Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,323)

Search Parameters:
Keywords = target body weight

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3316 KiB  
Systematic Review
Preclinical Evidence of Curcuma longa Linn. as a Functional Food in the Management of Metabolic Syndrome: A Systematic Review and Meta-Analysis of Rodent Studies
by Samuel Abiodun Kehinde, Zahid Naeem Qaisrani, Rinrada Pattanayaiying, Wai Phyo Lin, Bo Bo Lay, Khin Yadanar Phyo, Myat Mon San, Nurulhusna Awaeloh, Sasithon Aunsorn, Ran Kitkangplu and Sasitorn Chusri
Biomedicines 2025, 13(8), 1911; https://doi.org/10.3390/biomedicines13081911 - 5 Aug 2025
Abstract
Background/Objectives: Metabolic syndrome (MetS) is a multifactorial condition characterized by abdominal obesity, dyslipidemia, insulin resistance, hypertension, and chronic inflammation. As its global prevalence rises, there is increasing interest in natural, multi-targeted approaches to manage MetS. Curcuma longa Linn. (turmeric), especially its active [...] Read more.
Background/Objectives: Metabolic syndrome (MetS) is a multifactorial condition characterized by abdominal obesity, dyslipidemia, insulin resistance, hypertension, and chronic inflammation. As its global prevalence rises, there is increasing interest in natural, multi-targeted approaches to manage MetS. Curcuma longa Linn. (turmeric), especially its active compound curcumin, has shown therapeutic promise in preclinical studies. This systematic review and meta-analysis evaluated the effects of Curcuma longa and its derivatives on MetS-related outcomes in rodent models. Methods: A comprehensive search was conducted across six databases (PubMed, Scopus, AMED, LILACS, MDPI, and Google Scholar), yielding 47 eligible in vivo studies. Data were extracted on key metabolic, inflammatory, and oxidative stress markers and analyzed using random-effects models. Results were presented as mean differences (MD) with 95% confidence intervals (CI). Results: Meta-analysis showed that curcumin significantly reduced body weight (rats: MD = −42.10; mice: MD = −2.91), blood glucose (rats: MD = −55.59; mice: MD = −28.69), triglycerides (rats: MD = −70.17; mice: MD = −24.57), total cholesterol (rats: MD = −35.77; mice: MD = −52.61), and LDL cholesterol (rats: MD = −69.34; mice: MD = −42.93). HDL cholesterol increased significantly in rats but not in mice. Inflammatory cytokines were markedly reduced, while oxidative stress improved via decreased malondialdehyde (MDA) and elevated superoxide dismutase (SOD) and catalase (CAT) levels. Heterogeneity was moderate to high, primarily due to variations in curcumin dosage (ranging from 10 to 500 mg/kg) and treatment duration (2 to 16 weeks) across studies. Conclusions: This preclinical evidence supports Curcuma longa as a promising functional food component for preventing and managing MetS. Its multi-faceted effects warrant further clinical studies to validate its translational potential. Full article
(This article belongs to the Special Issue The Role of Cytokines in Health and Disease: 3rd Edition)
Show Figures

Graphical abstract

22 pages, 1254 KiB  
Systematic Review
How Do the Psychological Functions of Eating Disorder Behaviours Compare with Self-Harm? A Systematic Qualitative Evidence Synthesis
by Faye Ambler, Andrew J. Hill, Thomas A. Willis, Benjamin Gregory, Samia Mujahid, Daniel Romeu and Cathy Brennan
Healthcare 2025, 13(15), 1914; https://doi.org/10.3390/healthcare13151914 - 5 Aug 2025
Abstract
Background: Eating disorders (EDs) and self-harm (SH) are both associated with distress, poor psychosocial functioning, and increased risk of mortality. Much of the literature discusses the complex interplay between SH and ED behaviours where co-occurrence is common. The onset of both is typically [...] Read more.
Background: Eating disorders (EDs) and self-harm (SH) are both associated with distress, poor psychosocial functioning, and increased risk of mortality. Much of the literature discusses the complex interplay between SH and ED behaviours where co-occurrence is common. The onset of both is typically seen during teenage years into early adulthood. A better understanding of the functions of these behaviours is needed to guide effective prevention and treatment, particularly during the crucial developmental years. An earlier review has explored the functions of self-harm, but an equivalent review for eating disorder behaviours does not appear to have been completed. Objectives: This evidence synthesis had two objectives. First, to identify and synthesise published first-hand accounts of the reasons why people engage in eating disorder behaviours with the view to develop a broad theoretical framework of functions. Second, to draw comparisons between the functions of eating disorder behaviours and self-harm. Methods: A qualitative evidence synthesis reporting first-hand accounts of the reasons for engaging in eating disorder behaviours. A ‘best fit’ framework synthesis, using the a priori framework from the review of self-harm functions, was undertaken with thematic analysis to categorise responses. Results: Following a systematic search and rigorous screening process, 144 studies were included in the final review. The most commonly reported functions of eating disorder behaviours were distress management (affect regulation) and interpersonal influence. This review identified significant overlap in functions between self-harm and eating disorder behaviours. Gender identity, responding to food insecurity, to delay growing up and responding to weight, shape, and body ideals were identified as functions more salient to eating disorder behaviours. Similarly, some self-harm functions were not identified in the eating disorder literature. These were experimenting, averting suicide, personal language, and exploring/maintaining boundaries. Conclusions: This evidence synthesis identified a prominent overlap between psychological functions of eating disorder behaviours and self-harm, specifically in relation to distress management (affect regulation). Despite clear overlap in certain areas, some functions were found to be distinct to each behaviour. The implications for delivering and adapting targeted interventions are discussed. Full article
Show Figures

