Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = tapered fibre

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6795 KiB  
Article
Strain-Rate-Dependent Tensile Behaviour and Viscoelastic Modelling of Kevlar® 29 Plain-Woven Fabric for Ballistic Applications
by Kun Liu, Ying Feng, Bao Kang, Jie Song, Zhongxin Li, Zhilin Wu and Wei Zhang
Polymers 2025, 17(15), 2097; https://doi.org/10.3390/polym17152097 - 30 Jul 2025
Viewed by 190
Abstract
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal [...] Read more.
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal material testing machine and a Split Hopkinson Tensile Bar (SHTB) apparatus. Tensile mechanical responses were obtained under various strain rates. Fracture morphology was characterised using scanning electron microscopy (SEM) and ultra-depth three-dimensional microscopy, followed by an analysis of microstructural damage patterns. Considering the strain rate effect, a viscoelastic constitutive model was developed. The results indicate that the tensile mechanical properties of Kevlar® 29 plain-woven fabric are strain-rate dependent. Tensile strength, elastic modulus, and toughness increase with strain rate, whereas fracture strain decreases. Under quasi-static loading, the fracture surface exhibits plastic flow, with slight axial splitting and tapered fibre ends, indicating ductile failure. In contrast, dynamic loading leads to pronounced axial splitting with reduced split depth, simultaneous rupture of fibre skin and core layers, and fibrillation phenomena, suggesting brittle fracture characteristics. The modified three-element viscoelastic constitutive model effectively captures the strain-rate effect and accurately describes the tensile behaviour of the plain-woven fabric across different strain rates. These findings provide valuable data support for research on ballistic mechanisms and the performance optimisation of protective materials. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

18 pages, 7646 KiB  
Article
The Biopolymer Active Surface for Optical Fibre Sensors
by Karol A. Stasiewicz, Wiktor Bereski, Iwona Jakubowska, Rafał Kowerdziej, Dorota Węgłowska and Anna Spadło
Polymers 2024, 16(15), 2114; https://doi.org/10.3390/polym16152114 - 25 Jul 2024
Cited by 5 | Viewed by 1147
Abstract
Optical fibre sensors have the potential to be overly sensitive and responsive, making them useful in various applications to detect the presence of pollutants in the environment, toxic gasses, or pesticides in soil. Deoxyribonucleic acid (DNA) as biopolymer active surfaces for fibre sensors [...] Read more.
Optical fibre sensors have the potential to be overly sensitive and responsive, making them useful in various applications to detect the presence of pollutants in the environment, toxic gasses, or pesticides in soil. Deoxyribonucleic acid (DNA) as biopolymer active surfaces for fibre sensors can be designed to detect specific molecules or compounds accurately. In the article, we propose to use an optical fibre taper and DNA complex with surfactant-based sensors to offer a promising approach for gas detection, including ammonia solution, 1,4 thioxane, and trimethyl phosphate imitating hazardous agents. The presented results describe the influence of the adsorption of evaporation of measured agents to the DNA complex layer on a light leakage outside the structure of an optical fibre taper. The DNA layer with additional gas molecules becomes a new cladding of the taper structure, with the possibility to change its properties. The process of adsorption causes a change in the layer’s optical properties surrounding a taper-like refractive index and increasing layer diameter, which changes the boundary condition of the structure and interacts with light in a wide spectral range of 600–1200 nm. The research’s novelty is implementing a DNA complex active surface as the biodegradable biopolymer alignment for optical devices like in-line fibre sensors and those enabled for hazardous agent detection for substances appearing in the environment as industrial or even warfare toxic agents. Full article
(This article belongs to the Special Issue Polymer-Based Sensors II)
Show Figures

