Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,152)

Search Parameters:
Keywords = technology and engineering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 2819 KB  
Review
Magnetic Hyperthermia with Iron Oxide Nanoparticles: From Toxicity Challenges to Cancer Applications
by Ioana Baldea, Cristian Iacoviță, Raul Andrei Gurgu, Alin Stefan Vizitiu, Vlad Râzniceanu and Daniela Rodica Mitrea
Nanomaterials 2025, 15(19), 1519; https://doi.org/10.3390/nano15191519 (registering DOI) - 4 Oct 2025
Abstract
Iron oxide nanoparticles (IONPs) have emerged as key materials in magnetic hyperthermia (MH), a minimally invasive cancer therapy capable of selectively inducing apoptosis, ferroptosis, and other cell death pathways while sparing surrounding healthy tissue. This review synthesizes advances in the design, functionalization, and [...] Read more.
Iron oxide nanoparticles (IONPs) have emerged as key materials in magnetic hyperthermia (MH), a minimally invasive cancer therapy capable of selectively inducing apoptosis, ferroptosis, and other cell death pathways while sparing surrounding healthy tissue. This review synthesizes advances in the design, functionalization, and biomedical application of magnetic nanoparticles (MNPs) for MH, highlighting strategies to optimize heating efficiency, biocompatibility, and tumor targeting. Key developments include tailoring particle size, shape, and composition; doping with metallic ions; engineering multicore nanostructures; and employing diverse surface coatings to improve colloidal stability, immune evasion, and multifunctionality. We discuss preclinical and clinical evidence for MH, its integration with chemotherapy, radiotherapy, and immunotherapy, and emerging theranostic applications enabling simultaneous imaging and therapy. Special attention is given to the role of MNPs in immunogenic cell death induction and metastasis prevention, as well as novel concepts for circulating tumor cell capture. Despite promising results in vitro and in vivo, clinical translation remains limited by insufficient tumor accumulation after systemic delivery, safety concerns, and a lack of standardized treatment protocols. Future progress will require interdisciplinary innovations in nanomaterial engineering, active targeting technologies, and real-time treatment monitoring to fully integrate MH into multimodal cancer therapy and improve patient outcomes. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

