Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,508)

Search Parameters:
Keywords = technology security

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 1010 KiB  
Article
SIBERIA: A Self-Sovereign Identity and Multi-Factor Authentication Framework for Industrial Access
by Daniel Paredes-García, José Álvaro Fernández-Carrasco, Jon Ander Medina López, Juan Camilo Vasquez-Correa, Imanol Jericó Yoldi, Santiago Andrés Moreno-Acevedo, Ander González-Docasal, Haritz Arzelus Irazusta, Aitor Álvarez Muniain and Yeray de Diego Loinaz
Appl. Sci. 2025, 15(15), 8589; https://doi.org/10.3390/app15158589 (registering DOI) - 2 Aug 2025
Abstract
The growing need for secure and privacy-preserving identity management in industrial environments has exposed the limitations of traditional, centralized authentication systems. In this context, SIBERIA was developed as a modular solution that empowers users to control their own digital identities, while ensuring robust [...] Read more.
The growing need for secure and privacy-preserving identity management in industrial environments has exposed the limitations of traditional, centralized authentication systems. In this context, SIBERIA was developed as a modular solution that empowers users to control their own digital identities, while ensuring robust protection of critical services. The system is designed in alignment with European standards and regulations, including EBSI, eIDAS 2.0, and the GDPR. SIBERIA integrates a Self-Sovereign Identity (SSI) framework with a decentralized blockchain-based infrastructure for the issuance and verification of Verifiable Credentials (VCs). It incorporates multi-factor authentication by combining a voice biometric module, enhanced with spoofing-aware techniques to detect synthetic or replayed audio, and a behavioral biometrics module that provides continuous authentication by monitoring user interaction patterns. The system enables secure and user-centric identity management in industrial contexts, ensuring high resistance to impersonation and credential theft while maintaining regulatory compliance. SIBERIA demonstrates that it is possible to achieve both strong security and user autonomy in digital identity systems by leveraging decentralized technologies and advanced biometric verification methods. Full article
(This article belongs to the Special Issue Blockchain and Distributed Systems)
Show Figures

Figure 1

23 pages, 2029 KiB  
Systematic Review
Exploring the Role of Industry 4.0 Technologies in Smart City Evolution: A Literature-Based Study
by Nataliia Boichuk, Iwona Pisz, Anna Bruska, Sabina Kauf and Sabina Wyrwich-Płotka
Sustainability 2025, 17(15), 7024; https://doi.org/10.3390/su17157024 (registering DOI) - 2 Aug 2025
Abstract
Smart cities are technologically advanced urban environments where interconnected systems and data-driven technologies enhance public service delivery and quality of life. These cities rely on information and communication technologies, the Internet of Things, big data, cloud computing, and other Industry 4.0 tools to [...] Read more.
Smart cities are technologically advanced urban environments where interconnected systems and data-driven technologies enhance public service delivery and quality of life. These cities rely on information and communication technologies, the Internet of Things, big data, cloud computing, and other Industry 4.0 tools to support efficient city management and foster citizen engagement. Often referred to as digital cities, they integrate intelligent infrastructures and real-time data analytics to improve mobility, security, and sustainability. Ubiquitous sensors, paired with Artificial Intelligence, enable cities to monitor infrastructure, respond to residents’ needs, and optimize urban conditions dynamically. Given the increasing significance of Industry 4.0 in urban development, this study adopts a bibliometric approach to systematically review the application of these technologies within smart cities. Utilizing major academic databases such as Scopus and Web of Science the research aims to identify the primary Industry 4.0 technologies implemented in smart cities, assess their impact on infrastructure, economic systems, and urban communities, and explore the challenges and benefits associated with their integration. The bibliometric analysis included publications from 2016 to 2023, since the emergence of urban researchers’ interest in the technologies of the new industrial revolution. The task is to contribute to a deeper understanding of how smart cities evolve through the adoption of advanced technological frameworks. Research indicates that IoT and AI are the most commonly used tools in urban spaces, particularly in smart mobility and smart environments. Full article
Show Figures

