Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,600)

Search Parameters:
Keywords = temperature-dependent characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3081 KB  
Article
The Hidden Short-Term Electro-Thermal–Optical Feedback Loop in Circuit-Level Modeling of PV Hot-Spots
by Marco Balato, Carlo Petrarca, Martina Botti, Antonio Pio Catalano, Massimo Vitelli, Luigi Costanzo, Luigi Verolino and Dario Assante
Appl. Sci. 2026, 16(3), 1526; https://doi.org/10.3390/app16031526 - 3 Feb 2026
Abstract
Hot-spots represent a significant failure mechanism in photovoltaic (PV) modules, typically attributable to electrical mismatching. However, thermo-optical degradation of the encapsulant, including discoloration and delamination, can both trigger and amplify mismatch by inducing localized optical losses and temperature rise. The present paper proposes [...] Read more.
Hot-spots represent a significant failure mechanism in photovoltaic (PV) modules, typically attributable to electrical mismatching. However, thermo-optical degradation of the encapsulant, including discoloration and delamination, can both trigger and amplify mismatch by inducing localized optical losses and temperature rise. The present paper proposes a compact circuit-level electro-thermal–optical model that explicitly captures the short-term closed-loop interaction between mismatching, cell temperature, and temperature-dependent optical properties. The photogenerated current is formulated as a function of irradiance, cell temperature, and encapsulant degradation, enabling dynamic feedback between heating and optical losses. Numerical simulations are carried out on a commercial 40-cell PV module under four representative operating static scenarios. The results demonstrate that, even in the absence of shading, optical degradation can generate multimodal P–V characteristics, drive cells into reverse bias, and produce hot-spots. When optical degradation coexists with irradiance mismatch, the feedback loop significantly amplifies mismatching and shifts the maximum power point toward thermally unsafe operating conditions. These findings demonstrate that maximizing instantaneous power does not necessarily maximize lifetime energy yield, underscoring the need for thermal-aware MPPT strategies and providing a practical framework for early detection of thermo-optical faults in PV modules. Full article
(This article belongs to the Special Issue Renewable Energy and Electrical Power System)
Show Figures

Figure 1

15 pages, 2511 KB  
Article
The Effect of Ammonia on the Host–Parasite System Tenebrio molitor at Different Temperatures
by Denis Rybalka and Viktor Brygadyrenko
Biology 2026, 15(3), 271; https://doi.org/10.3390/biology15030271 - 3 Feb 2026
Abstract
Ammonia (NH3) is an environmental pollutant that enters ecosystems as a result of agricultural activities, industrial accidents, leaks of ammonia-based rocket fuel, and explosions at chemical plants. Temperature changes can alter the toxicity of ammonia to invertebrates. This study investigated the [...] Read more.
Ammonia (NH3) is an environmental pollutant that enters ecosystems as a result of agricultural activities, industrial accidents, leaks of ammonia-based rocket fuel, and explosions at chemical plants. Temperature changes can alter the toxicity of ammonia to invertebrates. This study investigated the effect of ammonia on the relationship between Tenebrio molitor Linnaeus, 1758 (Coleoptera: Tenebrionidae) and its parasites at temperatures of 21–23 °C and 26–28 °C. We used 150 T. molitor larvae, which were divided into five groups of ammonia concentrations (0–4000 mg NH3/kg of substrate) at two temperatures (21–23 °C, 26–28 °C). During a 10-day exposure, mortality, body weight changes, and the intensity of parasitic invasion by three species of Gregarina were assessed. The results showed a concentration-dependent effect of ammonia on the physiological state and parasitic systems of T. molitor (body weight changes: p = 2 × 10−16; intensity of parasitic invasion: R2 = 0.13–0.87), while mortality increased from 0% in the control groups to 40–60% at maximum concentration. Contrary to expectations, temperature did not alter the toxicity of ammonia in the studied range of 21–28 °C (all p > 0.18). Parasitological parameters showed higher sensitivity to ammonia stress compared to physiological indicators, forming 4–5 concentration groups versus 2 groups for body weight changes. The observed absence of temperature-dependent changes in ammonia toxicity in the range of 21–28 °C contrasts with the known effects in aquatic invertebrates and may reflect the physiological characteristics of terrestrial insects. The higher sensitivity of parasitological parameters confirms their suitability as indicators of sublethal toxicity for monitoring ammonia pollution in industrial insect breeding systems. Full article
(This article belongs to the Special Issue Feature Papers on Toxicology)
Show Figures