22 pages, 2587 KB  
Article
Self-Energy-Harvesting Pacemakers: An Example of Symbiotic Synthetic Biology
by Kuntal Kumar Das, Ashutosh Kumar Dubey, Bikramjit Basu and Yogendra Narain Srivastava
SynBio 2025, 3(4), 15; https://doi.org/10.3390/synbio3040015 (registering DOI) - 4 Oct 2025
Abstract
While synthetic biology has traditionally focused on creating biological systems often through genetic engineering, emerging technologies, for example, implantable pacemakers with integrated piezo-electric and tribo-electric materials are beginning to enlarge the classical domain into what we call symbiotic synthetic biology. These devices are [...] Read more.
While synthetic biology has traditionally focused on creating biological systems often through genetic engineering, emerging technologies, for example, implantable pacemakers with integrated piezo-electric and tribo-electric materials are beginning to enlarge the classical domain into what we call symbiotic synthetic biology. These devices are permanently attached to a body, although non-living or genetically unaltered, and closely mimic biological behavior by harvesting biomechanical energy and providing functions, such as autonomous heart pacing. They form active interfaces with human tissues and operate as hybrid systems, similar to synthetic organs. In this context, the present paper first presents a short summary of previous in vivo studies on piezo-electric composites in relation to their deployment as battery-less pacemakers. This is then followed by a summary of a recent theoretical work using a damped harmonic resonance model, which is being extended to mimic the functioning of such devices. We then extend the theoretical study further to include new solutions and obtain a sum rule for the power output per cycle in such systems. In closing, we present our quantitative understanding to explore the modulation of the quantum vacuum energy (Casimir effect) by periodic body movements to power pacemakers. Taken together, the present work provides the scientific foundation of the next generation bio-integrated intelligent implementation. Full article
18 pages, 7009 KB  
Article
Engineered Porosity in Microcrystalline Diamond-Reinforced PLLA Composites: Effects of Particle Concentration on Thermal and Structural Properties
by Mateusz Ficek, Franciszek Skiba, Marcin Gnyba, Gabriel Strugała, Dominika Ferneza, Tomasz Seramak, Konrad Szustakiewicz and Robert Bogdanowicz
Materials 2025, 18(19), 4606; https://doi.org/10.3390/ma18194606 (registering DOI) - 4 Oct 2025
Abstract
This research explores microcrystalline diamond particles in poly(L-lactic acid) matrices to create structured porous composites for advanced biodegradable materials. While nanodiamond–polymer composites are well-documented, microcrystalline diamond particles remain unexplored for controlling hierarchical porosity in systems required by tissue engineering, thermal management, and filtration [...] Read more.
This research explores microcrystalline diamond particles in poly(L-lactic acid) matrices to create structured porous composites for advanced biodegradable materials. While nanodiamond–polymer composites are well-documented, microcrystalline diamond particles remain unexplored for controlling hierarchical porosity in systems required by tissue engineering, thermal management, and filtration industries. We investigate diamond–polymer composites with concentrations from 5 to 75 wt% using freeze-drying methodology, employing two particle sizes: 0.125 μm and 1.00 μm diameter particles. Systematic porosity control ranges from 11.4% to 32.8%, with smaller particles demonstrating reduction from 27.3% at 5 wt% to 11.4% at 75 wt% loading. Characterization through infrared spectroscopy, X-ray computed microtomography, and Raman analysis confirms purely physical diamond–polymer interactions without chemical bonding, validated by characteristic diamond lattice vibrations at 1332 cm−1. Thermal analysis reveals modified crystallization behavior with decreased melting temperatures from 180 to 181 °C to 172 °C. The investigation demonstrates a controllable transition from large-volume interconnected pores to numerous small-volume closed pores with increasing diamond content. These composites provide a quantitative framework for designing hierarchical structures applicable to tissue engineering scaffolds, thermal management systems, and specialized filtration technologies requiring biodegradable materials with engineered porosity and enhanced thermal conductivity. Full article
14 pages, 2032 KB  
Article
Effect of Rock Crystal Addition on the Properties of Silicone Pressure-Sensitive Adhesives
by Adrian Krzysztof Antosik and Marcin Bartkowiak
Polymers 2025, 17(19), 2687; https://doi.org/10.3390/polym17192687 (registering DOI) - 4 Oct 2025
Abstract
In the presented work, a natural mineral—rock crystal—was used as a filler to obtain new silicone adhesive tapes. It was expected that, properly crushed, this hard mineral, consisting almost entirely of silica (silicon dioxide), should enhance the thermal resistance and cohesion of the [...] Read more.
In the presented work, a natural mineral—rock crystal—was used as a filler to obtain new silicone adhesive tapes. It was expected that, properly crushed, this hard mineral, consisting almost entirely of silica (silicon dioxide), should enhance the thermal resistance and cohesion of the self-adhesive composition with no/or low reduction in the rest of performance properties of the products. For this purpose, tests were conducted on the functional properties of new self-adhesive tapes, such as adhesion, cohesion, and tack. The obtained results confirmed the scientific assumptions and the thermal resistance of adhesive layers reached over 225 °C. The material itself turned out to not agglomerate in the adhesive composition and to be compatible with it. The new self-adhesive materials have application potential and can be used as materials for special applications in the field of heating, e.g., in connecting pipes, where thermal resistance and thermal expansion are of immense importance. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