Figure 1

28 pages, 2191 KiB  
Article
An Evaluation of Food Security and Grain Production Trends in the Arid Region of Northwest China (2000–2035)
by Yifeng Hao and Yaodong Zhou
Agriculture 2025, 15(15), 1672; https://doi.org/10.3390/agriculture15151672 (registering DOI) - 2 Aug 2025
Abstract
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource [...] Read more.
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource matching assessment with grain production forecasting. Based on data from 2000 to 2020, this research projects the food security status to 2035 using the GM(1,1) model, incorporating a comprehensive index of soil and water resource matching and regression analysis to inform production forecasts. Key assumptions include continued historical trends in population growth, urbanization, and dietary shifts towards an increased animal protein consumption. The findings revealed a consistent upward trend in grain production from 2000 to 2020, with an average annual growth rate of 3.5%. Corn and wheat emerged as the dominant grain crops. Certain provinces demonstrated comparative advantages for specific crops like rice and wheat. The most significant finding is that despite the projected growth in the total grain output by 2035 compared to 2020, the regional grain self-sufficiency rate is projected to range from 79.6% to 84.1%, falling below critical food security benchmarks set by the FAO and China. This projected shortfall carries significant implications, underscoring a serious challenge to regional food security and highlighting the region’s increasing vulnerability to external food supply fluctuations. The findings strongly signal that current trends are insufficient and necessitate urgent and proactive policy interventions. To address this, practical policy recommendations include promoting water-saving technologies, enhancing regional cooperation, and strategically utilizing the international grain trade to ensure regional food security. Full article
(This article belongs to the Topic Food Security and Healthy Nutrition)
Show Figures

Figure 1

24 pages, 1380 KiB  
Article
Critical Smart Functions for Smart Living Based on User Perspectives
by Benjamin Botchway, Frank Ato Ghansah, David John Edwards, Ebenezer Kumi-Amoah and Joshua Amo-Larbi
Buildings 2025, 15(15), 2727; https://doi.org/10.3390/buildings15152727 (registering DOI) - 1 Aug 2025
Abstract
Smart living is strongly promoted to enhance the quality of life via the application of innovative solutions, and this is driven by domain specialists and policymakers, including designers, urban planners, computer engineers, and property developers. Nonetheless, the actual user, whose views ought to [...] Read more.
Smart living is strongly promoted to enhance the quality of life via the application of innovative solutions, and this is driven by domain specialists and policymakers, including designers, urban planners, computer engineers, and property developers. Nonetheless, the actual user, whose views ought to be considered during the design and development of smart living systems, has received little attention. Thus, this study aims to identify and examine the critical smart functions to achieve smart living in smart buildings based on occupants’ perceptions. The aim is achieved using a sequential quantitative research method involving a literature review and 221 valid survey data gathered from a case of a smart student residence in Hong Kong. The method is further integrated with descriptive statistics, the Kruskal–Walli’s test, and the criticality test. The results were validated via a post-survey with related experts. Twenty-six critical smart functions for smart living were revealed, with the top three including the ability to protect personal data and information privacy, provide real-time safety and security, and the ability to be responsive to users’ needs. A need was discovered to consider the context of buildings during the design of smart living systems, and the recommendation is for professionals to understand the kind of digital technology to be integrated into a building by strongly considering the context of the building and how smart living will be achieved within it based on users’ perceptions. The study provides valuable insights into the occupants’ perceptions of critical smart features/functions for policymakers and practitioners to consider in the construction of smart living systems, specifically students’ smart buildings. This study contributes to knowledge by identifying the critical smart functions to achieve smart living based on occupants’ perceptions of smart living by considering the specific context of a smart student building facility constructed in Hong Kong. Full article
Show Figures

