Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (274)

Search Parameters:
Keywords = temperate Europe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8188 KB  
Article
Palynological Characteristics of Neogene Deposits from Bełchatów Lignite Mine (Central Poland)
by Thang Van Do and Ewa Durska
Plants 2025, 14(19), 3034; https://doi.org/10.3390/plants14193034 - 30 Sep 2025
Viewed by 321
Abstract
The Bełchatów Lignite Mine (BLM) in central Poland, one of Europe’s largest Neogene lignite deposits, provides key insights into palaeofloral evolution. Located in the Kleszczów Graben, the BLM consists of four distinct lithological units: subcoal, coal, clayey-coal, and clayey-sandy units. The study presents [...] Read more.
The Bełchatów Lignite Mine (BLM) in central Poland, one of Europe’s largest Neogene lignite deposits, provides key insights into palaeofloral evolution. Located in the Kleszczów Graben, the BLM consists of four distinct lithological units: subcoal, coal, clayey-coal, and clayey-sandy units. The study presents a palynological investigation of 31 samples from all units, identifying 78 sporomorph taxa, including 10 plant spores, 15 gymnosperm pollen, and 53 angiosperm pollen taxa. Pollen grains from angiosperms and gymnosperms were consistently observed in all samples, while plant spores were scarce. The analysis reveals three distinct palynological zones, reflecting shifts in vegetation. The first zone is characterized by swamp, riparian, and mixed mesophilous forests, dominated by Taxodium/Glyptostrobus, Ulmus, Carya, Engelhardia, Pterocarya, and Quercus. In the second zone, slightly cooler climatic conditions led to the decline of Taxodium/Glyptostrobus and Alnus, indicating a deterioration of swamp forests. The third zone marks a subsequent recovery of these forests. Palaeoclimatic interpretations indicate three phases: a subtropical-humid climate during the Early Miocene, fluctuating humidity in the late Early Miocene, and a transition to a warm-temperate and humid climate in the Late Miocene. Full article
(This article belongs to the Section Plant Systematics, Taxonomy, Nomenclature and Classification)
Show Figures

Figure 1

28 pages, 4410 KB  
Article
Modeling Soil–Atmosphere Interactions to Support Sustainable Soil Management and Agricultural Resilience in Temperate Europe Using the SiSPAT Model
by Abdulaziz Alharbi and Mohamed Ghonimy
Sustainability 2025, 17(18), 8114; https://doi.org/10.3390/su17188114 - 9 Sep 2025
Viewed by 511
Abstract
This study aimed to evaluate the performance of the SiSPAT model in simulating surface energy balance components and soil hydrothermal dynamics under temperate oceanic climate conditions, focusing on sparsely vegetated bare soils commonly found in transitional agroecosystems. The model was validated using high-resolution [...] Read more.
This study aimed to evaluate the performance of the SiSPAT model in simulating surface energy balance components and soil hydrothermal dynamics under temperate oceanic climate conditions, focusing on sparsely vegetated bare soils commonly found in transitional agroecosystems. The model was validated using high-resolution field data from the United Kingdom, including measurements of net radiation, soil heat flux, latent and sensible heat fluxes, and soil temperature and moisture at multiple depths. Results indicated that SiSPAT effectively reproduced the magnitude and diurnal variations in net radiation, soil heat flux, and subsurface thermal and moisture conditions, with overall agreement exceeding 90% in most cases. Minor underestimations (~10%) were observed for midday latent and sensible heat fluxes, while slight overestimations occurred in topsoil moisture during dry periods—remaining within acceptable simulation limits. These outcomes demonstrate the model’s capability to simulate land–atmosphere interactions under variable surface conditions and moderate humidity. The novelty of this study lies in extending the application of SiSPAT to temperate oceanic regions with partially vegetated soils—an underrepresented context—emphasizing its potential as a decision support tool for sustainable soil management, irrigation planning, and climate-resilient land use strategies in temperate regions with climatic and soil conditions similar to those represented in this study. Full article
Show Figures