20 pages, 1980 KB  
Review
Augmented Reality in Engineering Education: A Bibliometric Review
by Georgios Lampropoulos, Antonio del Bosque, Pablo Fernández-Arias and Diego Vergara
Information 2025, 16(10), 859; https://doi.org/10.3390/info16100859 (registering DOI) - 4 Oct 2025
Abstract
The aim of this study is to examine the role and use of augmented reality in engineering education by examining the existing literature. A total of 235 studies from Scopus and Web of Science published during 2011–2025 were examined. The study focused on [...] Read more.
The aim of this study is to examine the role and use of augmented reality in engineering education by examining the existing literature. A total of 235 studies from Scopus and Web of Science published during 2011–2025 were examined. The study focused on analyzing the main characteristics of the studies, identifying the main topics, and exploring the use of augmented reality in engineering education. The study also highlighted current challenges and limitations and suggested future research directions. Based on the results, 7 main topics arose which were related to (i) Immersive technologies in engineering education, (ii) Gamified learning experiences, (iii) Remote and virtual laboratories, (iv) Visualization and 3D modeling, (v) Student motivation, (vi) Collaborative and interactive learning environments, and (vii) User-centered design and user experience. Augmented reality emerged as an effective educational tool that can positively impact engineering education and support both students and teachers. Specifically, physical, remote, and virtual laboratories that can improve students’ learning performance, motivation, creativity, engagement, and satisfaction can be created through augmented reality. Using augmented reality, students can develop their practical skills and knowledge within low-risk and secure learning environments. Additionally, via the realistic and interactive visualization, students’ knowledge acquisition and understanding can be enhanced. Finally, its ability to effectively support collaborative learning and experiential learning arose. Full article
(This article belongs to the Collection Augmented Reality Technologies, Systems and Applications)
Show Figures

Figure 1

211 pages, 28108 KB  
Review
The Impact of the Common Rail Fuel Injection System on Performance and Emissions of Modern and Future Compression Ignition Engines
by Alessandro Ferrari and Alberto Vassallo
Energies 2025, 18(19), 5259; https://doi.org/10.3390/en18195259 - 3 Oct 2025
Abstract
An overview of the Common Rail (CR) diesel engine challenges and of the promising state-of-the-art solutions for addressing them is provided. The different CR injector driving technologies have been compared, based on hydraulic, spray and engine performance for conventional diesel combustion. Various injection [...] Read more.
An overview of the Common Rail (CR) diesel engine challenges and of the promising state-of-the-art solutions for addressing them is provided. The different CR injector driving technologies have been compared, based on hydraulic, spray and engine performance for conventional diesel combustion. Various injection patterns, high injection pressures and nozzle design features are analyzed with reference to their advantages and disadvantages in addressing engine issues. The benefits of the statistically optimized engine calibrations have also been examined. With regard to the combustion strategy, the role of a CR engine in the implementation of low-temperature combustion (LTC) is reviewed, and the effect of the ECU calibration parameters of the injection on LTC steady-state and transition modes, as well as on an LTC domain, is illustrated. Moreover, the exploitation of LTC in the last generation of CR engines is discussed. The CR apparatus offers flexibility to optimize the engine calibration even for biofuels and e-fuels, which has gained interest in the last decade. The impact of the injection strategy on spray, ignition and combustion is discussed with reference to fuel consumption and emissions for both biodiesel and green diesel. Finally, the electrification of CR diesel engines is reviewed: the effects of electrically heated catalysts, electric supercharging, start and stop functionality and electrical auxiliaries on NOx, CO2, consumption and torque are analyzed. The feasibility of mild hybrid, strong hybrid and plug-in CR diesel powertrains is discussed. For the future, based on life cycle and manufacturing cost analyses, a roadmap for the automotive sector is outlined, highlighting the perspectives of the CR diesel engine for different applications. Full article
(This article belongs to the Topic Advanced Engines Technologies)
26 pages, 5216 KB  
Article
A Data-Driven Method for Ship Route Planning Under Dynamic Environments
by Zhaofeng Song, Jinfen Zhang, Chengpeng Wan and C. Guedes Soares
J. Mar. Sci. Eng. 2025, 13(10), 1901; https://doi.org/10.3390/jmse13101901 - 3 Oct 2025
Abstract
The paper proposes an improved A* Algorithm based on historical AIS data for the multi-objective optimisation of ship weather routes, explicitly focusing on optimising voyage distance, economic costs, and emission costs within Sulphur Emission Control Areas. The method utilises trajectory interpolation, Ordering Points [...] Read more.
The paper proposes an improved A* Algorithm based on historical AIS data for the multi-objective optimisation of ship weather routes, explicitly focusing on optimising voyage distance, economic costs, and emission costs within Sulphur Emission Control Areas. The method utilises trajectory interpolation, Ordering Points to Identify the Clustering Structure, and the Douglas–Peucker algorithm to preprocess AIS data, thereby enhancing the flexibility and accuracy of multi-objective path planning. The method incorporates different cost weights and the time dimension to optimise different routes dynamically. The technique also optimises the route in real time by treating ship power as a decision variable, adjusting the power according to different task requirements. The proposed method is compared with other commonly used path planning algorithms within a specific maritime area. The results show that it offers better adaptability in terms of multi-objective costs and timeliness. Full article
(This article belongs to the Section Ocean Engineering)
45 pages, 5989 KB  
Review
A Review of Hybrid-Electric Propulsion in Aviation: Modeling Methods, Energy Management Strategies, and Future Prospects
by Feifan Yu, Jiajie Chen, Panao Gao, Yu Kong, Xiaokang Sun, Jiqiang Wang and Xinmin Chen
Aerospace 2025, 12(10), 895; https://doi.org/10.3390/aerospace12100895 - 3 Oct 2025
Abstract
Aviation is under increasing pressure to reduce carbon emissions in conventional transports and support the growth of low-altitude operations such as long-endurance eVTOLs. Hybrid-electric propulsion addresses these challenges by integrating the high specific energy of fuels or hydrogen with the controllability and efficiency [...] Read more.
Aviation is under increasing pressure to reduce carbon emissions in conventional transports and support the growth of low-altitude operations such as long-endurance eVTOLs. Hybrid-electric propulsion addresses these challenges by integrating the high specific energy of fuels or hydrogen with the controllability and efficiency of electrified powertrains. At present, the field of hybrid-electric aircraft is developing rapidly. To systematically study hybrid-electric propulsion control in aviation, this review focuses on practical aspects of system development, including propulsion architectures, system- and component-level modeling approaches, and energy management strategies. Key technologies in the future are examined, with emphasis on aircraft power-demand prediction, multi-timescale control, and thermal integrated energy management. This review aims to serve as a reference for configuration design, modeling and control simulation, as well as energy management strategy design of hybrid-electric propulsion systems. Building on this reference role, the review presents a coherent guidance scheme from architectures through modeling to energy-management control, with a practical roadmap toward flight-ready deployment. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