Figure 1

22 pages, 3023 KiB  
Article
Improving Grain Safety Using Radiation Dose Technologies
by Raushangul Uazhanova, Meruyert Ametova, Zhanar Nabiyeva, Igor Danko, Gulzhan Kurtibayeva, Kamilya Tyutebayeva, Aruzhan Khamit, Dana Myrzamet, Ece Sogut and Maxat Toishimanov
Agriculture 2025, 15(15), 1669; https://doi.org/10.3390/agriculture15151669 (registering DOI) - 1 Aug 2025
Abstract
Reducing post-harvest losses of cereal crops is a key challenge for ensuring global food security amid the limited arable land and growing population. This study investigates the effectiveness of electron beam irradiation (5 MeV, ILU-10 accelerator) as a physical decontamination method for various [...] Read more.
Reducing post-harvest losses of cereal crops is a key challenge for ensuring global food security amid the limited arable land and growing population. This study investigates the effectiveness of electron beam irradiation (5 MeV, ILU-10 accelerator) as a physical decontamination method for various cereal crops cultivated in Kazakhstan. Samples were irradiated at doses ranging from 1 to 5 kGy, and microbiological indicators—including Quantity of Mesophilic Aerobic and Facultative Anaerobic Microorganisms (QMAFAnM), yeasts, and molds—were quantified according to national standards. Experimental results demonstrated an exponential decline in microbial contamination, with a >99% reduction achieved at doses of 4–5 kGy. The modeled inactivation kinetics showed strong agreement with the experimental data: R2 = 0.995 for QMAFAnM and R2 = 0.948 for mold, confirming the reliability of the exponential decay models. Additionally, key quality parameters—including protein content, moisture, and gluten—were evaluated post-irradiation. The results showed that protein levels remained largely stable across all doses, while slight but statistically insignificant fluctuations were observed in moisture and gluten contents. Principal component analysis and scatterplot matrix visualization confirmed clustering patterns related to radiation dose and crop type. The findings substantiate the feasibility of electron beam treatment as a scalable and safe technology for improving the microbiological quality and storage stability of cereal crops. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

20 pages, 865 KiB  
Review
Barriers and Facilitators to Artificial Intelligence Implementation in Diabetes Management from Healthcare Workers’ Perspective: A Scoping Review
by Giovanni Cangelosi, Andrea Conti, Gabriele Caggianelli, Massimiliano Panella, Fabio Petrelli, Stefano Mancin, Matteo Ratti and Alice Masini
Medicina 2025, 61(8), 1403; https://doi.org/10.3390/medicina61081403 (registering DOI) - 1 Aug 2025
Abstract
Background and Objectives: Diabetes is a global public health challenge, with increasing prevalence worldwide. The implementation of artificial intelligence (AI) in the management of this condition offers potential benefits in improving healthcare outcomes. This study primarily investigates the barriers and facilitators perceived by [...] Read more.
Background and Objectives: Diabetes is a global public health challenge, with increasing prevalence worldwide. The implementation of artificial intelligence (AI) in the management of this condition offers potential benefits in improving healthcare outcomes. This study primarily investigates the barriers and facilitators perceived by healthcare professionals in the adoption of AI. Secondarily, by analyzing both quantitative and qualitative data collected, it aims to support the potential development of AI-based programs for diabetes management, with particular focus on a possible bottom-up approach. Materials and Methods: A scoping review was conducted following PRISMA-ScR guidelines for reporting and registered in the Open Science Framework (OSF) database. The study selection process was conducted in two phases—title/abstract screening and full-text review—independently by three researchers, with a fourth resolving conflicts. Data were extracted and assessed using Joanna Briggs Institute (JBI) tools. The included studies were synthesized narratively, combining both quantitative and qualitative analyses to ensure methodological rigor and contextual depth. Results: The adoption of AI tools in diabetes management is influenced by several barriers, including perceived unsatisfactory clinical performance, high costs, issues related to data security and decision-making transparency, as well as limited training among healthcare workers. Key facilitators include improved clinical efficiency, ease of use, time-saving, and organizational support, which contribute to broader acceptance of the technology. Conclusions: The active and continuous involvement of healthcare workers represents a valuable opportunity to develop more effective, reliable, and well-integrated AI solutions in clinical practice. Our findings emphasize the importance of a bottom-up approach and highlight how adequate training and organizational support can help overcome existing barriers, promoting sustainable and equitable innovation aligned with public health priorities. Full article
(This article belongs to the Special Issue Advances in Public Health and Healthcare Management for Chronic Care)
20 pages, 7986 KiB  
Article
Investigating the Gender-Climate Nexus: Strengthening Women’s Roles in Adaptation and Mitigation in the Sidi Bouzid Region
by Houda Mazhoud, Arij Boucif, Abir Ouhibi, Lobna Hajji-Hedfi and Fraj Chemak
Climate 2025, 13(8), 164; https://doi.org/10.3390/cli13080164 (registering DOI) - 1 Aug 2025
Abstract
Tunisia faces significant challenges related to climate change, which deeply affect its natural and agricultural resources. This reality threatens not only food security but also the economic stability of rural communities and mainly rural women. This research aims to assess the impact of [...] Read more.
Tunisia faces significant challenges related to climate change, which deeply affect its natural and agricultural resources. This reality threatens not only food security but also the economic stability of rural communities and mainly rural women. This research aims to assess the impact of climate change on rural women in the agricultural development group in Sidi Bouzid, focusing on the strategies adopted and the support provided by various stakeholders to mitigate this impact. To achieve this, we developed a rigorous methodology that includes structured questionnaires, focus group discussions, and topological analysis through Multiple Correspondence Analysis (MCA). The results revealed that rural women were categorized into three groups based on their vulnerability to climate change: severely vulnerable, vulnerable, and adaptive. The findings highlighted the significant impact of climate change on water resources, which has increased family tensions and reduced agricultural incomes, making daily life more challenging for rural women. Furthermore, a deeper analysis of interactions with external stakeholders emphasized the important role of civil society, public organizations, and research institutions in strengthening the climate resilience of rural women. Given these findings, strategic recommendations aim to enhance stakeholder coordination, expand partnerships, and improve access to essential technologies and resources for women in agricultural development groups. Full article
Show Figures