Figure 1

20 pages, 2616 KB  
Article
Drivers of Diurnal Variations in Urban–Rural Land Surface Temperature in Beijing: Implications for Sustainable Urban Planning
by Sijia Zhao, Qiang Chen, Kangning Li and Jingjue Jia
Sustainability 2026, 18(3), 1379; https://doi.org/10.3390/su18031379 - 30 Jan 2026
Viewed by 104
Abstract
Urban heat not only affects thermal comfort but also constrains the sustainable development of cities, underscoring the necessity of understanding the temporal response of land surface temperature (LST) to urban characteristics over time. Most existing studies rely on single-overpass satellite observations or daily [...] Read more.
Urban heat not only affects thermal comfort but also constrains the sustainable development of cities, underscoring the necessity of understanding the temporal response of land surface temperature (LST) to urban characteristics over time. Most existing studies rely on single-overpass satellite observations or daily averages, failing to capture continuous diurnal variability and the time-dependent influence of different drivers. In this study, we reconstructed seasonal hourly LST series for Beijing using an improved diurnal temperature cycle (DTC) model (GEMη) based on MODIS data, and employed a random forest framework to quantify the relative contributions of natural, urban morphological, and anthropogenic factors throughout the diurnal cycle. Unlike previous studies that rely on traditional DTC models and machine learning for largely static or single-scale assessments, our research provides a unified, time-explicit comparison of LST driver dominance across seasons, hourly diurnal cycles, and urban–rural contexts. The results indicate that persistent urban heat island (UHI) effects occur in all seasons, with the maximum intensity reaching approximately 5.0 °C in summer. Generally, natural factors exert a cooling influence, whereas urban morphology and human activities contribute to warming. More importantly, the dominant drivers show strong temporal dependence: a nature-dominated regime prevails in summer, where vegetation exerts an overwhelming cooling effect. Conversely, during transition seasons and winter, LST variability is governed by a mixed-driven mechanism characterized by an hourly-resolved diurnal handoff, in which the dominant contributors shift hour by hour between surface physical properties and anthropogenic proxies. Our findings challenge the static view of urban heat drivers and provide quantitative evidence for developing time-sensitive and seasonally adaptive mitigation strategies, thereby supporting sustainable urban planning and enhancing climate resilience in megacities. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

24 pages, 2049 KB  
Article
Study on the Need for Preconditioning of Li-Ion Batteries in Electric Vehicles
by Rajmond Jano, Adelina Ioana Ilies and Vlad Bande
World Electr. Veh. J. 2026, 17(2), 61; https://doi.org/10.3390/wevj17020061 - 29 Jan 2026
Viewed by 187
Abstract
Lithium-ion batteries are widely used in portable devices and electronic vehicles (EVs) due to their excellent performance. Because of their internal chemistry, these batteries have non-linear characteristics, their parameters being dependent on temperature and varying over time due to aging. Since electric vehicles [...] Read more.
Lithium-ion batteries are widely used in portable devices and electronic vehicles (EVs) due to their excellent performance. Because of their internal chemistry, these batteries have non-linear characteristics, their parameters being dependent on temperature and varying over time due to aging. Since electric vehicles are marketed in different regions of the globe with different climates, this has led to increased attention to the problem of the reduced performance of EVs in colder environments. The purpose of this research is to study the effects of preconditioning on Li-ion cells and determine the need for preconditioning in EVs that operate under low-temperature conditions. Additionally, based on the results, alternative coping strategies are also suggested which can be used instead of preconditioning when this is not a viable option. Given this, the 18650 Li-ion cells studied were divided into two categories, cells to be charged/discharged permanently at low temperatures and cells that were to be exposed to the same low temperatures but then preconditioned to ambient temperature before the charge/discharge cycle for a total of 100 performed cycles. It was observed that low temperatures have a direct negative impact on the usable capacity of the cells, accounting for a drop of 8% of the initial value. These effects can be completely negated by preconditioning the cells prior to charging/discharging. After that, the effects of medium-term storage on the capacity of the batteries were investigated to study the possible recovery in the capacity of the cells. Finally, the need for preconditioning the cells is analyzed and alternative methods to mitigate the issues are suggested for equipment where preconditioning is not possible. Full article
(This article belongs to the Section Storage Systems)
Show Figures