Figure 1

9 pages, 3671 KiB  
Article
Chromogenic Approach for Oxygen Sensing Using Tapered Coreless Optical Fibre Coated with Methylene Blue
by Rahul Kumar and Neil Wight
Metrology 2024, 4(2), 295-303; https://doi.org/10.3390/metrology4020018 - 12 Jun 2024
Viewed by 1503
Abstract
In this paper, a Methylene Blue (MB)-coated tapered coreless (TCL) optical fibre sensor is proposed and experimentally investigated for oxygen sensing in the near-infrared (NIR) wavelength range of 993.5 nm. The effect of TCL diameter and MB sol–gel coating thickness on the sensitivity [...] Read more.
In this paper, a Methylene Blue (MB)-coated tapered coreless (TCL) optical fibre sensor is proposed and experimentally investigated for oxygen sensing in the near-infrared (NIR) wavelength range of 993.5 nm. The effect of TCL diameter and MB sol–gel coating thickness on the sensitivity of the sensor was also investigated. A maximum sensitivity of 0.19 dB/O2% in the oxygen concentration range of 0–37.5% was achieved for a TCL fibre sensor with a 2 µm taper waist diameter and a 0.86 µm MB sol–gel coating thickness, with a response time of 4 min. The sensor provides reproducible results even after 7 days and is shown to be highly selective to oxygen compared to argon and ethanol at the same concentration. Full article
Show Figures

Figure 1

19 pages, 6294 KiB  
Article
Effects of Abrasive Waterjet Machining on the Quality of the Surface Generated on a Carbon Fibre Reinforced Polymer Composite
by Andrew Rowe, Alokesh Pramanik, Animesh Kumar Basak, Chander Prakash, Shankar Subramaniam, Amit Rai Dixit and N. Radhika
Machines 2023, 11(7), 749; https://doi.org/10.3390/machines11070749 - 18 Jul 2023
Cited by 14 | Viewed by 2578
Abstract
The effect of the water pressure, traverse speed, and abrasive feed rate on the circularity, cylindricity, kerf taper, and surface roughness of holes produced by abrasive waterjet machining (AWJM) of a carbon-fibre-reinforced polymer (CFRP) composite was investigated in the current study. It was [...] Read more.
The effect of the water pressure, traverse speed, and abrasive feed rate on the circularity, cylindricity, kerf taper, and surface roughness of holes produced by abrasive waterjet machining (AWJM) of a carbon-fibre-reinforced polymer (CFRP) composite was investigated in the current study. It was found that the circularity deviation decreased as the water pressure was increased. Cylindricity was affected by all three parameters, although the abrasive feed rate caused the largest deviations as it increased. The surface roughness was affected by all three, but a clear connection was not able to be concluded. The kerf taper ratio reduced with an increase in water pressure, while it increased with an increase in the abrasive feed rate and an increase in the traverse speed. To obtain optimum results, the water pressure should be increased, the traverse speed should be decreased, and the abrasive feed rate can remain constant but is recommended to be slightly reduced. Full article
(This article belongs to the Special Issue Machining Challenges towards Pico-Precision)
Show Figures

Figure 1

38 pages, 11872 KiB  
Article
Investigation of Aeroelastic Energy Extraction from Cantilever Structures under Sustained Oscillations
by Naveen Kumar Kulandaiyappan, Bruce Ralphin Rose John and Vijayanandh Raja
Processes 2023, 11(3), 830; https://doi.org/10.3390/pr11030830 - 10 Mar 2023
Cited by 9 | Viewed by 1717
Abstract
The present article is focused on a detailed computationalinvestigation of energy production capacity of various lightweight materials that are employed with piezoelectric vibration energy harvesters (PVEHs) subjected to various aeroelastic effects. Piezoelectric transducers are primarily employed to capture vibrational energy, which yields predictable [...] Read more.
The present article is focused on a detailed computationalinvestigation of energy production capacity of various lightweight materials that are employed with piezoelectric vibration energy harvesters (PVEHs) subjected to various aeroelastic effects. Piezoelectric transducers are primarily employed to capture vibrational energy, which yields predictable and locally storable electrical energy. Higher energy extraction is possible under larger deflections of the structures when they are employed with PVEHs. In order to estimate the largest possible deflection of the structures, the response of them under external perturbations is estimated. An airplane wing consists of tapered planform, an advanced wind turbine blade, and the rectangular wings of an unmanned aerial vehicle (UAV) are considered for the vibrational analysis as the feasibility of achieving larger deflection is high compared with other aerodynamic surfaces. The stated elastic structures are modelled with different lightweight materials such as aluminium alloy, glass fibre-reinforced polymer (GFRP), titanium alloy, carbon fibre-reinforced polymer (CFRP), and Kevlar fibre-reinforced polymer (KFRP). Advanced partly coupled computational simulations are carried out with computational fluid dynamics (CFDs), and structural and vibrational effects to investigate the energy harvesting potential from the perturbations. Based on the outcomes of vibrational analysis, the raw transformable power production capacity of different lightweight materials that are employed with a cantilevered PVEH is estimated. The most suitable combination of material and associated aeroelastic effect which yields a significant amount of raw energy in each application is proposed and discussed with findings. Full article
Show Figures