Figure 1

41 pages, 1921 KiB  
Article
Digital Skills, Ethics, and Integrity—The Impact of Risky Internet Use, a Multivariate and Spatial Approach to Understanding NEET Vulnerability
by Adriana Grigorescu, Teodor Victor Alistar and Cristina Lincaru
Systems 2025, 13(8), 649; https://doi.org/10.3390/systems13080649 (registering DOI) - 1 Aug 2025
Abstract
In an era where digitalization shapes economic and social landscapes, the intersection of digital skills, ethics, and integrity plays a crucial role in understanding the vulnerability of youth classified as NEET (Not in Education, Employment, or Training). This study explores how risky internet [...] Read more.
In an era where digitalization shapes economic and social landscapes, the intersection of digital skills, ethics, and integrity plays a crucial role in understanding the vulnerability of youth classified as NEET (Not in Education, Employment, or Training). This study explores how risky internet use and digital skill gaps contribute to socio-economic exclusion, integrating a multivariate and spatial approach to assess regional disparities in Europe. This study adopts a systems thinking perspective to explore digital exclusion as an emergent outcome of multiple interrelated subsystems. The research employs logistic regression, Principal Component Analysis (PCA) with Promax rotation, and Geographic Information Systems (GIS) to examine the impact of digital behaviors on NEET status. Using Eurostat data aggregated at the country level for the period (2000–2023) across 28 European countries, this study evaluates 24 digital indicators covering social media usage, instant messaging, daily internet access, data protection awareness, and digital literacy levels. The findings reveal that low digital skills significantly increase the likelihood of being NEET, while excessive social media and internet use show mixed effects depending on socio-economic context. A strong negative correlation between digital security practices and NEET status suggests that youths with a higher awareness of online risks are less prone to socio-economic exclusion. The GIS analysis highlights regional disparities, where countries with limited digital access and lower literacy levels exhibit higher NEET rates. Digital exclusion is not merely a technological issue but a multidimensional socio-economic challenge. To reduce the NEET rate, policies must focus on enhancing digital skills, fostering online security awareness, and addressing regional disparities. Integrating GIS methods allows for the identification of territorial clusters with heightened digital vulnerabilities, guiding targeted interventions for improving youth employability in the digital economy. Full article
Show Figures