Figure 1

52 pages, 1927 KB  
Review
Effect of Elevated Temperature Thermal Aging/Exposure on Shear Response of FRP Composites: A Topical Review
by Rabina Acharya and Vistasp M. Karbhari
Polymers 2026, 18(3), 354; https://doi.org/10.3390/polym18030354 - 28 Jan 2026
Viewed by 394
Abstract
Fiber-reinforced polymer (FRP) composites are increasingly used in civil, marine, offshore, and energy infrastructure, where components routinely experience temperatures above ambient conditions. While the design of these components is largely driven by fiber-dominated characteristics, the deterioration of shear properties can lead to premature [...] Read more.
Fiber-reinforced polymer (FRP) composites are increasingly used in civil, marine, offshore, and energy infrastructure, where components routinely experience temperatures above ambient conditions. While the design of these components is largely driven by fiber-dominated characteristics, the deterioration of shear properties can lead to premature weakening and even failure. Thus, the performance and reliability of these systems depend intrinsically on the response of interlaminar shear characteristics, in-plane shear characteristics, and flexure-based shear characteristics to thermal loads ranging from uniform and monotonically increasing to cyclic and spike exposures. This paper presents a critical review of current knowledge of shear response in the presence of thermal exposure, with emphasis on temperature regimes that are below Tg in the vicinity of Tg and approaching Td. Results show that thermal exposures cause matrix softening and microcracking, interphase degradation, and thermally induced residual stress redistribution that significantly reduces shear-based performance. Cyclic and short-duration spike/flash exposures result in accelerated damage through thermal fatigue; steep thermal gradients, including through the thickness; and localized interfacial failure loading to the onset of delamination or interlayer separation. Aspects such as layup/ply orientation, fiber volume fraction, degree of cure, and the availability and permeation of oxygen through the thickness can have significant effects. The review identifies key contradictions and ambiguities, pinpoints and prioritizes areas of critically needed research, and emphasizes the need for the development of true mechanistic models capable of predicting changes in shear performance characteristics over a range of thermal loading regimes. Full article
(This article belongs to the Special Issue Advanced Polymer Composites and Foams)
Show Figures

Graphical abstract

23 pages, 3415 KB  
Article
Evaluating a Meanline Model for Partially Admitted Axial Turbines Operating in Organic Rankine Cycles: Extensive Experimental Validation with Multiple Working Fluids and Mixtures
by Robin Gautier and Nicolas Tauveron
Energies 2026, 19(3), 625; https://doi.org/10.3390/en19030625 - 25 Jan 2026
Viewed by 141
Abstract
This study aims to evaluate the robustness of the well proved Aungier meanline model, originally developed for air and steam turbines, on Organic Rankine Cycles (ORC) turbines. More specifically, the study focuses on two pure-impulse axial turbines with partial admission and using various [...] Read more.
This study aims to evaluate the robustness of the well proved Aungier meanline model, originally developed for air and steam turbines, on Organic Rankine Cycles (ORC) turbines. More specifically, the study focuses on two pure-impulse axial turbines with partial admission and using various working fluids, including zeotropic mixtures. To this end, a three-part numerical model was developed to adapt this type of meanline model to a prediction-oriented methodology rather than a design-oriented one. Using inlet and outlet pressures, inlet temperature, and rotational speed as inputs, the model provides the resulting mass flow rate through the turbine as well as its performance characteristics. The model predictions are compared against an extensive experimental dataset comprising more than 300 operating points obtained with three pure fluids—R1233zd(E), NOVEC™ 649, and HFE7000—and three zeotropic mixtures. The model demonstrates good predictive accuracy over a wide range of operating conditions, including very low velocity ratios corresponding to severe off-design operation. Specifically, the mass flow rate is predicted with a Mean Absolute Percentage Error (MAPE) ranging from 1.23% to 3.31%, depending on the working fluid. Furthermore, over an experimental specific work range of 5 to 15 kJ/kg, the predicted numerical work exhibits a MAPE of 7.04% for 102 experimental points corresponding to the main dataset (R1233zd(E)). Finally, the total-to-total efficiency is predicted within ±4 efficiency points, showing a very good trend over a velocity ratio range from 0.06 to 0.36. Full article
(This article belongs to the Section J2: Thermodynamics)
Show Figures

