie Buissette and Marc Dubois
Batteries 2025, 11(7), 268; https://doi.org/10.3390/batteries11070268 - 16 Jul 2025
Abstract
After reviewing the state of the art of the fluorination of inorganic solid electrolytes, an application of gas/solid fluorination is given and how it can be processed. Garnet-type oxide has been chosen. These oxides with an ideal structure of chemical formula A3 [...] Read more.
After reviewing the state of the art of the fluorination of inorganic solid electrolytes, an application of gas/solid fluorination is given and how it can be processed. Garnet-type oxide has been chosen. These oxides with an ideal structure of chemical formula A3B2(XO4)3 are mainly known for their magnetic and dielectric properties. Certain garnets may have a high enough Li+ ionic conductivity to be used as solid electrolyte of lithium ion battery. The surface of LLZO may be changed in contact with the moisture and CO2 present in the atmosphere that results in a change of the conductivity at the interface of the solid. LiOH and/or lithium carbonate are formed at the surface of the garnet particles. In order to allow for handling and storage under normal conditions of this solid electrolyte, surface fluorination was performed using elemental fluorine. When controlled using mild conditions (temperature lower or equal to 200 °C, either in static or dynamic mode), the addition of fluorine atoms to LLZO with Li6,4Al0,2La3Zr2O12 composition is limited to the surface, forming a covering layer of lithium fluoride LiF. The effect of the fluorination was evidenced by IR, Raman, and NMR spectroscopies. If present in the pristine LLZO powder, then the carbonate groups disappear. More interestingly, contrary to the pristine LLZO, the contents of these groups are drastically reduced even after storage in air up to 45 days when the powder is covered with the LiF layer. Surface fluorination could be applied to other solid electrolytes that are air sensitive. Full article
13 pages, 4656 KiB  
Article
High-Speed and Hysteresis-Free Near-Infrared Optical Hydrogen Sensor Based on Ti/Pd Bilayer Thin Films
by Ashwin Thapa Magar, Tu Anh Ngo, Hoang Mai Luong, Thi Thu Trinh Phan, Minh Tuan Trinh, Yiping Zhao and Tho Duc Nguyen
Nanomaterials 2025, 15(14), 1105; https://doi.org/10.3390/nano15141105 - 16 Jul 2025
Abstract
Palladium (Pd) and titanium (Ti) exhibit opposite dielectric responses upon hydrogenation, with stronger effects observed in the near-infrared (NIR) region. Leveraging this contrast, we investigated Ti/Pd bilayer thin films as a platform for NIR hydrogen sensing—particularly at telecommunication-relevant wavelengths, where such devices have [...] Read more.
Palladium (Pd) and titanium (Ti) exhibit opposite dielectric responses upon hydrogenation, with stronger effects observed in the near-infrared (NIR) region. Leveraging this contrast, we investigated Ti/Pd bilayer thin films as a platform for NIR hydrogen sensing—particularly at telecommunication-relevant wavelengths, where such devices have remained largely unexplored. Ti/Pd bilayers coated with Teflon AF (TAF) and fabricated via sequential electron-beam and thermal evaporation were characterized using optical transmission measurements under repeated hydrogenation cycles. The Ti (5 nm)/Pd (x = 2.5 nm)/TAF (30 nm) architecture showed a 2.7-fold enhancement in the hydrogen-induced optical contrast at 1550 nm compared to Pd/TAF reference films, attributed to the hydrogen ion exchange between the Ti and Pd layers. The optimized structure, with a Pd thickness of x = 1.9 nm, exhibited hysteresis-free sensing behavior, a rapid response time (t90 < 0.35 s at 4% H2), and a detection limit below 10 ppm. It also demonstrated excellent selectivity with negligible cross-sensitivity to CO2, CH4, and CO, as well as high durability, showing less than 6% signal degradation over 135 hydrogenation cycles. These findings establish a scalable, room-temperature NIR hydrogen sensing platform with strong potential for deployment in automotive, environmental, and industrial applications. Full article
Show Figures