Figure 1

26 pages, 1033 KiB  
Article
Internet of Things Platform for Assessment and Research on Cybersecurity of Smart Rural Environments
by Daniel Sernández-Iglesias, Llanos Tobarra, Rafael Pastor-Vargas, Antonio Robles-Gómez, Pedro Vidal-Balboa and João Sarraipa
Future Internet 2025, 17(8), 351; https://doi.org/10.3390/fi17080351 (registering DOI) - 1 Aug 2025
Abstract
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and [...] Read more.
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and autonomous IoT solutions. To help overcome this gap, this paper presents the Smart Rural IoT Lab, a modular and reproducible testbed designed to replicate the deployment conditions in rural areas using open-source tools and affordable hardware. The laboratory integrates long-range and short-range communication technologies in six experimental scenarios, implementing protocols such as MQTT, HTTP, UDP, and CoAP. These scenarios simulate realistic rural use cases, including environmental monitoring, livestock tracking, infrastructure access control, and heritage site protection. Local data processing is achieved through containerized services like Node-RED, InfluxDB, MongoDB, and Grafana, ensuring complete autonomy, without dependence on cloud services. A key contribution of the laboratory is the generation of structured datasets from real network traffic captured with Tcpdump and preprocessed using Zeek. Unlike simulated datasets, the collected data reflect communication patterns generated from real devices. Although the current dataset only includes benign traffic, the platform is prepared for future incorporation of adversarial scenarios (spoofing, DoS) to support AI-based cybersecurity research. While experiments were conducted in an indoor controlled environment, the testbed architecture is portable and suitable for future outdoor deployment. The Smart Rural IoT Lab addresses a critical gap in current research infrastructure, providing a realistic and flexible foundation for developing secure, cloud-independent IoT solutions, contributing to the digital transformation of rural regions. Full article
Show Figures

Figure 1

17 pages, 1027 KiB  
Article
AI-Driven Security for Blockchain-Based Smart Contracts: A GAN-Assisted Deep Learning Approach to Malware Detection
by Imad Bourian, Lahcen Hassine and Khalid Chougdali
J. Cybersecur. Priv. 2025, 5(3), 53; https://doi.org/10.3390/jcp5030053 (registering DOI) - 1 Aug 2025
Abstract
In the modern era, the use of blockchain technology has been growing rapidly, where Ethereum smart contracts play an important role in securing decentralized application systems. However, these smart contracts are also susceptible to a large number of vulnerabilities, which pose significant threats [...] Read more.
In the modern era, the use of blockchain technology has been growing rapidly, where Ethereum smart contracts play an important role in securing decentralized application systems. However, these smart contracts are also susceptible to a large number of vulnerabilities, which pose significant threats to intelligent systems and IoT applications, leading to data breaches and financial losses. Traditional detection techniques, such as manual analysis and static automated tools, suffer from high false positives and undetected security vulnerabilities. To address these problems, this paper proposes an Artificial Intelligence (AI)-based security framework that integrates Generative Adversarial Network (GAN)-based feature selection and deep learning techniques to classify and detect malware attacks on smart contract execution in the blockchain decentralized network. After an exhaustive pre-processing phase yielding a dataset of 40,000 malware and benign samples, the proposed model is evaluated and compared with related studies on the basis of a number of performance metrics including training accuracy, training loss, and classification metrics (accuracy, precision, recall, and F1-score). Our combined approach achieved a remarkable accuracy of 97.6%, demonstrating its effectiveness in detecting malware and protecting blockchain systems. Full article
Show Figures

Figure 1

29 pages, 2413 KiB  
Article
From Opportunity to Resistance: A Structural Model of Platform-Based Startup Adoption
by Ruixia Ji, Hong Chen and Sang-Do Park
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 187; https://doi.org/10.3390/jtaer20030187 - 1 Aug 2025
Abstract
This study explores the determinants of startup intention within the context of e-commerce platform-based startups in South Korea. We employ an extended technology acceptance model (TAM) that integrates individual, social, and entrepreneurial characteristics. A two-step analytical approach is applied, combining variable extraction through [...] Read more.
This study explores the determinants of startup intention within the context of e-commerce platform-based startups in South Korea. We employ an extended technology acceptance model (TAM) that integrates individual, social, and entrepreneurial characteristics. A two-step analytical approach is applied, combining variable extraction through data mining and hypothesis testing using structural equation modeling. The results indicate that personal and social factors—such as entrepreneurial mindset and social influence—positively affect perceived usefulness, while job relevance and exposure to successful startup models enhance perceived ease of use. In contrast, security concerns and technological barriers negatively impact these relationships, posing critical obstacles to platform-based startups. This study extends the TAM framework to the platform-based startup context, offering theoretical contributions and proposing policy implications, including promoting digital literacy, developing entrepreneurial networks, and addressing security and regulatory issues. These insights offer a deeper understanding of how platform environments shape entrepreneurial behavior, providing practical guidance for startup founders, developers, and policymakers. Full article
Show Figures