Figure 1

16 pages, 461 KB  
Review
Preheated Composite for Prosthetic Cementation to Enamel and Dentin: A Scoping Review
by Anca Labunet, Andreea Kui, Alexandra Vigu, Andrada Voina-Tonea, Alexandru Burde and Sorina Sava
Dent. J. 2026, 14(1), 69; https://doi.org/10.3390/dj14010069 - 21 Jan 2026
Viewed by 123
Abstract
Background and Objectives: Preheated composite resins have been proposed as an alternative to conventional luting agents due to their improved resistance, color stability, and adaptation. This review aims to critically evaluate the current literature on the use of preheated composites as luting agents [...] Read more.
Background and Objectives: Preheated composite resins have been proposed as an alternative to conventional luting agents due to their improved resistance, color stability, and adaptation. This review aims to critically evaluate the current literature on the use of preheated composites as luting agents exclusively on dentin and enamel, focusing on their mechanical behavior, optical properties, and biological effects, in order to determine whether they provide superior clinical outcomes compared with conventional resin cements. Materials and Methods: A comprehensive literature search from 2015 to 2025 was conducted in accordance with PRISMA-ScR guidelines. Eligible studies included in vitro investigations comparing the preheated composite with other luting agents performed on human, bovine, analog dentin or enamel substrates. Studies meeting these criteria were screened, evaluated, and synthesized. Results: Fifteen studies met the inclusion criteria: nine focused on the mechanical performance, and the remaining six studies examined additional properties such as color stability, pulpal temperature changes during preheating, film thickness characteristics, and the influence on marginal discrepancy. Conclusions: Preheated composite resins offer improved mechanical properties, marginal adaptation, and fracture resistance compared with conventional luting agents. However, their performance is highly technique-sensitive, and clinical outcomes depend on operator skill, restoration thickness, and material selection. Preheating generally does not compromise color stability, but it can elevate pulpal temperature, particularly when residual dentin is thin. Overall, preheated composites have potential clinical advantages, provided that careful handling and appropriate application are ensured. Full article
Show Figures