Figure 1

12 pages, 1732 KiB  
Article
Suppression of Cytosolic Phospholipase A2 in the Ventromedial Hypothalamus Induces Hyperphagia and Obesity in Male Mice
by Takashi Abe, Taiga Ishimoto, Yudai Araki, Ziwei Niu, Changwen Li, Jinxiao He, Samson Ngurari and Chitoku Toda
Int. J. Mol. Sci. 2025, 26(15), 7532; https://doi.org/10.3390/ijms26157532 - 4 Aug 2025
Abstract
We recently reported that phospholipase A2 (PLA2)-mediated production of prostaglandins within the ventromedial hypothalamus (VMH) plays a critical role in systemic glucose homeostasis. However, the role of PLA2 in the VMH in regulating food intake is still unclear. Here, we attempted to investigate [...] Read more.
We recently reported that phospholipase A2 (PLA2)-mediated production of prostaglandins within the ventromedial hypothalamus (VMH) plays a critical role in systemic glucose homeostasis. However, the role of PLA2 in the VMH in regulating food intake is still unclear. Here, we attempted to investigate the role of PLA2 in regulating food intake and body weight in male mice. We injected an adeno-associated virus encoding short hairpin RNA (AAV-shRNA) targeting cytosolic phospholipase A2 (shPla2g4a) into the VMH. We assessed food intake, body weight, oxygen consumption, glucose tolerance, and insulin sensitivity. Three weeks after the AAV injection, the shPla2g4a group exhibited increased food intake and body weight gain compared to controls (shSCRM). Energy expenditure, oxygen consumption, and respiratory quotient (RQ) were comparable between groups. Our findings suggest that the cPLA2-mediated pathway in the VMH is critical for feeding behavior and maintaining energy homeostasis. Further investigation is needed to elucidate the underlying mechanisms. Full article
(This article belongs to the Special Issue Diabetes and Metabolic Dysfunction)
Show Figures

Figure 1

14 pages, 3099 KiB  
Article
Identification of Keystone Plant Species for Avian Foraging and Nesting in Beijing’s Forest Ecosystems: Implications for Urban Forest Bird Conservation
by Lele Lin, Yongjian Zhao, Chao Yuan, Yushu Zhang, Siyu Qiu and Jixin Cao
Animals 2025, 15(15), 2271; https://doi.org/10.3390/ani15152271 - 4 Aug 2025
Viewed by 52
Abstract
Urban wildlife conservation is emerging as a critical component of sustainable city ecosystems. Rather than simply increasing tree abundance or species richness, conservation management should focus on key species. In this research, Xishan Forest Park in Beijing was chosen as a case study. [...] Read more.
Urban wildlife conservation is emerging as a critical component of sustainable city ecosystems. Rather than simply increasing tree abundance or species richness, conservation management should focus on key species. In this research, Xishan Forest Park in Beijing was chosen as a case study. Our aim was to identify keystone taxa critical for avian foraging and nesting during the breeding season. We performed a network analysis linking bird species, their diets, and nest plants. Dietary components were detected using DNA metabarcoding conducted with avian fecal samples. Nest plants were identified via transect surveys. Two indices of the network, degree and weighted mean degree, were calculated to evaluate the importance of the dietary and nest plant species. We identified 13 bird host species from 107 fecal samples and 14 bird species from 107 nest observations. Based on the degree indices, fruit trees Morus and Prunus were detected as key food sources, exhibiting both the highest degree (degree = 9, 9) and weighted mean degree (lnwMD = 5.21, 4.63). Robinia pseudoacacia provided predominant nesting sites, with a predominant degree of 7. A few taxa, such as Styphnolobium japonicum and Rhamnus parvifolia, served dual ecological significance as both essential food sources and nesting substrates. Scrublands, as a unique habitat type, provided nesting sites and food for small-bodied birds. Therefore, targeted management interventions are recommended to sustain or enhance these keystone resource species and to maintain the multi-layered vertical vegetation structure to preserve the diverse habitats of birds. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