Figure 1

15 pages, 1070 KB  
Article
Influence of Location Type on the Regeneration and Growth of Pedunculate Oak (Quercus robur L.) in Central Europe: Implications for Sustainable Forest Land Use
by Katarzyna Masternak, Michał Łukasik, Piotr Czyżowski, Joanna Gmitrowicz-Iwan and Krzysztof Kowalczyk
Sustainability 2025, 17(17), 8011; https://doi.org/10.3390/su17178011 - 5 Sep 2025
Viewed by 955
Abstract
In the context of climate change and the increasing ecological importance of pedunculate oak (Quercus robur L.) in European forests, sustainable regeneration strategies are essential for ensuring long-term forest resilience. This study investigates how different conditions of regeneration sites, namely areas under [...] Read more.
In the context of climate change and the increasing ecological importance of pedunculate oak (Quercus robur L.) in European forests, sustainable regeneration strategies are essential for ensuring long-term forest resilience. This study investigates how different conditions of regeneration sites, namely areas under pine canopies, gaps (openings within the pine stand), inter-gap area (open zone surrounding the pine gaps), and clear-cut area (zone where trees were completely removed), affect the early growth performance of artificially regenerated oak stands in Central Europe. Seedling height, root collar diameter, sturdiness quotient (SQ), and light availability (via hemispherical photography) were assessed. The most favorable growth occurred in gaps and under-canopy sites, where light intensity ranged from 44% to 57%, and seedlings reached mean heights of 148.7 cm and 143.4 cm, respectively. In contrast, seedlings in clear-cut and inter-gap areas exhibited lower growth and higher SQ values, suggesting lower seedling stability. In these areas, the average seedling height was 127.2 cm in clear-cut opening and 137.9 cm in inter-gap area. These sites also had the highest light intensity, amounting to 100% and 89.85% of total incident radiation, respectively. Growth performance was also affected by cardinal direction, except within gaps. This study highlights the importance of microsite selection in oak regeneration and demonstrates how optimizing light conditions can enhance reforestation success and climate resilience. These findings contribute to sustainable forest management practices aimed at supporting adaptive strategies in temperate ecosystems facing climate change. Full article
Show Figures

Figure 1

33 pages, 4072 KB  
Article
A Pilot-Scale Evaluation of Duckweed Cultivation for Pig Manure Treatment and Feed Production
by Marie Lambert, Reindert Devlamynck, Marcella Fernandes de Souza, Pieter Vermeir, Katleen Raes, Mia Eeckhout and Erik Meers
Plants 2025, 14(17), 2680; https://doi.org/10.3390/plants14172680 - 27 Aug 2025
Viewed by 805
Abstract
Livestock-intensive regions in Europe face dual challenges: nutrient surpluses and a high dependency on import of high-protein feedstocks. This study proposes duckweed (Lemnaceae) as a potential solution by recovering nutrients from manure-derived waste streams while producing protein-rich biomass. This study evaluated the performance [...] Read more.
Livestock-intensive regions in Europe face dual challenges: nutrient surpluses and a high dependency on import of high-protein feedstocks. This study proposes duckweed (Lemnaceae) as a potential solution by recovering nutrients from manure-derived waste streams while producing protein-rich biomass. This study evaluated the performance of duckweed treatment systems at a pig manure processing facility in Belgium. Three outdoor systems were monitored over a full growing season under temperate climate conditions. Duckweed cultivated on constructed wetland effluent showed die-off and low protein content, while systems supplied with diluted liquid fraction and nitrification–denitrification effluent achieved consistent growth, yielding 8 tonnes of dry biomass/ha/year and 2.8 tonnes of protein/ha/year. Average removal rates were 1.2 g N/m2/day and 0.13 g P/m2/day. Growth ceased after approximately 100–120 days, likely due to rising pH and electrical conductivity, suggesting ammonia toxicity and salt stress. Harvested duckweed had a high protein content and a total amino acid profile suitable for broilers, though potentially limiting in histidine and methionine for pigs or cattle. Additionally, promising energy and protein values for ruminants were measured. Although high ash and fibre contents may limit use in monogastric animals, duckweed remains suitable as part of a balanced feed. Its broad mineral profile further supports its use as a circular, locally sourced feed supplement. Full article
(This article belongs to the Special Issue Duckweed: Research Meets Applications—2nd Edition)
Show Figures