Figure 1

9 pages, 3032 KiB  
Article
Magnetic Field Sensing Using Tapered Small-Core Optical Fibre Surrounded by Different Concentrations of Magnetic Fluid
by Rahul Kumar
Sensors 2022, 22(21), 8536; https://doi.org/10.3390/s22218536 - 5 Nov 2022
Cited by 4 | Viewed by 3234
Abstract
In this paper, a high-sensitivity magnetic field sensor based on a single-mode–tapered small-core–single-mode (STSCS) optical fibre structure is investigated. The tapered small-core section of STSCS is surrounded by magnetic fluid (MF) containing ferromagnetic particles (FMPs) of different concentrations. The FMPs align themselves along [...] Read more.
In this paper, a high-sensitivity magnetic field sensor based on a single-mode–tapered small-core–single-mode (STSCS) optical fibre structure is investigated. The tapered small-core section of STSCS is surrounded by magnetic fluid (MF) containing ferromagnetic particles (FMPs) of different concentrations. The FMPs align themselves along the magnetic field, depending on the strength of the magnetic field. This alignment of FMPs changes the refractive index around the tapered small-core section, which in turn changes the output spectral response of the STSCS optical fibre structure. The change in spectral response is then calibrated for sensing the magnetic field strength. This paper also investigates the effect of both the taper waist diameter of the STSCS optical fibre structure and the concentration of MF surrounding it on the magnetic field sensitivity. The maximum sensitivity demonstrated in this paper is 0.46 nm/mT for a taper waist diameter of 10 μm surrounded by 1.22% FMPs in the MF. The magnetic sensor demonstrates reversible results, and its effects on the orientation of the magnetic field along the X–Y, X–Z and Y–Z axes are also investigated, which suggest that the sensor is capable of vector magnetic field measurement. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

11 pages, 2192 KiB  
Communication
Caged-Sphere Optofluidic Sensors: Whispering Gallery Resonators in Wicking Microfluidics
by Nicolas Riesen, Zane Q. Peterkovic, Bin Guan, Alexandre François, David G. Lancaster and Craig Priest
Sensors 2022, 22(11), 4135; https://doi.org/10.3390/s22114135 - 29 May 2022
Cited by 6 | Viewed by 2556
Abstract
The rapid development of optofluidic technologies in recent years has seen the need for sensing platforms with ease-of-use, simple sample manipulation, and high performance and sensitivity. Herein, an integrated optofluidic sensor consisting of a pillar array-based open microfluidic chip and caged dye-doped whispering [...] Read more.
The rapid development of optofluidic technologies in recent years has seen the need for sensing platforms with ease-of-use, simple sample manipulation, and high performance and sensitivity. Herein, an integrated optofluidic sensor consisting of a pillar array-based open microfluidic chip and caged dye-doped whispering gallery mode microspheres is demonstrated and shown to have potential for simple real-time monitoring of liquids. The open microfluidic chip allows for the wicking of a thin film of liquid across an open surface with subsequent evaporation-driven flow enabling continuous passive flow for sampling. The active dye-doped whispering gallery mode microspheres placed between pillars, avoid the use of cumbersome fibre tapers to couple light to the resonators as is required for passive microspheres. The performance of this integrated sensor is demonstrated using glucose solutions (0.05–0.3 g/mL) and the sensor response is shown to be dynamic and reversible. The sensor achieves a refractive index sensitivity of ~40 nm/RIU, with Q-factors of ~5 × 103 indicating a detection limit of ~3 × 10−3 RIU (~20 mg/mL glucose). Further enhancement of the detection limit is expected by increasing the microsphere Q-factor using high-index materials for the resonators, or alternatively, inducing lasing. The integrated sensors are expected to have significant potential for a host of downstream applications, particularly relating to point-of-care diagnostics. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2022)
Show Figures