11 pages, 1077 KiB  
Article
Expression of 15-PGDH Regulates Body Weight and Body Size by Targeting JH in Honeybees (Apis mellifera)
by Xinying Qu, Xinru Zhang, Hanbing Lu, Lingjun Xin, Ran Liu and Xiao Chen
Life 2025, 15(8), 1230; https://doi.org/10.3390/life15081230 - 3 Aug 2025
Viewed by 106
Abstract
Honeybees (Apis mellifera) are pollinators for most crops in nature and a core species for the production of bee products. Body size and body weight are crucial breeding traits, as colonies possessing individuals with large body weight tend to be healthier [...] Read more.
Honeybees (Apis mellifera) are pollinators for most crops in nature and a core species for the production of bee products. Body size and body weight are crucial breeding traits, as colonies possessing individuals with large body weight tend to be healthier and exhibit high productivity. In this study, small interfering RNA (siRNA) targeting 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) was incorporated into the feed for feeding worker bee larvae, thereby achieving the silencing of this gene’s expression. The research further analyzed the impact of the RNA expression level of the 15-PGDH gene on the juvenile hormone (JH) titer and its subsequent effects on the body weight and size of worker bees. The results show that inhibiting the expression of 15-PGDH in larvae could significantly increase JH titer, which in turn led to an increase in the body weight of worker bees (1.13-fold higher than that of the control group reared under normal conditions (CK group); p < 0.01; SE: 7.85) and a significant extension in femur (1.08-fold longer than that of the CK group; p < 0.01; SE: 0.18). This study confirms that 15-PGDH can serve as a molecular marker related to body weight and size in honey bees, providing an important basis for molecular marker-assisted selection in honey bee breeding. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

10 pages, 503 KiB  
Brief Report
RAGE Knockout Mitigates Diet-Induced Obesity and Metabolic Disruption
by Isabelle L. Palmer, Genevieve Parker, Alden T. Chiu, Colson G. Beus, Ethan P. Evans, Jack H. Radford, Cameron R. Braithwaite, Ryan D. van Slooten, Elijah T. Cooper-Leavitt, Zachary E. Moore, Derek M. Clarke, R. Ryley Parrish, Juan A. Arroyo, Paul R. Reynolds and Benjamin T. Bikman
Metabolites 2025, 15(8), 524; https://doi.org/10.3390/metabo15080524 - 2 Aug 2025
Viewed by 180
Abstract
Background/Objectives: The receptor for advanced glycation end products (RAGEs) has been implicated in obesity and metabolic dysfunction. However, its precise role in diet-induced obesity remains unclear. Methods: In this study, we investigated the metabolic consequences of RAGE knockout (RAGE KO) in mice subjected [...] Read more.
Background/Objectives: The receptor for advanced glycation end products (RAGEs) has been implicated in obesity and metabolic dysfunction. However, its precise role in diet-induced obesity remains unclear. Methods: In this study, we investigated the metabolic consequences of RAGE knockout (RAGE KO) in mice subjected to a Western diet (WD). Results: Our findings demonstrate that RAGE KO mice remained significantly leaner than their wild-type (WT) counterparts when fed a WD, exhibiting reduced body weight gain and smaller adipocyte size. Indirect calorimetry revealed that RAGE KO mice had increased oxygen consumption and locomotor activity compared to WT mice, indicating enhanced energy expenditure. Mitochondrial respiration assays indicated significantly greater oxygen consumption in RAGE KO animals. Additionally, systemic inflammation markers, such as TNF-α, were significantly lower in RAGE KO mice when fed a WD, indicating a reduction in diet-induced inflammatory responses. Conclusions: These findings suggest that RAGE plays a key role in metabolic homeostasis, and its deletion confers resistance to obesity and metabolic disruption induced by a Western diet. Targeting RAGE may provide a novel therapeutic approach for combating obesity and related metabolic disorders. Full article
(This article belongs to the Special Issue Fat and Glucose Metabolism)
Show Figures