Figure 1

17 pages, 7833 KB  
Article
Two-Year Post-Fire Abundance of Arthropod Groups Across Different Types of Forest in Temperate Central Europe
by Václav Zumr, Oto Nakládal and Jiří Remeš
Fire 2025, 8(8), 305; https://doi.org/10.3390/fire8080305 - 2 Aug 2025
Viewed by 929
Abstract
Forest fires are commonly regarded as negative for ecosystems; however, they also represent a major ecological force shaping the biodiversity of invertebrates and many other organisms. The aim of this study was to better understand how multiple groups of invertebrates respond to wildfire [...] Read more.
Forest fires are commonly regarded as negative for ecosystems; however, they also represent a major ecological force shaping the biodiversity of invertebrates and many other organisms. The aim of this study was to better understand how multiple groups of invertebrates respond to wildfire across different forest types in Central Europe. The research was conducted following a large forest fire (ca. 1200 ha) that occurred in 2022. Data were collected over two years (2023 and 2024), from April to September. The research was conducted in coniferous forests and included six pairwise study types: burnt and unburnt dead spruce (bark beetle affected), burnt and unburnt clear-cuts, and burnt and unburnt healthy stands. In total, 96 traps were deployed each year. Across both years, 220,348 invertebrates were recorded (1.Y: 128,323; 2.Y: 92,025), representing 24 taxonomic groups. A general negative trend in abundance following forest fire was observed in the groups Acari, Auchenorhyncha, Blattodea, Dermaptera, Formicidae, Chilopoda, Isopoda, Opiliones, and Pseudoscorionida. Groups showing a neutral response included Araneae, Coleoptera, Collembola, Diplopoda, Heteroptera, Psocoptera, Raphidioptera, Thysanoptera, and Trichoptera. Positive responses, indicated by an increase in abundance, were recorded in Hymenoptera, Orthoptera, Lepidoptera, and Diptera. However, considerable differences among management types (clear-cut, dead spruce, and healthy) were evident, as their distinct characteristics largely influenced invertebrate abundance in both unburnt and burnt variants of the types across all groups studied. Forest fire primarily creates favorable conditions for heliophilous, open-landscape, and floricolous invertebrate groups, while less mobile epigeic groups are strongly negatively affected. In the second year post-fire, the total invertebrate abundance in burnt sites decreased to 59% of the first year’s levels. Conclusion: Forest fire generates a highly heterogeneous landscape from a regional perspective, creating unique ecological niches that persist more than two years after fire. For many invertebrates, successional return toward pre-fire conditions is delayed or incomplete. Full article
Show Figures

Figure 1

20 pages, 17214 KB  
Article
Histological Features Detected for Separation of the Edible Leaves of Allium ursinum L. from the Poisonous Leaves of Convallaria majalis L. and Colchicum autumnale L.
by Márta M-Hamvas, Angéla Tótik, Csongor Freytag, Attila Gáspár, Amina Nouar, Tamás Garda and Csaba Máthé
Plants 2025, 14(15), 2377; https://doi.org/10.3390/plants14152377 - 1 Aug 2025
Viewed by 643
Abstract
Allium ursinum (wild garlic) has long been collected and consumed as food and medicine in the north temperate zone, where its popularity is growing. Colchicum autumnale and Convallaria majalis contain toxic alkaloids. Their habitats overlap, and without flowers, their vegetative organs are similar. [...] Read more.
Allium ursinum (wild garlic) has long been collected and consumed as food and medicine in the north temperate zone, where its popularity is growing. Colchicum autumnale and Convallaria majalis contain toxic alkaloids. Their habitats overlap, and without flowers, their vegetative organs are similar. Confusing the leaves of Colchicum or Convallaria with the leaves of wild garlic has repeatedly led to serious human and animal poisonings. Our goal was to find a histological characteristic that makes the separation of these leaves clear. We compared the anatomy of foliage leaves of these three species grown in the same garden (Debrecen, Hungary, Central Europe). We used a bright-field microscope to characterize the transversal sections of leaves. Cell types of epidermises were compared based on peels and different impressions. We established some significant differences in the histology of leaves. The adaxial peels of Allium consist of only “long” cells without stomata, but the abaxial ones show “long”, “short” and “T” cells with wavy cell walls as a peculiarity, and stomata. Convallaria and Colchicum leaves are amphystomatic, but in the case of Allium, they are hypostomatic. These traits were confirmed with herbarium specimens. Our results help to clearly identify these species even in mixed, dried plant material and may be used for diagnostic purposes. Full article
Show Figures