Figure 1

11 pages, 4022 KiB  
Article
Numerical and Experimental Investigation on the Optical Manipulation from an Axicon Lensed Fiber
by Wu Zhang, Yanxiao Lin, Yusong Gao, Zekai Guo, Xiangling Li, Yuhong Hu, Pengcai Dong, Qifan Zhang, Xiaohui Fang and Meng Zhang
Micromachines 2021, 12(2), 187; https://doi.org/10.3390/mi12020187 - 12 Feb 2021
Viewed by 2654
Abstract
Here we numerically and experimentally studied the optical trapping on a microsphere from an axicon lensed fiber (ALF). The optical force from the fiber with different tapered lengths and by incident light at different wavelengths is calculated. Numerically, the microsphere can be trapped [...] Read more.
Here we numerically and experimentally studied the optical trapping on a microsphere from an axicon lensed fiber (ALF). The optical force from the fiber with different tapered lengths and by incident light at different wavelengths is calculated. Numerically, the microsphere can be trapped by the fiber with tapered outline y=±x/0.5 and y=±x at a short incident wavelength of 900 nm. While for the fiber with tapered outline y=±x/2, the microsphere can be trapped by the light with longer wavelength of 1100 nm, 1300 nm, or 1500 nm. The optical trapping to a polystyrene microsphere is experimentally demonstrated in a microfluidic channel and the corresponding optical force is derived according to the fluid flow speed. This study can provide a guidance for future tapered fibre design for optical trapping to microspheres. Full article
(This article belongs to the Special Issue Micro-Nano Science and Engineering)
Show Figures

Figure 1

30 pages, 3998 KiB  
Review
Optical Fibre Micro/Nano Tips as Fluorescence-Based Sensors and Interrogation Probes
by Simone Berneschi, Andrea Barucci, Francesco Baldini, Franco Cosi, Franco Quercioli, Stefano Pelli, Giancarlo C. Righini, Bruno Tiribilli, Sara Tombelli, Cosimo Trono and Ambra Giannetti
Optics 2020, 1(2), 213-242; https://doi.org/10.3390/opt1020017 - 27 Aug 2020
Cited by 14 | Viewed by 6128
Abstract
Optical fibre micro/nano tips (OFTs), defined here as tapered fibres with a waist diameter ranging from a few microns to tens of nanometres and different tip angles (i.e., from tens of degrees to fractions of degrees), represent extremely versatile tools that have attracted [...] Read more.
Optical fibre micro/nano tips (OFTs), defined here as tapered fibres with a waist diameter ranging from a few microns to tens of nanometres and different tip angles (i.e., from tens of degrees to fractions of degrees), represent extremely versatile tools that have attracted growing interest during these last decades in many areas of photonics. The field of applications can range from physical and chemical/biochemical sensing—also at the intracellular levels—to the development of near-field probes for microscope imaging (i.e., scanning near-field optical microscopy (SNOM)) and optical interrogation systems, up to optical devices for trapping and manipulating microparticles (i.e., optical tweezers). All these applications rely on the ability to fabricate OFTs, tailoring some of their features according to the requirements determined by the specific application. In this review, starting from a short overview of the main fabrication methods used for the realisation of these optical micro/nano structures, the focus will be concentrated on some of their intriguing applications such as the development of label-based chemical/biochemical sensors and the implementation of SNOM probes for interrogating optical devices, including whispering gallery mode microcavities. Full article
(This article belongs to the Special Issue Recent Development of Resonance-Based Optical Sensors and Biosensors)
Show Figures