Figure 1

19 pages, 1376 KiB  
Article
The Effect of Short-Term Healthy Ketogenic Diet Ready-To-Eat Meals Versus Healthy Ketogenic Diet Counselling on Weight Loss in Overweight Adults: A Pilot Randomized Controlled Trial
by Melissa Hui Juan Tay, Qai Ven Yap, Su Lin Lim, Yuki Wei Yi Ong, Victoria Chantel Hui Ting Wee and Chin Meng Khoo
Nutrients 2025, 17(15), 2541; https://doi.org/10.3390/nu17152541 - 1 Aug 2025
Viewed by 252
Abstract
Background/Objectives: Conventional ketogenic diets, although effective for weight loss, often contain high total and saturated fat intake, which leads to increased low-density lipoprotein cholesterol (LDL-C). Thus, the Healthy Ketogenic Diet (HKD) was developed to address these concerns. It emphasizes calorie restriction, limiting net [...] Read more.
Background/Objectives: Conventional ketogenic diets, although effective for weight loss, often contain high total and saturated fat intake, which leads to increased low-density lipoprotein cholesterol (LDL-C). Thus, the Healthy Ketogenic Diet (HKD) was developed to address these concerns. It emphasizes calorie restriction, limiting net carbohydrate intake to 50 g per day, prioritizing unsaturated fats, and reducing saturated fat intake. However, adherence to the HKD remains a challenge in urban, time-constrained environments. Therefore, this pilot randomized controlled trial aimed to investigate the effects of Healthy Ketogenic Diet Ready-To-Eat (HKD-RTE) meals (provided for the first month only) versus HKD alone on weight loss and metabolic parameters among overweight adults. Methods: Multi-ethnic Asian adults (n = 50) with a body mass index (BMI) ≥ 27.5 kg/m2 were randomized into the HKD-RTE group (n = 24) and the HKD group (n = 26). Both groups followed the HKD for six months, with the HKD-RTE group receiving HKD-RTE meals during the first month. Five in-person workshops and mobile health coaching through the Nutritionist Buddy Keto app helped to facilitate dietary adherence. The primary outcome was the change in body weight at 6 months. Linear regression was performed on the change from baseline for each continuous outcome, adjusting for demographics and relevant covariates. Logistic regression was performed on binary weight loss ≥ 5%, adjusting for demographics and relevant covariates. Results: In the HKD group, participants’ adherence to the 50 g net carbohydrate target was 15 days, while that in the HKD-RTE group was 19 days over a period of 30 days. Participants’ adherence to calorie targets was 21 days in the HKD group and 23 days in the HKD-RTE. The average compliance with the HKD-RTE meals provided in the HKD-RTE group was 55%. The HKD-RTE group experienced a greater percentage weight loss at 1 month (−4.8 ± 3.0% vs. −1.8 ± 6.2%), although this was not statistically significant. This trend continued up to 6 months, with the HKD-RTE group showing a greater percentage weight reduction (−8.6 ± 6.8% vs. −3.9 ± 8.6%; p = 0.092). At 6 months, the HKD-RTE group had a greater reduction in total cholesterol (−0.54 ± 0.76 mmol/L vs. −0.05 ± 0.56 mmol/L; p = 0.283) and LDL-C (−0.43 ± 0.67 mmol/L vs. −0.03 ± 0.52 mmol/L; p = 0.374) compared to the HKD group. Additionally, the HKD-RTE group exhibited greater reductions in systolic blood pressure (−8.3 ± 9.7 mmHg vs. −5.3 ± 11.0 mmHg), diastolic blood pressure (−7.7 ± 8.8 mmHg vs. −2.0 ± 7.0 mmHg), and HbA1c (−0.3 ± 0.5% vs. −0.1 ± 0.4%) than the HKD group (not statistically significant for any). Conclusions: Both HKD-RTE and HKD led to weight loss and improved metabolic profiles. The HKD-RTE group tended to show more favorable outcomes. Short-term HKD-RTE meal provision may enhance initial weight loss, with sustained long-term effects. Full article
Show Figures

Figure 1

19 pages, 2656 KiB  
Article
Circulating Lipid Profiles Indicate Incomplete Metabolic Recovery After Weight Loss, Suggesting the Need for Additional Interventions in Severe Obesity
by Alina-Iuliana Onoiu, Vicente Cambra-Cortés, Andrea Jiménez-Franco, Anna Hernández-Aguilera, David Parada, Francesc Riu, Antonio Zorzano, Jordi Camps and Jorge Joven
Biomolecules 2025, 15(8), 1112; https://doi.org/10.3390/biom15081112 - 1 Aug 2025
Viewed by 117
Abstract
The effects of long-term adjustments in body weight on the lipid balance in patients with severe obesity are not well understood. This study aimed to evaluate a non-invasive lipidomic approach to identifying biomarkers that could help predict which patients may require additional therapies [...] Read more.
The effects of long-term adjustments in body weight on the lipid balance in patients with severe obesity are not well understood. This study aimed to evaluate a non-invasive lipidomic approach to identifying biomarkers that could help predict which patients may require additional therapies before and after weight loss. Using mass spectrometry, 275 lipid species were analysed in non-obese controls, patients with severe obesity, and patients one year after bariatric surgery. The results showed that severe obesity disrupts lipid pathways, contributing to lipotoxicity, inflammation, mitochondrial stress, and abnormal lipid metabolism. Although weight loss improved these disturbances, surgery did not fully normalise the lipid profiles of all patients. Outcomes varied depending on their baseline liver health and genetic differences. Persistent alterations in cholesterol handling, membrane composition, and mitochondrial function were observed in partial responders. Elevated levels of sterol lipids, glycerophospholipids, and sphingolipids emerged as markers of complete metabolic recovery, identifying candidates for targeted post-surgical interventions. These findings support the use of lipidomics to personalise obesity treatment and follow-up. Full article
(This article belongs to the Section Molecular Biomarkers)
Show Figures