Graphical abstract

19 pages, 3489 KB  
Article
Impact of Nitrogen Fertilisation and Inoculation on Soybean Nodulation, Nitrogen Status, and Yield in a Central European Climate
by Waldemar Helios, Magdalena Serafin-Andrzejewska, Marcin Kozak and Sylwia Lewandowska
Agriculture 2025, 15(15), 1654; https://doi.org/10.3390/agriculture15151654 - 1 Aug 2025
Cited by 1 | Viewed by 696
Abstract
Soybean (Glycine max [L.] Merr.) cultivation is expanding in Central Europe due to the development of early-maturing cultivars and growing demand for plant-based protein produced without the use of genetically modified organisms. However, nitrogen (N) management remains a major challenge in temperate [...] Read more.
Soybean (Glycine max [L.] Merr.) cultivation is expanding in Central Europe due to the development of early-maturing cultivars and growing demand for plant-based protein produced without the use of genetically modified organisms. However, nitrogen (N) management remains a major challenge in temperate climates, where variable weather conditions can significantly affect nodulation and yield. This study evaluated the effects of three nitrogen fertilisation doses (0, 30, and 60 kg N·ha−1), applied in the form of ammonium nitrate (34% N) and two commercial rhizobial inoculants—HiStick Soy (containing Bradyrhizobium japonicum strain 532C) and Nitragina (including a Polish strain of B. japonicum)—on nodulation, nitrogen uptake, and seed yield. A three-year field experiment (2017–2019) was conducted in southwestern Poland using a two-factor randomized complete block design. Nodulation varied significantly across years, with the highest values recorded under favourable early-season moisture and reduced during drought. In the first year, inoculation with HiStick Soy significantly increased nodule number and seed yield compared to Nitragina and the uninoculated control. Nitrogen fertilisation consistently improved seed yield, although it had no significant effect on nodulation. The highest nitrogen use efficiency was observed with moderate nitrogen input (30 kg N·ha−1) combined with inoculation. These findings highlight the importance of integrating effective rhizobial inoculants with optimized nitrogen fertilisation to improve soybean productivity and nitrogen efficiency under variable temperate climate conditions. Full article
(This article belongs to the Special Issue Strategies to Enhance Nutrient Use Efficiency and Crop Nutrition)
Show Figures

Figure 1

29 pages, 6638 KB  
Article
Forest Fragmentation in Bavaria: A First-Time Quantitative Analysis Based on Earth Observation Data
by Kjirsten Coleman and Claudia Kuenzer
Remote Sens. 2025, 17(15), 2558; https://doi.org/10.3390/rs17152558 - 23 Jul 2025
Viewed by 962
Abstract
Anthropogenic and climatic pressures can transform contiguous forests into smaller, less connected fragments. Forest biodiversity and ecosystem functioning can furthermore be compromised or enhanced. We present a descriptive analysis of forest fragmentation in Bavaria, the largest federal state in Germany. We calculated 22 [...] Read more.
Anthropogenic and climatic pressures can transform contiguous forests into smaller, less connected fragments. Forest biodiversity and ecosystem functioning can furthermore be compromised or enhanced. We present a descriptive analysis of forest fragmentation in Bavaria, the largest federal state in Germany. We calculated 22 metrics of fragmentation using forest polygons, aggregated within administrative units and with respect to both elevation and aspect orientation. Using a forest mask from September 2024, we found 2.384 million hectares of forest across Bavaria, distributed amongst 83,253 forest polygons 0.1 hectare and larger. The smallest patch category (XS, <25 ha) outnumbered all other size classes by nearly 13 to 1. Edge zones accounted for more than 1.68 million hectares, leaving less than 703,000 hectares as core forest. Although south-facing slopes dominated the state, the highest forest cover (~36%) was found on the least abundant east-oriented slopes. Most of the area is located at 400–600 m.a.s.l., with around 30% of this area covered by forests; however, XL forest patches (>3594 ha) dominated higher elevations, covering 30–60% of land surface area between 600 and 1400 m.a.s.l. The distribution of the largest patches follows the higher terrain and corresponds well to protected areas. K-Means clustering delineated 3 clusters, which corresponded well with the predominance of patchiness, aggregation, and edginess within districts. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Landscape Ecology)
Show Figures