Figure 1

15 pages, 2473 KiB  
Article
Self-Calibrating TSEP for Junction Temperature and RUL Prediction in GaN HEMTs
by Yifan Cui, Yutian Gan, Kangyao Wen, Yang Jiang, Chunzhang Chen, Qing Wang and Hongyu Yu
Nanomaterials 2025, 15(14), 1102; https://doi.org/10.3390/nano15141102 - 16 Jul 2025
Abstract
Gallium nitride high-electron-mobility transistors (GaN HEMTs) are critical for high-power applications like AI power supplies and robotics but face reliability challenges due to increased dynamic ON-resistance (RDS_ON) from electrical and thermomechanical stresses. This paper presents a novel self-calibrating temperature-sensitive electrical parameter [...] Read more.
Gallium nitride high-electron-mobility transistors (GaN HEMTs) are critical for high-power applications like AI power supplies and robotics but face reliability challenges due to increased dynamic ON-resistance (RDS_ON) from electrical and thermomechanical stresses. This paper presents a novel self-calibrating temperature-sensitive electrical parameter (TSEP) model that uses gate leakage current (IG) to estimate junction temperature with high accuracy, uniquely addressing aging effects overlooked in prior studies. By integrating IG, aging-induced degradation, and failure-in-time (FIT) models, the approach achieves a junction temperature estimation error of less than 1%. Long-term hard-switching tests confirm its effectiveness, with calibrated RDS_ON measurements enabling precise remaining useful life (RUL) predictions. This methodology significantly improves GaN HEMT reliability assessment, enhancing their performance in resilient power electronics systems. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

25 pages, 1160 KiB  
Review
MS and GC–MS Analytical Methods for On-Line Thermally Induced Evolved Gas Analysis (OLTI-EGA)
by Giuseppina Gullifa, Elena Papa, Giordano Putzolu, Gaia Rizzo, Marialuisa Ruocco, Chiara Albertini, Roberta Risoluti and Stefano Materazzi
Chemosensors 2025, 13(7), 258; https://doi.org/10.3390/chemosensors13070258 - 16 Jul 2025
Abstract
Mass spectrometry (MS) and coupled gas chromatography-mass spectrometry (GC-MS) are globally recognized as the primary techniques for the analysis of gases or vapors due to their selectivity, sensitivity, accuracy, and reproducibility. When thermal stress is applied, vapors or gases are released as a [...] Read more.
Mass spectrometry (MS) and coupled gas chromatography-mass spectrometry (GC-MS) are globally recognized as the primary techniques for the analysis of gases or vapors due to their selectivity, sensitivity, accuracy, and reproducibility. When thermal stress is applied, vapors or gases are released as a result of the reactions and changes that occur. The analysis of these gases during the thermally induced reaction is scientifically referred to as evolved gas analysis (EGA), which is essential for confirming the occurrence of the induced reactions. Pyrolyzers, thermobalances, or simple heaters can increase the temperature of the analyzed samples according to a programmed and software-managed ramp, allowing for control over both the heating rate and isothermal stages. The atmosphere can also be varied to simulate pyrolysis or thermo-oxidative processes. This way, each induced reaction generates a unique evolved gas, which can be linked to a theoretically hypothesized mechanism. Mass spectrometry (MS) and coupled gas chromatography–mass spectrometry (GC-MS) are fundamental analytical methods used for on-line thermally induced evolved gas analysis (OLTI-EGA). Full article
Show Figures

Figure 1

17 pages, 6777 KiB  
Article
Filamentous Temperature-Sensitive Z Protein J175 Regulates Maize Chloroplasts’ and Amyloplasts’ Division and Development
by Huayang Lv, Xuewu He, Hongyu Zhang, Dianyuan Cai, Zeting Mou, Xuerui He, Yangping Li, Hanmei Liu, Yinghong Liu, Yufeng Hu, Zhiming Zhang, Yubi Huang and Junjie Zhang
Plants 2025, 14(14), 2198; https://doi.org/10.3390/plants14142198 - 16 Jul 2025
Viewed by 103
Abstract
Plastid division regulatory genes play a crucial role in the morphogenesis of chloroplasts and amyloplasts. Chloroplasts are the main sites for photosynthesis and metabolic reactions, while amyloplasts are the organelles responsible for forming and storing starch granules. The proper division of chloroplasts and [...] Read more.
Plastid division regulatory genes play a crucial role in the morphogenesis of chloroplasts and amyloplasts. Chloroplasts are the main sites for photosynthesis and metabolic reactions, while amyloplasts are the organelles responsible for forming and storing starch granules. The proper division of chloroplasts and amyloplasts is essential for plant growth and yield maintenance. Therefore, this study aimed to examine the J175 (FtsZ2-2) gene, cloned from an ethyl methanesulphonate (EMS) mutant involved in chloroplast and amyloplast division in maize, through map-based cloning. We found that J175 encodes a cell division protein, FtsZ (filamentous temperature-sensitive Z). The FtsZ family of proteins is widely distributed in plants and may be related to the division of chloroplasts and amyloplasts. The J175 protein is localized in plastids, and its gene is expressed across various tissues. From the seedling stage, the leaves of the j175 mutant exhibited white stripes, while the division of chloroplasts was inhibited, leading to a significant increase in volume and a reduction in their number. Measurement of the photosynthetic rate showed a significant decrease in the photosynthetic efficiency of j175. Additionally, the division of amyloplasts in j175 grains at different stages was impeded, resulting in irregular polygonal starch granules. RNA-seq analyses of leaves and kernels also showed that multiple genes affecting plastid division, such as FtsZ1, ARC3, ARC6, PDV1-1, PDV2, and MinE1, were significantly downregulated. This study demonstrates that the maize gene j175 is essential for maintaining the division of chloroplasts and amyloplasts and ensuring normal plant growth, and provides an important gene resource for the molecular breeding of maize. Full article
(This article belongs to the Special Issue Crop Genetics and Breeding)
Show Figures