Figure 1

25 pages, 40846 KiB  
Article
Experimental Investigation of Productivity, Specific Energy Consumption, and Hole Quality in Single-Pulse, Percussion, and Trepanning Drilling of IN 718 Superalloy
by Shoaib Sarfraz, Essam Shehab, Konstantinos Salonitis and Wojciech Suder
Energies 2019, 12(24), 4610; https://doi.org/10.3390/en12244610 - 4 Dec 2019
Cited by 8 | Viewed by 5490
Abstract
Laser drilling is a high-speed process that is used to produce high aspect ratio holes of various sizes for critical applications, such as cooling holes in aero-engine and gas turbine components. Hole quality is always a major concern during the laser drilling process. [...] Read more.
Laser drilling is a high-speed process that is used to produce high aspect ratio holes of various sizes for critical applications, such as cooling holes in aero-engine and gas turbine components. Hole quality is always a major concern during the laser drilling process. Apart from hole quality, cost and productivity are also the key considerations for high-value manufacturing industries. Taking into account the significance of improving material removal quantity, energy efficiency, and product quality, this study is performed in the form of an experimental investigation and multi-objective optimisation for three different laser drilling processes (single-pulse, percussion, and trepanning). A Quasi-CW fibre laser was used to produce holes in a 1 mm thick IN 718 superalloy. The impacts of significant process parameters on the material removal rate (MRR), specific energy consumption (SEC), and hole taper have been discussed based on the results collected through an experimental matrix that was designed using the Taguchi method. The novelty of this work focuses on evaluating and comparing the performance of laser drilling methods in relation to MRR, SEC, and hole quality altogether. Comparative analysis revealed single-pulse drilling as the best option for MRR and SEC as the MRR value reduces with percussion and trepanning by 99.70% and 99.87% respectively; similarly, percussion resulted in 14.20% higher SEC value while trepanning yielded a six-folds increase in SEC as compared to single-pulse drilling. Trepanning, on the other hand, outperformed the rest of the drilling processes with 71.96% better hole quality. Moreover, optimum values of parameters simultaneously minimising SEC and hole taper and maximising MRR are determined using multi-objective optimisation. Full article
(This article belongs to the Special Issue Energy Efficiency of Manufacturing Processes and Systems)
Show Figures

Graphical abstract

39 pages, 11559 KiB  
Review
Tapered Optical Fibre Sensors: Current Trends and Future Perspectives
by Sergiy Korposh, Stephen W. James, Seung-Woo Lee and Ralph P. Tatam
Sensors 2019, 19(10), 2294; https://doi.org/10.3390/s19102294 - 17 May 2019
Cited by 162 | Viewed by 19141
Abstract
The development of reliable, affordable and efficient sensors is a key step in providing tools for efficient monitoring of critical environmental parameters. This review focuses on the use of tapered optical fibres as an environmental sensing platform. Tapered fibres allow access to the [...] Read more.
The development of reliable, affordable and efficient sensors is a key step in providing tools for efficient monitoring of critical environmental parameters. This review focuses on the use of tapered optical fibres as an environmental sensing platform. Tapered fibres allow access to the evanescent wave of the propagating mode, which can be exploited to facilitate chemical sensing by spectroscopic evaluation of the medium surrounding the optical fibre, by measurement of the refractive index of the medium, or by coupling to other waveguides formed of chemically sensitive materials. In addition, the reduced diameter of the tapered section of the optical fibre can offer benefits when measuring physical parameters such as strain and temperature. A review of the basic sensing platforms implemented using tapered optical fibres and their application for development of fibre-optic physical, chemical and bio-sensors is presented. Full article
(This article belongs to the Special Issue Sensors for Emerging Environmental Markers and Contaminants)
Show Figures