Graphical abstract

16 pages, 3297 KB  
Article
Predicting the Potential Geographical Distribution of Scolytus scolytus in China Using a Biomod2-Based Ensemble Model
by Wei Yu, Dongrui Sun, Jiayi Ma, Xinyuan Gao, Yu Fang, Huidong Pan, Huiru Wang and Juan Shi
Insects 2025, 16(7), 742; https://doi.org/10.3390/insects16070742 - 21 Jul 2025
Viewed by 740
Abstract
Dutch elm disease is one of the most devastating plant diseases, primarily spread through bark beetles. Scolytus scolytus is a key vector of this disease. In this study, distribution data of S. scolytus were collected and filtered. Combined with environmental and climatic variables, [...] Read more.
Dutch elm disease is one of the most devastating plant diseases, primarily spread through bark beetles. Scolytus scolytus is a key vector of this disease. In this study, distribution data of S. scolytus were collected and filtered. Combined with environmental and climatic variables, an ensemble model was developed using the Biomod2 platform to predict its potential geographical distribution in China. The selection of climate variables was critical for accurate prediction. Eight bioclimatic factors with high importance were selected from 19 candidate variables. Among these, the three most important factors are the minimum temperature of the coldest month (bio6), precipitation seasonality (bio15), and precipitation in the driest quarter (bio17). Under current climate conditions, suitable habitats for S. scolytus are mainly located in the temperate regions between 30° and 60° N latitude. These include parts of Europe, East Asia, eastern and northwestern North America, and southern and northeastern South America. In China, the low-suitability area was estimated at 37,883.39 km2, and the medium-suitability area at 251.14 km2. No high-suitability regions were identified. However, low-suitability zones were widespread across multiple provinces. Under future climate scenarios, low-suitability areas are still projected across China. Medium-suitability areas are expected to increase under SSP370 and SSP585, particularly along the eastern coastal regions, peaking between 2041 and 2060. High-suitability zones may also emerge under these two scenarios, again concentrated in coastal areas. These findings provide a theoretical basis for entry quarantine measures and early warning systems aimed at controlling the spread of S. scolytus in China. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

15 pages, 748 KB  
Article
The Influence of Sowing Date and Seeding Density on the Yield of Soybean Glycine max (L.) Merrill
by Elżbieta Radzka, Katarzyna Rymuza and Paweł Cała
Agriculture 2025, 15(14), 1556; https://doi.org/10.3390/agriculture15141556 - 21 Jul 2025
Viewed by 730
Abstract
The current study aimed to determine the optimum agronomic conditions—specifically sowing date and seeding density—for soybean cultivation in a temperate climate. A field experiment was conducted to evaluate three sowing dates based on soil temperature (S1—9 °C, S2—12 °C, S3—15 °C) and three [...] Read more.
The current study aimed to determine the optimum agronomic conditions—specifically sowing date and seeding density—for soybean cultivation in a temperate climate. A field experiment was conducted to evaluate three sowing dates based on soil temperature (S1—9 °C, S2—12 °C, S3—15 °C) and three seeding densities (D1—50, D2—70, D3—90 seeds·m−2). A field experiment was conducted in the years 2017–2019 in eastern Poland (Central Europe). Yields were strongly influenced by weather conditions. In 2019, the average yield was 2.61 Mg·ha−1, making it the most favorable year, whereas 2018 was the least favorable, with an average yield of 1.41 Mg·ha−1. Seeding density also affected soybean yields—the highest yield was obtained at the medium density (D2—2.36 Mg∙ha−1). On the other hand, the highest thousand seed weight (159.30 g·m−2) was achieved at the lowest density (D1). Plant height and pod length depended on the sowing date. The tallest plants (69.96 cm) and the longest pods (4.55 cm) were obtained with early sowing (S1). The number of seeds per pod ranged from 1.8 to 2.7, with the highest values recorded in 2017, mainly with early sowing (S1) and low density (D1). It is recommended that sowing strategies be flexibly adjusted to the meteorological conditions of a given season. The findings indicate that appropriate selection of sowing parameters can significantly enhance the efficiency and stability of soybean yields under the variable climatic conditions of Poland. Full article
(This article belongs to the Special Issue Sustainable Management of Legume Crops)
Show Figures