Figure 1

16 pages, 7138 KB  
Article
Characteristics of Plasma-Assisted Ammonia Jet Flame Under High-Pressure Conditions
by Zhicong Lv, Zhiwei Wang, Qifu Lin, Jiawei Gong, Yong Li, Yuchen Zhang and Longwei Chen
Processes 2026, 14(2), 373; https://doi.org/10.3390/pr14020373 - 21 Jan 2026
Viewed by 131
Abstract
A plasma-assisted ammonia jet flame igniter was developed in this study to address the limitations of conventional spark ignition at high pressures. The effect of pressure on plasma discharge characteristics, optical emission spectra, and exhaust gas emission was systematically investigated, providing new insights [...] Read more.
A plasma-assisted ammonia jet flame igniter was developed in this study to address the limitations of conventional spark ignition at high pressures. The effect of pressure on plasma discharge characteristics, optical emission spectra, and exhaust gas emission was systematically investigated, providing new insights into the mechanisms of plasma-assisted ammonia ignition under high-pressure conditions. The results indicate that increased chamber pressure elevates gas density, which in turn raises the voltage required to sustain an arc discharge at 0.4 MPa and markedly reduces the frequency of arc drift. Spectral analysis shows that higher pressure inhibits atomic oxygen lines (777.2 nm and 844.6 nm) while intensifying the molecular nitrogen bands between 350–450 nm. A corresponding decrease in electron excitation temperature is also observed. In terms of exhaust composition, hydrogen concentration demonstrates a bifurcated behavior, rising with pressure under fuel-rich conditions (the equivalence ratio φ > 1.2) and falling under fuel-lean conditions (φ ≤ 1). Conversely, NO concentration consistently decreases with increasing pressure across all test conditions. The ammonia concentration in the exhaust gas shows opposite pressure dependencies at different equivalence ratios. It increases with rising pressure for φ ≥ 1, while it decreases with increasing pressure for φ < 1. Full article
(This article belongs to the Special Issue Synthesis and Utilization of Clean Ammonia as Fuel)
Show Figures

Figure 1

12 pages, 1583 KB  
Article
Interaction of Lysozyme with Sulfated β-Cyclodextrin: Dissecting Salt and Hydration Contributions
by Jacek J. Walkowiak
Molecules 2026, 31(2), 372; https://doi.org/10.3390/molecules31020372 - 20 Jan 2026
Viewed by 172
Abstract
This article investigates the thermodynamic driving force of the interaction between lysozyme (Lys) and sulfated β-cyclodextrin (β-CDS), with a particular emphasis on the elusive role of hydration during polyelectrolyte–protein binding. Using isothermal titration calorimetry (ITC), the binding affinity was quantified across varying temperatures [...] Read more.
This article investigates the thermodynamic driving force of the interaction between lysozyme (Lys) and sulfated β-cyclodextrin (β-CDS), with a particular emphasis on the elusive role of hydration during polyelectrolyte–protein binding. Using isothermal titration calorimetry (ITC), the binding affinity was quantified across varying temperatures and salt concentrations, employing a recently developed thermodynamic framework that explicitly separates the contributions from counterion release and hydration effects. The study reveals that while counterion release is minimal in the Lys/β-CDS system, hydration effects become a dominant factor influencing the binding free energy ΔGb, especially as experimental temperature deviates from the characteristic temperature T0. It demonstrates that hydration contributions can substantially weaken binding at increased salt concentration cs. The high characteristic temperature T0 and the salt-dependent heat capacity change indicate a complex interplay of water structure and ion association—significantly departing from commonly linear interpretations of ΔGb vs. log cs based solely on counterion release effects. This work advances the understanding of polyelectrolyte–protein interactions by providing the first direct quantification of the hydration effect in such complexes and may have an impact on the rational design of biomolecular assemblies and therapeutic carriers. Full article
Show Figures

Figure 1

22 pages, 35472 KB  
Article
Development and Characterization of Clindamycin-Loaded Dextran Hydrogel for Controlled Drug Release and Pathogen Inhibition
by Iqra Jawad, Asma Rehman, Mariam Hamdan, Kalsoom Akhtar, Shazia Khaliq, Munir Ahmad Anwar and Nayla Munawar
Gels 2026, 12(1), 82; https://doi.org/10.3390/gels12010082 - 17 Jan 2026
Viewed by 295
Abstract
The naturally occurring, biocompatible and biodegradable biopolymer dextran is a versatile material for the formulation of hydrogels with desirable properties for use in medicine, drug delivery, and tissue engineering applications. The distinctive structural and physicochemical characteristics, such as polymeric nature, gelling ability and [...] Read more.
The naturally occurring, biocompatible and biodegradable biopolymer dextran is a versatile material for the formulation of hydrogels with desirable properties for use in medicine, drug delivery, and tissue engineering applications. The distinctive structural and physicochemical characteristics, such as polymeric nature, gelling ability and excellent swelling properties, present it as an excellent biomaterial for drug delivery. This study explores the synthesis and characterization of dextran hydrogel for the encapsulation of clindamycin as an innovative approach for controlled drug delivery. The dextran hydrogel was synthesized through a simple and cost-effective method, and its swelling behavior, temperature and pH dependence, and surface morphology were investigated. The maximum equilibrium swelling ratio (73 ± 1%) of the hydrogel was observed in water at 25 °C within 120 min, and the hydrogel was found to be pH- and temperature-dependent for more precise and targeted drug delivery. Moreover, the dextran hydrogel was found to retain water for up to 18 h and remain stable for 8 days. The presence of a roughened surface with large openings/pores on the surface illustrated the high swelling capability of the synthesized hydrogel. In addition, the dextran hydrogel loaded with clindamycin demonstrated high drug loading capacity (70 ± 2%), rapid (65 ± 2%) in vitro drug release potential and pathogen-inhibitory activity against Staphylococcus gallinarium and Bacillus subtilis. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Figure 1