28 pages, 6064 KB  
Review
Advances in Wood Processing, Flame-Retardant Functionalization, and Multifunctional Applications
by Yatong Fang, Kexuan Chen, Lulu Xu, Yan Zhang, Yi Xiao, Yao Yuan and Wei Wang
Polymers 2025, 17(19), 2677; https://doi.org/10.3390/polym17192677 - 3 Oct 2025
Abstract
Wood is a renewable, carbon-sequestering, and structurally versatile material that has supported human civilization for millennia and continues to play a central role in advancing sustainable development. Although its low density, high specific strength, and esthetic appeal make it highly attractive, its intrinsic [...] Read more.
Wood is a renewable, carbon-sequestering, and structurally versatile material that has supported human civilization for millennia and continues to play a central role in advancing sustainable development. Although its low density, high specific strength, and esthetic appeal make it highly attractive, its intrinsic flammability presents significant challenges for safety-critical uses. This review offers a comprehensive analysis that uniquely integrates three key domains, covering advanced processing technologies, flame-retardant functionalization strategies, and multifunctional applications. Clear connections are drawn between processing approaches such as delignification, densification, and nanocellulose extraction and their substantial influence on improving flame-retardant performance. The review systematically explores how these engineered wood substrates enable more effective fire-resistant systems, including eco-friendly impregnation methods, surface engineering techniques, and bio-based hybrid systems. It further illustrates how combining processing and functionalization strategies allows for multifunctional applications in architecture, transportation, electronics, and energy devices where safety, durability, and sustainability are essential. Future research directions are identified with a focus on creating scalable, cost-effective, and environmentally compatible wood-based materials, positioning engineered wood as a next-generation high-performance material that successfully balances structural functionality, fire safety, and multifunctionality. Full article
Show Figures