Figure 1

21 pages, 5333 KB  
Article
Climate Extremes, Vegetation, and Lightning: Regional Fire Drivers Across Eurasia and North America
by Flavio Justino, David H. Bromwich, Jackson Rodrigues, Carlos Gurjão and Sheng-Hung Wang
Fire 2025, 8(7), 282; https://doi.org/10.3390/fire8070282 - 16 Jul 2025
Viewed by 1135
Abstract
This study examines the complex interactions among soil moisture, evaporation, extreme weather events, and lightning, and their influence on fire activity across the extratropical and Pan-Arctic regions. Leveraging reanalysis and remote-sensing datasets from 2000 to 2020, we applied cross-correlation analysis, a modified Mann–Kendall [...] Read more.
This study examines the complex interactions among soil moisture, evaporation, extreme weather events, and lightning, and their influence on fire activity across the extratropical and Pan-Arctic regions. Leveraging reanalysis and remote-sensing datasets from 2000 to 2020, we applied cross-correlation analysis, a modified Mann–Kendall trend test, and assessments of interannual variability to key variables including soil moisture, fire frequency and risk, evaporation, and lightning. Results indicate a significant increase in dry days (up to 40%) and heatwave events across Central Eurasia and Siberia (up to 50%) and Alaska (25%), when compared to the 1980–2000 baseline. Upward trends have been detected in evaporation across most of North America, consistent with soil moisture trends, while much of Eurasia exhibits declining soil moisture. Fire danger shows a strong positive correlation with evaporation north of 60° N (r ≈ 0.7, p ≤ 0.005), but a negative correlation in regions south of this latitude. These findings suggest that in mid-latitude ecosystems, fire activity is not solely driven by water stress or atmospheric dryness, highlighting the importance of region-specific surface–atmosphere interactions in shaping fire regimes. In North America, most fires occur in temperate grasslands, savannas, and shrublands (47%), whereas in Eurasia, approximately 55% of fires are concentrated in forests/taiga and temperate open biomes. The analysis also highlights that lightning-related fires are more prevalent in Eastern Europe and Southeastern Asia. In contrast, Western North America exhibits high fire incidence in temperate conifer forests despite relatively low lightning activity, indicating a dominant role of anthropogenic ignition. These findings underscore the importance of understanding land–atmosphere interactions in assessing fire risk. Integrating surface conditions, climate extremes, and ignition sources into fire prediction models is crucial for developing more effective wildfire prevention and management strategies. Full article
(This article belongs to the Section Fire Science Models, Remote Sensing, and Data)
Show Figures