Figure 1

25 pages, 4106 KiB  
Article
Towards Energy Efficiency in Existing Buildings: A Dynamic Simulation Framework for Analysing and Reducing Climate Change Impacts
by Camilla Lops, Valentina D’Agostino, Samantha Di Loreto and Sergio Montelpare
Sustainability 2025, 17(14), 6485; https://doi.org/10.3390/su17146485 - 16 Jul 2025
Viewed by 66
Abstract
This research presents a multi-scale framework designed for assessing the energy performance and climate vulnerability of three existing residential buildings in a small Central Italian municipality. By integrating dynamic energy simulations with high-resolution climate projections, the study investigated how the selected building typologies [...] Read more.
This research presents a multi-scale framework designed for assessing the energy performance and climate vulnerability of three existing residential buildings in a small Central Italian municipality. By integrating dynamic energy simulations with high-resolution climate projections, the study investigated how the selected building typologies responded to changing environmental conditions. Validation against Energy Performance Certificates (EPCs) confirmed the framework’s robustness in accurately capturing energy consumption patterns and assessing retrofit potential. The results revealed a general reduction in heating demand accompanied by an increase in cooling requirements under future climate scenarios, with notable differences across building types. The reinforced concrete building showed greater sensitivity to rising temperatures, particularly in cooling demand, likely due to its lower thermal inertia. In contrast, masonry buildings achieved more substantial energy savings following retrofit interventions, reflecting their initially poorer thermal performance and outdated systems. Retrofit measures yielded significant energy reductions, especially in older masonry structures, with savings reaching up to 44%, underscoring the necessity of customised retrofit strategies. The validated methodology supports future wider applicability in regional energy planning and aligns with integrated initiatives aimed at balancing climate adaptation and cultural heritage preservation. Full article
Show Figures

Figure 1

70 pages, 1120 KiB  
Review
An Overview of Biodiesel Production via Heterogeneous Catalysts: Synthesis, Current Advances, and Challenges
by Maya Yaghi, Sandra Chidiac, Sary Awad, Youssef El Rayess and Nancy Zgheib
Clean Technol. 2025, 7(3), 62; https://doi.org/10.3390/cleantechnol7030062 - 15 Jul 2025
Viewed by 63
Abstract
Biodiesel, a renewable and environmentally friendly alternative to fossil fuels, has attracted significant attention due to its potential to reduce greenhouse gas emissions. However, high production costs and complex processing remain challenges. Heterogeneous catalysts have shown promise in overcoming these barriers by offering [...] Read more.
Biodiesel, a renewable and environmentally friendly alternative to fossil fuels, has attracted significant attention due to its potential to reduce greenhouse gas emissions. However, high production costs and complex processing remain challenges. Heterogeneous catalysts have shown promise in overcoming these barriers by offering benefits, such as easy separation, reusability, low-cost raw materials, and the ability to reduce reaction times and energy consumption. This review evaluates key classes of heterogeneous catalysts, such as metal oxides, ion exchange resins, and zeolites, and their performance in transesterification and esterification processes. It highlights the importance of catalyst preparation methods, textural properties, including surface area, pore volume, and pore size, activation techniques, and critical operational parameters, like the methanol-to-oil ratio, temperature, time, catalyst loading, and reusability. The analysis reveals that catalysts supported on high surface area materials often achieve higher biodiesel yields, while metal oxides derived from natural sources provide cost-effective and sustainable options. Challenges, such as catalyst deactivation, sensitivity to feedstock composition, and variability in performance, are discussed. Overall, the findings underscore the potential of heterogeneous catalysts to enhance biodiesel production efficiency, although further optimization and standardized evaluation protocols are necessary for their broader industrial application. Full article
Show Figures