39 pages, 9074 KB  
Article
Electromagnetic–Thermal Coupling and Optimization Compensation for Missile-Borne Active Phased Array Antenna
by Yan Wang, Pengcheng Xian, Qucheng Guo, Yafan Qin, Song Xue, Peiyuan Lian, Lianjie Zhang, Zhihai Wang, Wenzhi Wu and Congsi Wang
Technologies 2026, 14(1), 67; https://doi.org/10.3390/technologies14010067 - 16 Jan 2026
Viewed by 425
Abstract
Missile-borne active phased array antennas have been widely used in missile guidance for their beam agility, multifunctionality, and strong anti-interference capabilities. However, due to space constraints on the platform and difficulty in heat dissipation, the thermal power consumption of the antenna array can [...] Read more.
Missile-borne active phased array antennas have been widely used in missile guidance for their beam agility, multifunctionality, and strong anti-interference capabilities. However, due to space constraints on the platform and difficulty in heat dissipation, the thermal power consumption of the antenna array can easily lead to excessive temperature, causing two primary issues: first, temperature-induced drift in T/R components, resulting in amplitude and phase errors in the feed current; second, temperature-dependent ripple voltage in the array’s secondary power supply, which exacerbates feed errors. Both issues degrade the electromagnetic performance of the array antenna. To mitigate these effects, this paper investigates feed errors and compensation methods in high-temperature environments. First, a synchronous Buck circuit ripple coefficient model is developed, and an electromagnetic–temperature coupling model is established, incorporating temperature-dependent feed current characteristics, and the law of electromagnetic performance changes is analyzed. On this basis, an electromagnetic performance compensation method based on a genetic algorithm is proposed to optimize the quantization compensation amount of the amplitude and phase of each element under the effect of high temperature. Full article
(This article belongs to the Special Issue Microelectronics and Electronic Packaging for Advanced Sensor System)
Show Figures