Graphical abstract

15 pages, 680 KB  
Article
A Prevalence Study on Anoplocephala spp. in Serbian Horses: Navigating Diagnostic Challenges and Understanding Infection Risks
by Tijana Kukurić, Mihajlo Erdeljan, Jacqueline B. Matthews, Kirsty L. Lightbody, Corrine J. Austin, Natalia Peczak, Aleksandra Uzelac, Ivana Klun and Stanislav Simin
Animals 2025, 15(14), 2094; https://doi.org/10.3390/ani15142094 - 16 Jul 2025
Viewed by 650
Abstract
Anoplocephala spp. are common equine tapeworm species in Europe, frequently found in grazing horses. Anoplocephala perfoliata is the most pathogenic, clinically significant species associated with gastrointestinal disorders, particularly colic, and can have a fatal outcome in some horses. The aim of this study [...] Read more.
Anoplocephala spp. are common equine tapeworm species in Europe, frequently found in grazing horses. Anoplocephala perfoliata is the most pathogenic, clinically significant species associated with gastrointestinal disorders, particularly colic, and can have a fatal outcome in some horses. The aim of this study was to determine the infection prevalence of Anoplocephala spp. in Serbia and to identify relevant risk factors. A total of 173 horses from various regions were tested using a combination of diagnostic methods: coprological analysis via combined sedimentation–flotation and the Mini-FLOTAC technique, as well as serological testing using a commercial ELISA test. The overall prevalence was 38.7%, with a higher number of positive cases being identified by serology. It was demonstrated that coprology and serology are complementary approaches for prevalence studies. Infection risk factors included high stocking density, free-roaming status and co-infection with nematodes, while lower rainfall and temperate climate were associated with reduced risk of tapeworm infection. These findings highlight the challenges of Anoplocephala spp. detection and provide insight into the epidemiology of equine tapeworm infection in Southeastern Europe. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

16 pages, 2710 KB  
Article
Selecting Optimal Hemp (Cannabis sativa L.) Varieties for Long Fibre Production in Western Europe
by Hanne Pappaert, Sophie Waegebaert, Katrien Vandepitte, Joos Latré, Svea Thienpondt, Sofie Vermeire, Alexandra De Raeve, Leen De Gelder and Veronique Troch
Agronomy 2025, 15(7), 1521; https://doi.org/10.3390/agronomy15071521 - 23 Jun 2025
Cited by 1 | Viewed by 1098
Abstract
Industrial hemp (Cannabis sativa L.) is gaining renewed interest as a sustainable source of natural fibres, particularly in regions like Belgium, where well-established flax processing infrastructure exists. However, region-specific data on varietal performance for long fibre production remain limited, hindering large scale [...] Read more.
Industrial hemp (Cannabis sativa L.) is gaining renewed interest as a sustainable source of natural fibres, particularly in regions like Belgium, where well-established flax processing infrastructure exists. However, region-specific data on varietal performance for long fibre production remain limited, hindering large scale adoption by both farmers and processors. This study aimed to assess the agronomic performance of early- and late-flowering hemp varieties under temperate maritime conditions through a three-year field trial at two sites in Flanders (Belgium). The evaluation focused on key parameters including emergence rate, plant morphology, long fibre yield and quality. Results showed that successful crop establishment is critical, as poor emergence influenced stem diameter (increasing with decreasing emergence) and leads to reduced long fibre yields by up to 50% between tested sites. Significant yield differences between trial years were present at both sites, with the biomass yield ranging from 10.7 to 14.5 and from 7.8 to 9.6 t ha−1 for Bottelare and Beitem, respectively. Under favourable conditions, long fibre yields reached up to 2.4 t ha−1 for late-flowering and 2.1 t ha−1 for early- and mid-late-flowering varieties. In Western Europe, early to mid-late flowering varieties are generally favoured. Among these, the mid-late flowering variety Bialobrzeskie demonstrated strong yield potential. Overall, fibre quality across varieties was comparable to that of flax. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