Figure 1

27 pages, 9359 KiB  
Tutorial
Micro/Nanofibre Optical Sensors: Challenges and Prospects
by Limin Tong
Sensors 2018, 18(3), 903; https://doi.org/10.3390/s18030903 - 18 Mar 2018
Cited by 133 | Viewed by 13770
Abstract
Micro/nanofibres (MNFs) are optical fibres with diameters close to or below the vacuum wavelength of visible or near-infrared light. Due to its wavelength- or sub-wavelength scale diameter and relatively large index contrast between the core and cladding, an MNF can offer engineerable waveguiding [...] Read more.
Micro/nanofibres (MNFs) are optical fibres with diameters close to or below the vacuum wavelength of visible or near-infrared light. Due to its wavelength- or sub-wavelength scale diameter and relatively large index contrast between the core and cladding, an MNF can offer engineerable waveguiding properties including optical confinement, fractional evanescent fields and surface intensity, which is very attractive to optical sensing on the micro and nanometer scale. In particular, the waveguided low-loss tightly confined large fractional evanescent fields, enabled by atomic level surface roughness and extraordinary geometric and material uniformity in a glass MNF, is one of its most prominent merits in realizing optical sensing with high sensitivity and great versatility. Meanwhile, the mesoporous matrix and small diameter of a polymer MNF, make it an excellent host fibre for functional materials for fast-response optical sensing. In this tutorial, we first introduce the basics of MNF optics and MNF optical sensors, and review the progress and current status of this field. Then, we discuss challenges and prospects of MNF sensors to some extent, with several clues for future studies. Finally, we conclude with a brief outlook for MNF optical sensors. Full article
(This article belongs to the Special Issue Optical Sensors based on Micro/Nanofibres)
Show Figures

Figure 1

9 pages, 554 KiB  
Article
Fibre Coupled Photonic Crystal Cavity Arrays on Transparent Substrates for Spatially Resolved Sensing
by Mark G. Scullion, Matthias Fischer and Thomas F. Krauss
Photonics 2014, 1(4), 412-420; https://doi.org/10.3390/photonics1040412 - 3 Nov 2014
Cited by 8 | Viewed by 7392
Abstract
We introduce a photonic crystal cavity array realised in a silicon thin film and placed on polydimethlysiloxane (PDMS) as a new platform for the in-situ sensing of biomedical processes. Using tapered optical fibres, we show that multiple independent cavities within the same waveguide [...] Read more.
We introduce a photonic crystal cavity array realised in a silicon thin film and placed on polydimethlysiloxane (PDMS) as a new platform for the in-situ sensing of biomedical processes. Using tapered optical fibres, we show that multiple independent cavities within the same waveguide can be excited and their resonance wavelength determined from camera images without the need for a spectrometer. The cavity array platform combines sensing as a function of location with sensing as a function of time. Full article
(This article belongs to the Special Issue Photonic Crystal Sensors)
Show Figures

Figure 1

14 pages, 722 KiB  
Article
Fabricating Nanoporous Silica Structure on D-Fibres through Room Temperature Self-Assembly
by John Canning, Lucas Moura, Lachlan Lindoy, Kevin Cook, Maxwell J. Crossley, Yanhua Luo, Gang-Ding Peng, Lars Glavind, George Huyang, Masood Naqshbandi, Martin Kristensen, Cicero Martelli and Graham Town
Materials 2014, 7(3), 2356-2369; https://doi.org/10.3390/ma7032356 - 19 Mar 2014
Cited by 3 | Viewed by 7463
Abstract
The room temperature deposition of self-assembling silica nanoparticles onto D-shaped optical fibres (“D-fibre”), drawn from milled preforms fabricated by modified chemical vapour deposition (MCVD), is studied. Vertical dip-and-withdraw produces tapered layers, with one end thicker (surface coverage >0.85) than the other, whilst horizontal [...] Read more.
The room temperature deposition of self-assembling silica nanoparticles onto D-shaped optical fibres (“D-fibre”), drawn from milled preforms fabricated by modified chemical vapour deposition (MCVD), is studied. Vertical dip-and-withdraw produces tapered layers, with one end thicker (surface coverage >0.85) than the other, whilst horizontal dip-and-withdraw produces much more uniform layers over the core region. The propagation of induced fracturing over the core region during drying is overcome using a simple protrusion of the inner cladding. Thick coatings are discernible through thin film interference colouring, but thinner coatings require scanning electron microscopy (SEM) imaging. Here, we show that fluorescence imaging, using Rhodamine B, in this example, can provide some qualitative and speedy assessment of coverage. Full article
Show Figures

Back to TopTop