Figure 1

21 pages, 2608 KiB  
Article
Quality and Quantity Losses of Tomatoes Grown by Small-Scale Farmers Under Different Production Systems
by Tintswalo Molelekoa, Edwin M. Karoney, Nazareth Siyoum, Jarishma K. Gokul and Lise Korsten
Horticulturae 2025, 11(8), 884; https://doi.org/10.3390/horticulturae11080884 (registering DOI) - 1 Aug 2025
Abstract
Postharvest losses amongst small-scale farmers in developing countries are high due to inadequate resources and infrastructure. Among the various affected crops, tomatoes are particularly vulnerable; however, studies on postharvest losses of most fruits and vegetables are limited. Therefore, this study aimed to assess [...] Read more.
Postharvest losses amongst small-scale farmers in developing countries are high due to inadequate resources and infrastructure. Among the various affected crops, tomatoes are particularly vulnerable; however, studies on postharvest losses of most fruits and vegetables are limited. Therefore, this study aimed to assess postharvest tomato losses under different production systems within the small-scale supply chain using the indirect assessment (questionnaires and interviews) and direct quantification of losses. Farmers reported tomato losses due to insects (82.35%), cracks, bruises, and deformities (70.58%), and diseases (64.71%). Chemical sprays were the main form of pest and disease control reported by all farmers. The direct quantification sampling data revealed that 73.07% of the tomatoes were substandard at the farm level, with 47.92% and 25.15% categorized as medium-quality and poor-quality, respectively. The primary contributors to the losses were decay (39.92%), mechanical damage (31.32%), and blotchiness (27.99%). Postharvest losses were significantly higher under open-field production systems compared to closed tunnels. The fungi associated with decay were mainly Geotrichum, Fusarium spp., and Alternaria spp. These findings demonstrate the main drivers behind postharvest losses, which in turn highlight the critical need for intervention through training and support, including the use of postharvest loss reduction technologies to enhance food security. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Graphical abstract

31 pages, 9514 KiB  
Article
FPGA Implementation of Secure Image Transmission System Using 4D and 5D Fractional-Order Memristive Chaotic Oscillators
by Jose-Cruz Nuñez-Perez, Opeyemi-Micheal Afolabi, Vincent-Ademola Adeyemi, Yuma Sandoval-Ibarra and Esteban Tlelo-Cuautle
Fractal Fract. 2025, 9(8), 506; https://doi.org/10.3390/fractalfract9080506 (registering DOI) - 31 Jul 2025
Abstract
With the rapid proliferation of real-time digital communication, particularly in multimedia applications, securing transmitted image data has become a vital concern. While chaotic systems have shown strong potential for cryptographic use, most existing approaches rely on low-dimensional, integer-order architectures, limiting their complexity and [...] Read more.
With the rapid proliferation of real-time digital communication, particularly in multimedia applications, securing transmitted image data has become a vital concern. While chaotic systems have shown strong potential for cryptographic use, most existing approaches rely on low-dimensional, integer-order architectures, limiting their complexity and resistance to attacks. Advances in fractional calculus and memristive technologies offer new avenues for enhancing security through more complex and tunable dynamics. However, the practical deployment of high-dimensional fractional-order memristive chaotic systems in hardware remains underexplored. This study addresses this gap by presenting a secure image transmission system implemented on a field-programmable gate array (FPGA) using a universal high-dimensional memristive chaotic topology with arbitrary-order dynamics. The design leverages four- and five-dimensional hyperchaotic oscillators, analyzed through bifurcation diagrams and Lyapunov exponents. To enable efficient hardware realization, the chaotic dynamics are approximated using the explicit fractional-order Runge–Kutta (EFORK) method with the Caputo fractional derivative, implemented in VHDL. Deployed on the Xilinx Artix-7 AC701 platform, synchronized master–slave chaotic generators drive a multi-stage stream cipher. This encryption process supports both RGB and grayscale images. Evaluation shows strong cryptographic properties: correlation of 6.1081×105, entropy of 7.9991, NPCR of 99.9776%, UACI of 33.4154%, and a key space of 21344, confirming high security and robustness. Full article
Show Figures