Figure 1

19 pages, 36886 KB  
Article
Topographic Inversion and Shallow Gas Risk Analysis in the Canyon Area of Southeastern Qiongdong Basin Based on Multi-Source Data Fusion
by Hua Tao, Yufei Li, Qilin Jiang, Bigui Huang, Hanqiong Zuo and Xiaolei Liu
J. Mar. Sci. Eng. 2025, 13(10), 1897; https://doi.org/10.3390/jmse13101897 - 3 Oct 2025
Abstract
The submarine topography in the canyon area of the Qiongdongnan Basin is complex, with severe risks of shallow gas hazards threatening marine engineering safety. To accurately characterize seabed morphology and assess shallow gas risks, this study employed multi-source data fusion technology, integrating 3D [...] Read more.
The submarine topography in the canyon area of the Qiongdongnan Basin is complex, with severe risks of shallow gas hazards threatening marine engineering safety. To accurately characterize seabed morphology and assess shallow gas risks, this study employed multi-source data fusion technology, integrating 3D seismic data, shipborne multibeam bathymetry data, and high-precision AUV topographic data from key areas to construct a refined seabed terrain inversion model. For the first time, the spatial distribution characteristics of complex geomorphological features such as scarps, mounds, fissures, faults, and mass transport deposits (MTDs) were systematically delineated. Based on attribute analysis of 3D seismic data and geostatistical methods, the enrichment intensity of shallow gas was quantified, its distribution patterns were systematically identified, and risk level evaluations were conducted. The results indicate: (1) multi-source data fusion significantly improved the resolution and accuracy of terrain inversion, revealing intricate geomorphological details in deep-water regions; and (2) seismic attribute analysis effectively delineated shallow gas enrichment zones, clarifying their spatial distribution patterns and risk levels. This study provides critical technical support for deep-water drilling platform site selection, submarine pipeline route optimization, and engineering geohazard prevention, offering significant practical implications for ensuring the safety of deep-water energy development in the South China Sea. Full article
Show Figures

Figure 1

23 pages, 4359 KB  
Article
Use of Inertial Measurement Units for Detection of the Support Phases in Discus Throwing
by José Sánchez-Moreno, David Moreno-Salinas and Juan Carlos Álvarez-Ortiz
Sensors 2025, 25(19), 6095; https://doi.org/10.3390/s25196095 - 3 Oct 2025
Abstract
Photogrammetry applied to sports provides precise data on athlete positions and time instants, especially with digital motion capture systems. However, detecting and identifying specific events in athletic movements such as discus throwing can be challenging when using only images. For example, with high-speed [...] Read more.
Photogrammetry applied to sports provides precise data on athlete positions and time instants, especially with digital motion capture systems. However, detecting and identifying specific events in athletic movements such as discus throwing can be challenging when using only images. For example, with high-speed video, it is difficult to pinpoint the exact frame when events like foot touchdown or takeoff occur, as contact between shoe and ground may span several frames. Inertial measurement units (IMUs) can detect maxima and minima in linear accelerations and angular velocities, helping to accurately determine these specific events in throwing movements. As a result, comparing photogrammetry data with IMU data becomes challenging because of the differences in the methods used to detect events. Even if comparisons can be made with IMU data from other sports researchers, variations in methodologies can invalidate the comparison. To address this, the paper proposes a simple methodology for detecting the five phases of a discus throw using three IMUs located on the thrower’s wrist and on the instep or ankle of the feet. Experiments with three elite male discus throwers are conducted and the results are compared with existing data in the literature. The findings demonstrate that the proposed methodology is effective (100% of phases detected in the experiments without false positives) and reliable (results validated with professional coaches), offering a practical and time- and cost-effective solution for accurately detecting key moments in athletic movements. Full article
Show Figures