Figure 1

36 pages, 4836 KiB  
Article
Harnessing the Hepatoprotective and Nephroprotective Potential of Nigella sativa Fractions via per os Administration in CCl4-Intoxicated Wistar Rats: A Mixed Approach
by Mohammed Dalli, Nour Elhouda Daoudi, Salah-eddine Azizi, Mohammed Roubi, Ilyass Alami Merrouni, Faiza Souna, Mohammed Choukri, Bonglee Kim and Nadia Gseyra
Pharmaceuticals 2025, 18(8), 1147; https://doi.org/10.3390/ph18081147 - 1 Aug 2025
Viewed by 99
Abstract
Background: Nigella sativa, known as black cumin, is traditionally used to treat various illnesses. Objective: The current study aims to investigate the potential hepatoprotective and nephroprotective effect of black cumin fractions via per os route in CCl4-intoxicated Wistar rats. [...] Read more.
Background: Nigella sativa, known as black cumin, is traditionally used to treat various illnesses. Objective: The current study aims to investigate the potential hepatoprotective and nephroprotective effect of black cumin fractions via per os route in CCl4-intoxicated Wistar rats. This study used a computational approach to assess the interaction of bioactive compounds with key proteins (CYP P450 3E1, TNF-α, and Cox-2). Methods:Wistar rats were treated with CCl4 to induce liver injury and with different Nigella sativa fractions (250 mg/Kg) or Sylimarin (50 mg/Kg). Liver and kidney functions were assessed through biochemical markers, hepatic glycogen, malondialdehyde levels, molecular docking, and ADMET analysis to evaluate drug-likeliness. Results: The results revealed that intoxication with CCl4 induced an elevation in different liver and kidney biochemical parameters such as (ALT, AST, creatinine, urea...) indicating kidney and hepatic toxicity. However, treatment with different Nigella sativa fractions showed a significant improvement in animal body weight and significant amelioration of biochemical markers indicating a protective potential of these fractions against CCl4-induced intoxication. Furthermore, the molecular docking approach demonstrated high binding affinity with the target proteins. Conclusions: These current findings shed light on the therapeutic potential of Nigella sativa fractions as a promising protective agent of the liver and kidney against CCl4 intoxication. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

23 pages, 511 KiB  
Article
Dietary Acrylamide Exposure and Its Correlation with Nutrition and Exercise Behaviours Among Turkish Adolescents
by Mehtap Metin Karaaslan and Burhan Basaran
Nutrients 2025, 17(15), 2534; https://doi.org/10.3390/nu17152534 - 1 Aug 2025
Viewed by 282
Abstract
Background/Objectives: Acrylamide is a probably carcinogenic to humans that naturally forms during the thermal processing of foods. An individual’s lifestyle—especially dietary habits and physical activity—may influence the severity of acrylamide’s adverse health effects. This study aimed to examine the relationship between adolescents’ dietary [...] Read more.
Background/Objectives: Acrylamide is a probably carcinogenic to humans that naturally forms during the thermal processing of foods. An individual’s lifestyle—especially dietary habits and physical activity—may influence the severity of acrylamide’s adverse health effects. This study aimed to examine the relationship between adolescents’ dietary and exercise behaviors and their dietary acrylamide exposure and associated health risks. Methods: This descriptive and cross-sectional study was conducted with 370 high school students in Türkiye. Data were collected using the Nutrition Exercise Behavior Scale (NEBS) and a retrospective 24-h dietary recall questionnaire. Acrylamide exposure was calculated based on food intake to estimate carcinogenic (CR) and non-corcinogenic (target hazard quotient: THQ) health risks and analyzed in relation to NEBS scores. Results: Findings indicated that while adolescents are beginning to adopt healthy eating and exercise habits, these behaviors are not yet consistent. Emotional eating and unhealthy food choices still occur. Higher acrylamide exposure and risk values were observed in boys and underweight individuals. This can be explained mainly by the fact that boys consume more of certain foods—especially bread, which contains relatively higher levels of acrylamide—than girls do, and that underweight individuals have lower body weights despite consuming similar amounts of food as other groups. Bread products emerged as the primary source of daily acrylamide intake. Positive correlations were found between NEBS total and subscale scores and acrylamide exposure and health risk values. Conclusions: The study demonstrates a significant association between adolescents’ health behaviors and acrylamide exposure. These results underscore potential public health concerns regarding acrylamide intake during adolescence and emphasize the need for targeted nutritional interventions to reduce risk and promote sustainable healthy behaviors. Full article
(This article belongs to the Section Nutrition Methodology & Assessment)
Show Figures