Figure 1

23 pages, 2901 KiB  
Article
L-Arabinose Alters the E. coli Transcriptome to Favor Biofilm Growth and Enhances Survival During Fluoroquinolone Stress
by Katherine M. Austin, Jenna K. Frizzell, Audrey A. Neighmond, Isabella J. Moppel and Lisa M. Ryno
Microorganisms 2025, 13(7), 1665; https://doi.org/10.3390/microorganisms13071665 - 15 Jul 2025
Viewed by 67
Abstract
Environmental conditions, including nutrient composition and temperature, influence biofilm formation and antibiotic resistance in Escherichia coli. Understanding how specific metabolites modulate these processes is critical for improving antimicrobial strategies. Here, we investigated the growth and composition of Escherichia coli in both planktonic [...] Read more.
Environmental conditions, including nutrient composition and temperature, influence biofilm formation and antibiotic resistance in Escherichia coli. Understanding how specific metabolites modulate these processes is critical for improving antimicrobial strategies. Here, we investigated the growth and composition of Escherichia coli in both planktonic and biofilm states in the presence of L-arabinose, with and without exposure to the fluoroquinolone antibiotic levofloxacin, at two temperatures: 28 and 37 °C. At both temperatures, L-arabinose increased the growth rate of planktonic E. coli but resulted in reduced total growth; concurrently, it enhanced biofilm growth at 37 °C. L-arabinose reduced the efficacy of levofloxacin and promoted growth in sub-minimum inhibitory concentrations (25 ng/mL). Transcriptomic analyses provided insight into the molecular basis of arabinose-mediated reduced susceptibility of E. coli to levofloxacin. We found that L-arabinose had a temperature- and state-dependent impact on the transcriptome. Using gene ontology overrepresentation analyses, we found that L-arabinose modulated the expression of many critical antibiotic resistance genes, including efflux pumps (ydeA, mdtH, mdtM), transporters (proVWX), and biofilm-related genes for external structures like pili (fimA) and curli (csgA, csgB). This study demonstrates a previously uncharacterized role for L-arabinose in modulating antibiotic resistance and biofilm-associated gene expression in E. coli and provides a foundation for additional exploration of sugar-mediated antibiotic sensitivity in bacterial biofilms. Full article
(This article belongs to the Section Biofilm)
Show Figures

Figure 1

29 pages, 8416 KiB  
Article
WSN-Based Multi-Sensor System for Structural Health Monitoring
by Fatih Dagsever, Zahra Sharif Khodaei and M. H. Ferri Aliabadi
Sensors 2025, 25(14), 4407; https://doi.org/10.3390/s25144407 - 15 Jul 2025
Viewed by 67
Abstract
Structural Health Monitoring (SHM) is an essential technique for continuously assessing structural conditions using integrated sensor systems during operation. SHM technologies have evolved to address the increasing demand for efficient maintenance strategies in advanced engineering fields, such as civil infrastructure, aerospace, and transportation. [...] Read more.
Structural Health Monitoring (SHM) is an essential technique for continuously assessing structural conditions using integrated sensor systems during operation. SHM technologies have evolved to address the increasing demand for efficient maintenance strategies in advanced engineering fields, such as civil infrastructure, aerospace, and transportation. However, developing a miniaturized, cost-effective, and multi-sensor solution based on Wireless Sensor Networks (WSNs) remains a significant challenge, particularly for SHM applications in weight-sensitive aerospace structures. To address this, the present study introduces a novel WSN-based Multi-Sensor System (MSS) that integrates multiple sensing capabilities onto a 3 × 3 cm flexible Printed Circuit Board (PCB). The proposed system combines a Piezoelectric Transducer (PZT) for impact detection; a strain gauge for mechanical deformation monitoring; an accelerometer for capturing dynamic responses; and an environmental sensor measuring temperature, pressure, and humidity. This high level of functional integration, combined with real-time Data Acquisition (DAQ) and precise time synchronization via Bluetooth Low Energy (LE), distinguishes the proposed MSS from conventional SHM systems, which are typically constrained by bulky hardware, single sensing modalities, or dependence on wired communication. Experimental evaluations on composite panels and aluminum specimens demonstrate reliable high-fidelity recording of PZT signals, strain variations, and acceleration responses, matching the performance of commercial instruments. The proposed system offers a low-power, lightweight, and scalable platform, demonstrating strong potential for on-board SHM in aircraft applications. Full article
Show Figures

Figure 1

Back to TopTop