Figure 1

28 pages, 8828 KB  
Article
Oil-Water Biphasic Metal-Organic Supramolecular Gel for Lost Circulation Control: Formulation Optimization, Gelation Mechanism, and Plugging Performance
by Qingwang Li, Songlei Li, Ye Zhang, Chaogang Chen, Xiaochuan Wu, Menglai Li, Shubiao Pan and Junfei Peng
Gels 2026, 12(1), 74; https://doi.org/10.3390/gels12010074 - 15 Jan 2026
Viewed by 177
Abstract
Lost circulation in oil-based drilling fluids (OBDFs) remains difficult to mitigate because particulate lost circulation materials depend on bridging/packing and gel systems for aqueous media often lack OBDF compatibility and controllable in situ sealing. A dual-precursor oil–water biphasic metal–organic supramolecular gel enables rapid [...] Read more.
Lost circulation in oil-based drilling fluids (OBDFs) remains difficult to mitigate because particulate lost circulation materials depend on bridging/packing and gel systems for aqueous media often lack OBDF compatibility and controllable in situ sealing. A dual-precursor oil–water biphasic metal–organic supramolecular gel enables rapid in situ sealing in OBDF loss zones. The optimized formulation uses an oil-phase to aqueous gelling-solution volume ratio of 10:3, with 2.0 wt% Span 85, 12.5 wt% TXP-4, and 5.0 wt% NaAlO2. Apparent-viscosity measurements and ATR–FTIR analysis were used to evaluate the effects of temperature, time, pH, and shear on MOSG gelation. Furthermore, the structural characteristics and performances of MOSGs were systematically investigated by combining microstructural characterization, thermogravimetric analysis, rheological tests, simulated fracture-plugging experiments, and anti-shear evaluations. The results indicate that elevated temperatures (30–70 °C) and mildly alkaline conditions in the aqueous gelling solution (pH ≈ 8.10–8.30) promote P–O–Al coordination and strengthen hydrogen bonding, thereby facilitating the formation of a three-dimensional network. In contrast, strong shear disrupts the nascent network and delays gelation. The optimized MOSGs rapidly exhibit pronounced viscoelasticity and thermal resistance (~193 °C); under high shear (380 rpm), the viscosity retention exceeds 60% and the viscosity recovery exceeds 70%. In plugging tests, MOSG forms a dense sealing layer, achieving a pressure-bearing gradient of 2.27 MPa/m in simulated permeable formations and markedly improving the fracture pressure-bearing capacity in simulated fractured formations. Full article
(This article belongs to the Topic Advanced Technology for Oil and Nature Gas Exploration)
Show Figures

Figure 1

14 pages, 2026 KB  
Article
Effect of Microresistor Topology on the Sensing Characteristics of MoS2-Based Chemoresistive Cortisol Sensors
by Mariya Aleksandrova, Rade Tomov, Boriana Tzaneva and Ivo Iliev
Sensors 2026, 26(2), 551; https://doi.org/10.3390/s26020551 - 14 Jan 2026
Viewed by 192
Abstract
This study investigates the impact of microresistor topology on the sensing characteristics of MoS2-based chemoresistive cortisol sensors. It is done to address the critical need for robust, non-invasive cortisol monitoring in wearable applications, where mechanical stability under strain is paramount, and [...] Read more.
This study investigates the impact of microresistor topology on the sensing characteristics of MoS2-based chemoresistive cortisol sensors. It is done to address the critical need for robust, non-invasive cortisol monitoring in wearable applications, where mechanical stability under strain is paramount, and to explore underexplored topological effects on sensor performance. The research is conducted by fabricating MoS2-based meander structures on flexible PDMS substrates, featuring various microresistor designs, including long-shoulder and short-shoulder topologies, both with and without integrated mechanical ribs. Sensor performance is evaluated in resistance change mode across a range of cortisol concentrations (2.5 to 500 ng/mL) and subjected to significant mechanical bending stress. Electrical parameters such as contact resistance and parasitic capacitance, as well as temperature dependence, are also analyzed. The results demonstrate that the incorporation of ribs significantly enhances the mechanical stability and preserves the reliable sensing function of the long-shoulder topology under bending stress, improving sensitivity from 0.9 kΩ/ng/mL (without ribs) to 130.6 kΩ/ng/mL (with ribs) after bending. While temperature influences baseline resistance and response magnitude consistent with MoS2 semiconductor properties and aptamer binding kinetics, the short-shoulder design, even with ribs, showed less optimal performance. The primary advantage of the proposed device lies in its enhanced mechanical reliability under continuous strain, crucial for wearable electronics, alongside a simpler design compared to complex microfluidic or optical systems, thus enabling lower manufacturing costs and easier mass production. Full article
Show Figures