Figure 1

19 pages, 4365 KiB  
Article
Fecal Virome Transplantation Confirms Non-Bacterial Components (Virome and Metabolites) Participate in Fecal Microbiota Transplantation-Mediated Growth Performance Enhancement and Intestinal Development in Broilers with Spatial Heterogeneity
by Shuaihu Chen, Tingting Liu, Junyao Chen, Hong Shen and Jungang Wang
Microorganisms 2025, 13(8), 1795; https://doi.org/10.3390/microorganisms13081795 - 31 Jul 2025
Viewed by 228
Abstract
Fecal microbiota transplantation (FMT) promotes growth performance and intestinal development in yellow-feathered broilers, but whether the virome and metabolites contribute to its growth-promoting effect remains unclear. This study removed the microbiota from FMT filtrate using a 0.45 μm filter membrane, retaining the virome [...] Read more.
Fecal microbiota transplantation (FMT) promotes growth performance and intestinal development in yellow-feathered broilers, but whether the virome and metabolites contribute to its growth-promoting effect remains unclear. This study removed the microbiota from FMT filtrate using a 0.45 μm filter membrane, retaining the virome and metabolites to perform fecal virome transplantation (FVT), aiming to investigate its regulatory role in broiler growth. Healthy yellow-feathered broilers with high body weights (top 10% of the population) were used as FVT donors. Ninety-six 8-day-old healthy male yellow-feathered broilers (95.67 ± 3.31 g) served as FVT recipients. Recipient chickens were randomly assigned to a control group and an FVT group. The control group was gavaged with 0.5 mL of normal saline daily, while the FVT group was gavaged with 0.5 mL of FVT solution daily. Growth performance, immune and antioxidant capacity, intestinal development and related gene expression, and microbial diversity were measured. The results showed that FVT improved the feed utilization rate of broilers (the feed conversion ratio decreased by 3%; p < 0.05), significantly increased jejunal length (21%), villus height (69%), and crypt depth (84%) (p < 0.05), and regulated the jejunal barrier: insulin-like growth factor-1 (IGF-1) (2.5 times) and Mucin 2 (MUC2) (63 times) were significantly upregulated (p < 0.05). FVT increased the abundance of beneficial bacteria Lactobacillales. However, negative effects were also observed: Immunoglobulin A (IgA), Immunoglobulin G (IgG), Immunoglobulin M (IgM), Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), Tumor Necrosis Factor-alpha (TNF-α), and Interferon-gamma (IFN-γ) in broilers were significantly upregulated (p < 0.05), indicating immune system overactivation. Duodenal barrier-related genes Mucin 2 (MUC2), Occludin (OCLN), Claudin (CLDN1), and metabolism-related genes solute carrier family 5 member 1 (SLC5A1) and solute carrier family 7 member 9 (SLC7A9) were significantly downregulated (p < 0.05). The results of this trial demonstrate that, besides the microbiota, the gut virome and metabolites are also functional components contributing to the growth-promoting effect of FMT. The differential responses in the duodenum and jejunum reveal spatial heterogeneity and dual effects of FVT on the intestine. The negative effects limit the application of FMT/FVT. Identifying the primary functional components of FMT/FVT to develop safe and targeted microbial preparations is one potential solution. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