Figure 1

25 pages, 2339 KB  
Article
Rock Mass Failure Classification Based on FAHP–Entropy Weight TOPSIS Method and Roadway Zoning Repair Design
by Biao Huang, Qinghu Wei, Zhongguang Sun, Kang Guo and Ming Ji
Processes 2025, 13(10), 3154; https://doi.org/10.3390/pr13103154 - 2 Oct 2025
Abstract
After the original support system in the auxiliary transportation roadway of the northern wing of the Zhaoxian Mine failed, the extent of damage and deformation varied significantly across different sections of the drift. A single support method could not meet the engineering requirements. [...] Read more.
After the original support system in the auxiliary transportation roadway of the northern wing of the Zhaoxian Mine failed, the extent of damage and deformation varied significantly across different sections of the drift. A single support method could not meet the engineering requirements. Therefore, this paper conducted research on the classification of roadway damage and zoning repair. The overall damage characteristics of the roadway are described by three indicators: roadway deformation, development of rock mass fractures, and water seepage conditions. These are further refined into nine secondary indicators. In summary, a rock mass damage combination weighting evaluation model based on the FAHP–entropy weight TOPSIS method is proposed. According to this model, the degree of damage to the roadway is divided into five grades. After analyzing the damage conditions and support requirements at each grade, corresponding zoning repair plans are formulated by adjusting the parameters of bolts, cables, channel steel beams, and grouting materials. At the same time, the reliability of partition repair is verified using FLAC3D 6.0 numerical simulation software. Field monitoring results demonstrated that this approach not only met the support requirements for the roadway but also improved the utilization rate of support materials. This provides valuable guidance for the design of support systems for roadways with similar heterogeneous damage. Full article
(This article belongs to the Section Process Control and Monitoring)
32 pages, 3558 KB  
Review
Thermoelectric Materials for Spintronics: From Physical Principles to Innovative Half Metallic Ferromagnets, Devices, and Future Perspectives
by Alessandro Difalco and Alberto Castellero
Inorganics 2025, 13(10), 332; https://doi.org/10.3390/inorganics13100332 - 2 Oct 2025
Abstract
Over the last century, improvements in computational power resulting from the exponential growth of microelectronics have been the driving force of outstanding global economic growth as well as of deep changes in society and ethical values. Manufacturing of silicon-based memory cells has, as [...] Read more.
Over the last century, improvements in computational power resulting from the exponential growth of microelectronics have been the driving force of outstanding global economic growth as well as of deep changes in society and ethical values. Manufacturing of silicon-based memory cells has, as a matter of fact, become an industry of strategic importance also from a geopolitical perspective. Despite such advancements, a lot of concern has recently aroused as physical limitations such as tunnel-effect phenomena, current leakage, and high power consumption are increasingly hindering further improvements in dynamic random-access memory. Spintronic technologies are promising alternatives to overcome such issues, being considered no longer merely an academic subject of interest, but increasingly becoming an industrial reality. In this review work, the history and the physical principles of spintronic devices are presented, focussing on new, groundbreaking materials. Concepts are exposed step by step and in an easy-to-understand manner, allowing even researchers who are not specialized in the fields of spintronics, microelectronics, and hardware engineering to understand the fundamentals and gain initial insight into the topic. Special attention is paid to half-metallic ferromagnets and Heusler alloys, which are considered among the most promising materials for the future of spintronics. Full article
(This article belongs to the Special Issue Advances in Thermoelectric Materials, 2nd Edition)
Show Figures