Figure 1

17 pages, 5783 KB  
Article
Study on Electrochemical Behavior at a Room and High Temperature at 700 °C Corrosion of Austenite, Ferrite, and Duplex Stainless Steels
by Dohyung Kim and Byung-Hyun Shin
Metals 2026, 16(1), 82; https://doi.org/10.3390/met16010082 - 12 Jan 2026
Viewed by 205
Abstract
The stainless-steel phase of austenite, ferrite, and duplex was affected by the high temperature corrosion. So, the study of corrosion behavior in high temperatures at 700 °C is important because it is connected to life and maintenance. Various stainless steels (AISI no. 409 [...] Read more.
The stainless-steel phase of austenite, ferrite, and duplex was affected by the high temperature corrosion. So, the study of corrosion behavior in high temperatures at 700 °C is important because it is connected to life and maintenance. Various stainless steels (AISI no. 409 L, 430 L, 304L, 316L, 2205, 2507) are used to identify the most suitable material for high-temperature SOFC applications. The study was checked to surface, microstructure, and corrosion behavior after corrosion at 700 °C during 120 h. The surface and microstructure are checked using FE-SEM and XRD. The electrochemical behavior and corrosion behavior are checked for open circuit potential, electrochemical impedance spectroscopy, and potentiodynamic polarization test by a potentiostat. The potentiodynamic polarization results revealed that the pitting potential (Epit) varied significantly depending on the material, with values of 0.21 V for AISI 304L and 1.14 V for AISI 2507. The breakdown behavior of the passive film exhibited material-dependent characteristics, which were found to be consistent with the observed trends in high-temperature corrosion. Full article
Show Figures

Figure 1

17 pages, 3642 KB  
Article
Spatiotemporal Analysis for Real-Time Non-Destructive Brix Estimation in Apples
by Ha-Na Kim, Myeong-Won Bae, Yong-Jin Cho and Dong-Hoon Lee
Agriculture 2026, 16(2), 172; https://doi.org/10.3390/agriculture16020172 - 9 Jan 2026
Viewed by 233
Abstract
Predicting internal quality parameters, such as Brix and water content, of apples, is essential for quality control. Existing near-infrared (NIR) and hyperspectral imaging (HSI)-based techniques have limited applicability due to their dependence on equipment and environmental sensitivity. In this study, a transportable quality [...] Read more.
Predicting internal quality parameters, such as Brix and water content, of apples, is essential for quality control. Existing near-infrared (NIR) and hyperspectral imaging (HSI)-based techniques have limited applicability due to their dependence on equipment and environmental sensitivity. In this study, a transportable quality assessment system was proposed using spatiotemporal domain analysis with long-wave infrared (LWIR)-based thermal diffusion phenomics, enabling non-destructive prediction of the internal Brix of apples during transport. After cooling, the thermal gradient of the apple surface during the cooling-to-equilibrium interval was extracted. This gradient was used as an input variable for multiple linear regression, Ridge, and Lasso models, and the prediction performance was assessed. Overall, 492 specimens of 5 cultivars of apple (Hongro, Arisoo, Sinano Gold, Stored Fuji, and Fuji) were included in the experiment. The thermal diffusion response of each specimen was imaged at a sampling frequency of 8.9 Hz using LWIR-based thermal imaging, and the temperature changes over time were compared. In cross-validation of the integrated model for all cultivars, the coefficient of determination (R2cv) was 0.80, and the RMSEcv was 0.86 °Brix, demonstrating stable prediction accuracy within ±1 °Brix. In terms of cultivar, Arisoo (Cultivar 2) and Fuji (Cultivar 5) showed high prediction reliability (R2cv = 0.74–0.77), while Hongro (Cultivar 1) and Stored Fuji (Cultivar 4) showed relatively weak correlations. This is thought to be due to differences in thermal diffusion characteristics between cultivars, depending on their tissue density and water content. The LWIR-based thermal diffusion analysis presented in this study is less sensitive to changes in reflectance and illuminance compared to conventional NIR and visible light spectrophotometry, as it enables real-time measurements during transport without requiring a separate light source. Surface heat distribution phenomics due to external heat sources serves as an index that proximally reflects changes in the internal Brix of apples. Later, this could be developed into a reliable commercial screening system to obtain extensive data accounting for diversity between cultivars and to elucidate the effects of interference using external environmental factors. Full article
Show Figures

Figure 1

Back to TopTop