17 pages, 706 KiB  
Article
A Multicenter Pilot Randomized Trial of a Lifestyle Intervention to Prevent Type 2 Diabetes in High-Risk Individuals
by Raira Pagano, Thatiane Lopes Valentim Di Paschoale Ostolin, Danielle Cristina Fonseca, Aline Marcadenti, Ana Paula Perillo Ferreira Carvalho, Bernardete Weber, Carla Daltro, Enilda Lara, Fernanda Carneiro Marinho Noleto, Josefina Bressan, Jussara Carnevale de Almeida, Malaine Morais Alves Machado, Marcelo Macedo Rogero, Olivia Garbin Koller, Rita de Cássia Santos Soares, Sônia Lopes Pinto, Viviane Sahade, Cleyton Zanardo de Oliveira, Guilherme William Marcelino, Camila Martins Trevisan and Angela Cristine Bersch-Ferreiraadd Show full author list remove Hide full author list
Nutrients 2025, 17(15), 2518; https://doi.org/10.3390/nu17152518 - 31 Jul 2025
Viewed by 186
Abstract
Background: Type 2 diabetes (T2D) is a growing public health concern, particularly in low- and middle-income countries. Although prediabetes is a major risk factor for T2D, it remains largely underdiagnosed and untreated. Structured lifestyle interventions have proven effective in preventing diabetes, but their [...] Read more.
Background: Type 2 diabetes (T2D) is a growing public health concern, particularly in low- and middle-income countries. Although prediabetes is a major risk factor for T2D, it remains largely underdiagnosed and untreated. Structured lifestyle interventions have proven effective in preventing diabetes, but their feasibility within the Brazilian public health system remains unclear. Methods: This multicenter pilot randomized controlled trial assessed the feasibility of a culturally adapted lifestyle intervention (PROVEN-DIA) across the five regions of Brazil. A total of 220 adults at high risk for T2D were randomized to an intervention group or a control group (usual care) and followed for three months. Both groups received similar educational content on healthy eating and physical activity, but the intervention group participated in a structured and personalized lifestyle program with regular follow-up sessions. The primary outcome was adherence to dietary recommendations, assessed using the BALANCE Index—a validated dietary score (range: 0–40) based on the Brazilian Cardioprotective Diet that classifies foods into color-coded groups according to nutritional quality—along with engagement in moderate-to-vigorous physical activity (MVPA). Secondary outcomes included diet quality (DQIR), anthropometric and metabolic parameters. Results: Feasibility was demonstrated by a 93.2% retention rate (n = 205). There was no significant difference in the primary outcome (simultaneous improvement in diet and MVPA). However, the PROVEN-DIA group exhibited significantly greater improvements in diet quality, with a 2.8-point increase in the BALANCE Index (vs. 0.5 in the control, p = 0.03), and a significant improvement in the DQIR (p < 0.001). No significant differences between groups were observed in MVPA, HbA1C, glycaemia, or body weight. Conclusions: The PROVEN-DIA intervention proved feasible within the Brazilian public health context, resulting in significant improvements in dietary quality among individuals at high risk for T2D. A larger trial with longer follow-up is warranted to evaluate its effectiveness in preventing the progression to diabetes. However, to enhance physical activity outcomes, specific adaptations and targeted strategies may be required to better support participant engagement in exercise. Full article
Show Figures

Figure 1

17 pages, 2131 KiB  
Article
Investigating Neuroprotective Effects of Berberine on Mitochondrial Dysfunction and Autophagy Impairment in Parkinson’s Disease
by Hae-Rim Cha, Jin-Seok Kim, Jin-Hyeob Ryu and Hyun-Jeong Cho
Int. J. Mol. Sci. 2025, 26(15), 7342; https://doi.org/10.3390/ijms26157342 - 29 Jul 2025
Viewed by 669
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder with substantial global impact. Although current therapies can provide symptomatic relief, they are often associated with high costs and adverse effects. Natural compounds with a history of traditional medicinal use have emerged as promising alternatives. [...] Read more.
Parkinson’s disease (PD) is a common neurodegenerative disorder with substantial global impact. Although current therapies can provide symptomatic relief, they are often associated with high costs and adverse effects. Natural compounds with a history of traditional medicinal use have emerged as promising alternatives. In this study, we investigated the therapeutic potential and underlying mechanisms of berberine in both cellular and animal models of PD. In vitro, SH-SY5Y cells exposed to 6-hydroxydopamine (6-OHDA) exhibited decreased viability and increased oxidative stress, both of which were significantly alleviated by berberine treatment based on cell viability assays and DCFH-DA staining. Western blot analysis revealed that berberine modulated the AMPK–PGC-1α–SIRT1 signaling pathway and restored the expression of autophagy-related proteins LC3B and P62, suggesting that berberine could improve mitochondrial function and autophagy balance. In vivo studies using a 6-OHDA-induced PD mouse model further confirmed these effects, showing that berberine could improve motor function and lead to molecular changes consistent with in vitro studies. Additionally, safety evaluations indicated no significant hepatotoxicity based on AST and ALT levels. Body weight also remained stable throughout treatment. Collectively, our findings suggest that berberine can not only alleviate PD-related symptoms but also target key pathological mechanisms, supporting its potential as a therapeutic candidate for PD and other neurodegenerative diseases. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