Figure 1

25 pages, 2082 KiB  
Article
XTTS-Based Data Augmentation for Profanity Keyword Recognition in Low-Resource Speech Scenarios
by Shin-Chi Lai, Yi-Chang Zhu, Szu-Ting Wang, Yen-Ching Chang, Ying-Hsiu Hung, Jhen-Kai Tang and Wen-Kai Tsai
Appl. Syst. Innov. 2025, 8(4), 108; https://doi.org/10.3390/asi8040108 - 31 Jul 2025
Abstract
As voice cloning technology rapidly advances, the risk of personal voices being misused by malicious actors for fraud or other illegal activities has significantly increased, making the collection of speech data increasingly challenging. To address this issue, this study proposes a data augmentation [...] Read more.
As voice cloning technology rapidly advances, the risk of personal voices being misused by malicious actors for fraud or other illegal activities has significantly increased, making the collection of speech data increasingly challenging. To address this issue, this study proposes a data augmentation method based on XText-to-Speech (XTTS) synthesis to tackle the challenges of small-sample, multi-class speech recognition, using profanity as a case study to achieve high-accuracy keyword recognition. Two models were therefore evaluated: a CNN model (Proposed-I) and a CNN-Transformer hybrid model (Proposed-II). Proposed-I leverages local feature extraction, improving accuracy on a real human speech (RHS) test set from 55.35% without augmentation to 80.36% with XTTS-enhanced data. Proposed-II integrates CNN’s local feature extraction with Transformer’s long-range dependency modeling, further boosting test set accuracy to 88.90% while reducing the parameter count by approximately 41%, significantly enhancing computational efficiency. Compared to a previously proposed incremental architecture, the Proposed-II model achieves an 8.49% higher accuracy while reducing parameters by about 98.81% and MACs by about 98.97%, demonstrating exceptional resource efficiency. By utilizing XTTS and public corpora to generate a novel keyword speech dataset, this study enhances sample diversity and reduces reliance on large-scale original speech data. Experimental analysis reveals that an optimal synthetic-to-real speech ratio of 1:5 significantly improves the overall system accuracy, effectively addressing data scarcity. Additionally, the Proposed-I and Proposed-II models achieve accuracies of 97.54% and 98.66%, respectively, in distinguishing real from synthetic speech, demonstrating their strong potential for speech security and anti-spoofing applications. Full article
(This article belongs to the Special Issue Advancements in Deep Learning and Its Applications)
26 pages, 2059 KiB  
Article
Integration and Development Path of Smart Grid Technology: Technology-Driven, Policy Framework and Application Challenges
by Tao Wei, Haixia Li and Junfeng Miao
Processes 2025, 13(8), 2428; https://doi.org/10.3390/pr13082428 - 31 Jul 2025
Viewed by 43
Abstract
As a key enabling technology for energy transition, the smart grid is propelling the global power system to evolve toward greater efficiency, reliability, and sustainability. Based on the three-dimensional analysis framework of “technology–policy–application”, this study systematically sorts out the technical architecture, regional development [...] Read more.
As a key enabling technology for energy transition, the smart grid is propelling the global power system to evolve toward greater efficiency, reliability, and sustainability. Based on the three-dimensional analysis framework of “technology–policy–application”, this study systematically sorts out the technical architecture, regional development mode, and typical application scenarios of the smart grid, revealing the multi-dimensional challenges that it faces. By using the methods of literature review, cross-national case comparison, and technology–policy collaborative analysis, the differentiated paths of China, the United States, and Europe in the development of smart grids are compared, aiming to promote the integration and development of smart grid technologies. From a technical perspective, this paper proposes a collaborative framework comprising the perception layer, network layer, and decision-making layer. Additionally, it analyzes the integration pathways of critical technologies, including sensors, communication protocols, and artificial intelligence. At the policy level, by comparing the differentiated characteristics in policy orientation and market mechanisms among China, the United States, and Europe, the complementarity between government-led and market-driven approaches is pointed out. At the application level, this study validates the practical value of smart grids in optimizing energy management, enhancing power supply reliability, and promoting renewable energy consumption through case analyses in urban smart energy systems, rural electrification, and industrial sectors. Further research indicates that insufficient technical standardization, data security risks, and the lack of policy coordination are the core bottlenecks restricting the large-scale development of smart grids. This paper proposes that a new type of intelligent and resilient power system needs to be constructed through technological innovation, policy coordination, and international cooperation, providing theoretical references and practical paths for energy transition. Full article
Show Figures

Figure 1

Back to TopTop