Figure 1

20 pages, 12909 KB  
Article
Corrosion Behavior and Failure Mechanism of (Sm0.2Gd0.2Dy0.2Er0.2Yb0.2)2(Zr0.7Hf0.3)2O7 Double-Ceramic Thermal Barrier Coatings in Na2SO4 + V2O5 Environment
by Chunman Wang, Hao Mei, Yong Shang, Xunxun Hu, Huidong Wu, Haiyuan Yu, Keke Chang, Jian Sun, Guanghua Liu, Guijuan Zhou, Chunlei Wan and Shengkai Gong
Coatings 2025, 15(10), 1147; https://doi.org/10.3390/coatings15101147 - 2 Oct 2025
Abstract
To meet gas turbines’ growing demand for high-performance thermal barrier coatings (TBCs), this study addresses the limitations of traditional single-layer 8% Y2O3-stabilized ZrO2 (YSZ) coatings in high-temperature corrosive environments. Atmospheric plasma spraying (APS) was used to fabricate the [...] Read more.
To meet gas turbines’ growing demand for high-performance thermal barrier coatings (TBCs), this study addresses the limitations of traditional single-layer 8% Y2O3-stabilized ZrO2 (YSZ) coatings in high-temperature corrosive environments. Atmospheric plasma spraying (APS) was used to fabricate the double-ceramic TBCs with (Sm0.2Gd0.2Dy0.2Er0.2Yb0.2)2(Zr0.7Hf0.3)2O7 (RHZ) as the outer layer and YSZ as the inner layer; thermal cycling corrosion tests (1000 °C, Na2SO4 + V2O5 molten salt) were conducted to compare its performance with traditional single-layer YSZ. The results showed that the YSZ corrosion products were m-ZrO2 and YVO4, while RHZ/YSZ produced rare-earth vanadates, m-(Zr,Hf)O2, and t′-(Zr,Hf)O2, and corrosion degree was positively correlated with salt concentration (which was more impactful) and the number of cycles. Both coatings failed via molten salt penetration, thermochemical reaction, and crack-induced spallation. The corrosion mechanism between the RHZ/YSZ coating and the mixed salt can be explained based on the Lewis acid–base theory and the optical basicity. The RHZ layer on the surface of RHZ/YSZ coatings indeed hinders the penetration of corrosive molten salts into the underlying YSZ layer to some extent. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

14 pages, 3571 KB  
Article
Advances in Magnetic UAV Sensing: A Comparative Study of the MagNimbus and MagArrow Magnetometers
by Filippo Accomando, Andrea Barone, Francesco Mercogliano, Maurizio Milano, Andrea Vitale, Raffaele Castaldo and Pietro Tizzani
Sensors 2025, 25(19), 6076; https://doi.org/10.3390/s25196076 - 2 Oct 2025
Abstract
The integration of miniaturized magnetometers with Unmanned Aerial Vehicles (UAVs) has revolutionized magnetic surveying, offering flexible, high-resolution, and cost-effective solutions for geophysical applications also in remote areas. This study presents a comparative analysis of two configurations using UAV-borne scalar magnetometers through several surveys [...] Read more.
The integration of miniaturized magnetometers with Unmanned Aerial Vehicles (UAVs) has revolutionized magnetic surveying, offering flexible, high-resolution, and cost-effective solutions for geophysical applications also in remote areas. This study presents a comparative analysis of two configurations using UAV-borne scalar magnetometers through several surveys conducted in the Altopiano di Verteglia (Southern Italy), chosen as a test-site since buried pipes are present. The two systems differ significantly in sensor–platform arrangement, noise sensitivity, and flight configuration. Specifically, the first employs the MagNimbus magnetometer with two sensors rigidly attached on two masts at fixed distances, respectively, above and below the UAV, enabling the vertical gradient estimation while increasing noise due to proximity to the platform. The second involves the use of the MagArrow magnetometer suspended at 3 m below the UAV through non-rigid ropes, which benefits from minimal electromagnetic interference but suffers from oscillation-related instability. The retrieved magnetic anomaly maps effectively indicate the location and orientation of buried pipes within the studied area. Our comparative analysis emphasizes the trade-offs between the two systems: the MagNimbus-based configuration offers greater stability and operational efficiency, whereas the MagArrow-based one provides cleaner signals, which deteriorate with the vertical gradient computation. This work underscores the need to optimize UAV-magnetometer configurations based on environmental, operational, and survey-specific constraints to maximize data quality in drone-borne magnetic investigations. Full article
(This article belongs to the Special Issue Intelligent Sensor Systems in Unmanned Aerial Vehicles)
Show Figures

Figure 1

Back to TopTop