27 pages, 17405 KiB  
Article
Population Pharmacokinetic Modeling of Piperacillin/Tazobactam in Healthy Adults and Exploration of Optimal Dosing Strategies
by Yun Jung Lee, Gaeun Kang, Dae Young Zang and Dong Hwan Lee
Pharmaceuticals 2025, 18(8), 1124; https://doi.org/10.3390/ph18081124 - 27 Jul 2025
Viewed by 399
Abstract
Background/Objectives: Current dosing recommendations for piperacillin/tazobactam suggest adjustments only for patients with creatinine clearance (CrCl) below 40 mL/min, potentially neglecting the variability in drug exposure among patients with a CrCl greater than 40 mL/min. This study aimed to develop a population pharmacokinetic (PK) [...] Read more.
Background/Objectives: Current dosing recommendations for piperacillin/tazobactam suggest adjustments only for patients with creatinine clearance (CrCl) below 40 mL/min, potentially neglecting the variability in drug exposure among patients with a CrCl greater than 40 mL/min. This study aimed to develop a population pharmacokinetic (PK) model for piperacillin/tazobactam and explore optimal dosage regimens tailored by renal function and pathogen susceptibility. Methods: Twelve healthy adults received a single intravenous dose of piperacillin/tazobactam (4 g/0.5 g). Population PK models were developed using nonlinear mixed-effects modeling. Monte Carlo simulations were conducted to identify optimal dosing regimens across various renal functions and MIC levels, guided by pharmacodynamic targets defined as the percentage of time that free drug concentrations exceed the minimum inhibitory concentration (fT>MIC). Results: PK profiles of both drugs were best described by two-compartment models. Estimated glomerular filtration rate (eGFR) adjusted by body surface area and body weight were identified as significant covariates influencing drug clearance and peripheral volume of distribution. Simulations showed that the standard dosing regimen (4/0.5 g q6h with 30 min infusion) achieved a 90% probability of target attainment (PTA) for 50%fT>MIC at MIC values up to 4 mg/L in patients with normal renal function. However, this regimen often did not achieve a 90% PTA for stringent targets (100%fT>MIC, 100%fT>4MIC) or higher MICs, particularly in patients with eGFR ≥ 130 mL/min. Conclusions: These findings suggest current dosing regimens may be inadequate and highlight the potential of alternative strategies, such as extended or continuous infusion, which warrant further investigation in clinical populations to optimize therapeutic outcomes. Full article
(This article belongs to the Special Issue Therapeutic Drug Monitoring and Adverse Drug Reactions: 2nd Edition)
Show Figures

Graphical abstract

19 pages, 4491 KiB  
Article
Temporal Dynamics of Fecal Microbiome and Short-Chain Fatty Acids in Sows from Early Pregnancy to Weaning
by Sui Liufu, Xin Xu, Qun Lan, Bohe Chen, Kaiming Wang, Lanlin Xiao, Wenwu Chen, Wu Wen, Caihong Liu, Lei Yi, Jingwen Liu, Xianchuang Fu and Haiming Ma
Animals 2025, 15(15), 2209; https://doi.org/10.3390/ani15152209 - 27 Jul 2025
Viewed by 271
Abstract
Although age-related changes in the gut microbiome of pigs have been extensively studied, the dynamic patterns of fecal microbiota and SCFAs during the gestation-to-weaning period in sows remain poorly characterized. We aim to characterize the changes in fecal microbiota and SCFAs from pregnancy [...] Read more.
Although age-related changes in the gut microbiome of pigs have been extensively studied, the dynamic patterns of fecal microbiota and SCFAs during the gestation-to-weaning period in sows remain poorly characterized. We aim to characterize the changes in fecal microbiota and SCFAs from pregnancy to weaning, and to investigate their associations with maternal weight gain during gestation. We systematically collected 100 fecal samples at four time points (day 30 of pregnancy (T1), 1–2 days before delivery (T2), day 10 after delivery (T3), and day 21 of weaning stage (T3)), and measured the body weight of sows at T1 (132 kg ± 10.8) and T2 (205 kg ± 12.1). The primary nutrient components of the diets during the gestation and lactation periods are summarized. All fecal samples were subjected to 16S rRNA gene sequencing. We found that a high proportion of crude fiber (bran) is a key feature of the gestation diet, which may affect enterotype shifts and gut microbial composition. Sows fed a high-fiber diet showed significant enrichment of gut microbiota, including genera such as Prevotellaceae_UCG-003, Prevotellaceae_NK3B31_group, and Prevotella_9 during the gestational period (LDA score > 2). Moreover, Eubacterium_coprostanoligenes_group (average relative abundance: 5.5%) and Lachnospiraceae_NK4A136_group (average relative abundance: 2.5%) were the dominant bacteria during the lactation stage. Fecal propionate and butyrate levels were lowest in late gestation, and propionate negatively and acetate positively correlated with body weight change (p < 0.05). Additionally, certain Prevotella taxa were associated with arachidonic acid metabolism and acetate production (p < 0.05). Our study identified key microbial communities across four stages from gestation to weaning and revealed that dietary patterns can shape the sow gut microbiota. Furthermore, we observed significant correlations between SCFAs and body weight change during pregnancy. These findings provide a scientific basis and theoretical support for future strategies aimed at modulating gut microbiota and targeting SCFAs to improve maternal health and productivity throughout the gestation-to-weaning period. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

Back to TopTop