23 pages, 4909 KB  
Article
Assessing the Sustainability of Miscanthus and Willow as Global Bioenergy Crops: Current and Future Climate Conditions (Part 2)
by Mohamed Abdalla, Astley Hastings, Grant Campbell, Jon Mccalmont, Anita Shepherd and Pete Smith
Agronomy 2025, 15(6), 1491; https://doi.org/10.3390/agronomy15061491 - 19 Jun 2025
Viewed by 707
Abstract
Land-based bioenergy systems are increasingly promoted for their potential to support climate change mitigation and energy security. Building on previous productivity and efficiency analyses, this study applies the MiscanFor and SalixFor models to evaluate land use energy intensity (LUEI) for Miscanthus (Miscanthus [...] Read more.
Land-based bioenergy systems are increasingly promoted for their potential to support climate change mitigation and energy security. Building on previous productivity and efficiency analyses, this study applies the MiscanFor and SalixFor models to evaluate land use energy intensity (LUEI) for Miscanthus (Miscanthus × giganteus) and willow (Salix spp.) under baseline (1961–1990) and future climate scenarios, and Business-as-Usual (B1) and Fossil Intensive (A1FI) scenarios, projected to 2060. The study also assesses the impact of biomass transport on energy use efficiency (EUE) and quantifies soil organic carbon (SOC) sequestration by Miscanthus. Under current conditions, Miscanthus exhibits a higher global mean LUEI (321 ± 179 GJ ha−1) than willow (164 ± 115.6 GJ ha−1) across all regions (p < 0.0001), with energy yield hotspots in tropical and subtropical regions such as South America, Sub-Saharan Africa, and Southeast Asia. Colder regions, such as Europe and Canada, show limited energy potential. By 2060, LUEI is projected to decline by 9–15% for Miscanthus and 8–13% for willow, with B1 improving energy returns in temperate zones and A1FI reducing them in the tropics. Global EUE for Miscanthus declines significantly (p < 0.0001) by 21%, from 15.73 ± 7.1 to 12.37 ± 5.2 as biomass transport distance increases from 50 km to 500 km. Mean SOC sequestration is estimated at 1.20 ± 1.46 t C ha−1, with tropical hotspots reaching up to 4.57 t C ha−1 and some cooler regions exhibiting net losses (–7.93 t C ha−1). Climate change significantly reduces SOC gains compared to baseline (p < 0.0001), although differences between B1 and A1FI are not statistically significant. These findings highlight the importance of region-specific, climate-resilient biomass systems to optimize energy returns and carbon benefits under future climate conditions. Full article
(This article belongs to the Special Issue Advances in Grassland Productivity and Sustainability — 2nd Edition)
Show Figures

Figure 1

34 pages, 3830 KB  
Article
Ecosystem Services Provided by an Urban Green Space in Timișoara (Romania): Linking Urban Vegetation with Air Quality and Cooling Effects
by Alia Wokan and Mădălina Iordache
Sustainability 2025, 17(12), 5564; https://doi.org/10.3390/su17125564 - 17 Jun 2025
Viewed by 810
Abstract
This study was conducted in an urban park in a temperate-continental city of Europe (Timișoara, Romania) and aimed to investigate the contribution of urban vegetation in maintaining air quality and mitigating the heat in the analyzed city. The following air parameters were monitored: [...] Read more.
This study was conducted in an urban park in a temperate-continental city of Europe (Timișoara, Romania) and aimed to investigate the contribution of urban vegetation in maintaining air quality and mitigating the heat in the analyzed city. The following air parameters were monitored: fine particulate matter PM2.5, coarse particulate matter PM10, AQI (Air Quality Index) (resulted from PM2.5 and PM10), particle number, air temperature, relative air humidity, TVOC (total volatile organic compounds), and HCHO (formaldehyde). The results of this study show that urban vegetation remains a reliable factor in reducing PM2.5 and PM10 in city air and in keeping the AQI within the limits corresponding to good air quality, but also that relative air humidity counteracts the contribution of vegetation in achieving this goal. Inside the park, the HCHO concentration increased by up to 4–5 times compared to the outside, and this increase was not caused by vehicle traffic but rather by the photochemical reactions generating HCHO. Regarding the cooling effect on air temperature, the studied green space did not exhibit this effect, as the air temperature inside it increased by up to 1–6 °C compared to the outside. Our results contrast with the general perception that urban parks and green spaces are cooler islands within the cities and draw attention to the fact that having a green space in a city does not necessarily mean achieving environmental goals, such as reducing the heat risk of cities. Based on the results, we consider that the main limitations in achieving these objectives were the park’s small size (88 hectares) and its morphology and architecture resulting from the integration of the species that compose it. It follows from these data that it is not enough for an urban green space to be established, but its design must be combined with urban morphology strategies if the heat mitigation effect is to be achieved and the cooling benefits are to be maximized in cities. Full article
Show Figures

Figure 1

Back to TopTop