Optical Fibre Micro/Nano Tips as Fluorescence-Based Sensors and Interrogation Probes
Abstract
:1. Introduction
2. Fabrication Techniques
2.1. Grinding and Polishing
2.2. Thermal Pulling
2.3. Chemical Etching Methods
A Mixed Mechanical-Chemical Etching Method
2.4. Micromachining Methods
2.4.1. Focused Ion Beam (FIB) Milling
2.4.2. Femtosecond Laser Machining
2.4.3. Lithography
2.5. Other Methods
Photopolymerisation Methods
2.6. Physical and Optical Properties of the Fibre Tips
2.7. Coating Processes
3. Applications
3.1. Sensing Based on Optical Fibre Tips
3.1.1. Fluorescence-Based Chemical Sensors
3.1.2. Fluorescence-Based Biochemical Sensors
3.2. Optical Interrogation Systems Based on Fibre Micro/Nano Tips
3.2.1. SNOM-Based Systems: Tip Typologies and Feedback Mechanisms
3.2.2. Optical Fibre Micro/Nanotips as Near-Field Probe and Coupler in Whispering Gallery Mode (WGM) Resonators
4. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Krishnamoorthy, A.V.; Thacker, H.D.; Torudbakken, O.; Muller, S.; Srinivasan, A.; Decker, P.J.; Opheim, H.; Cunningham, J.E.; Shubin, I.; Zheng, X.; et al. From chip to cloud: Optical interconnects in engineered systems. J. Light. Technol. 2017, 35, 3103–3115. [Google Scholar] [CrossRef]
- Richardson, D.J. New optical fibres for high-capacity optical communications. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pospíšilová, M.; Kuncová, G.; Trögl, J. Fiber-optic chemical sensors and fiber-optic bio-sensors. Sensors 2015, 15, 25208–25259. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ebendorff-Heidepriem, H.; Gibson, B.C.; Greentree, A.D.; Hutchinson, M.R.; Jia, P.; Kostecki, R.; Liu, G.; Orth, A.; Ploschner, M.; et al. Perspective: Biomedical sensing and imaging with optical fibers—Innovation through convergence of science disciplines. APL Photonics 2018, 3, 100902. [Google Scholar] [CrossRef]
- Vukolov, K.Y. Fiber optics for plasma diagnostics in ITER. Fusion Eng. Des. 2017, 123, 919–922. [Google Scholar] [CrossRef]
- N’cho, J.S.; Fofana, I. Review of fiber optic diagnostic techniques for power transformers. Energies 2020, 13, 1789. [Google Scholar] [CrossRef] [Green Version]
- Brambilla, G. Optical fibre nanowires and microwires: A review. J. Opt. A Pure Appl. Opt. 2010, 12, 043001. [Google Scholar] [CrossRef]
- Tong, L. Micro/nanofibre optical sensors: Challenges and prospects. Sensors 2018, 18, 903. [Google Scholar] [CrossRef] [Green Version]
- Paiva, J.S.; Jorge, P.A.S.; Rosa, C.C.; Cunha, J.P.S. Optical fiber tips for biological applications: From light confinement, biosensing to bioparticles manipulation. Biochim. Biophys. Acta-Gen. Subj. 2018, 1862, 1209–1246. [Google Scholar] [CrossRef]
- Decombe, J.-B.; Huant, S.; Fick, J. Single and dual fiber nano-tip optical tweezers: Trapping and analysis. Opt. Express 2013, 21, 30521. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, R.S.R.; Soppera, O.; Oliva, A.G.; Guerreiro, A.; Jorge, P.A.S. New trends on optical fiber tweezers. J. Light. Technol. 2015, 33, 3394–3405. [Google Scholar] [CrossRef]
- Li, Y.; Xin, H.; Xu, X.; Liu, X.; Li, B. Fibre-optic trapping and manipulation at the nanoscale. Adv. Mater. Lett. 2018, 9, 567–577. [Google Scholar] [CrossRef]
- Zhang, Y.; Dobson, P.S.; Weaver, J.M.R. High temperature imaging using a thermally compensated cantilever resistive probe for scanning thermal microscopy. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2012, 30, 010601. [Google Scholar] [CrossRef]
- Liscio, A.; Palermo, V.; Samorì, P. Nanoscale quantitative measurement of the potential of charged nanostructures by electrostatic and Kelvin probe force microscopy: Unraveling electronic processes in complex materials. Acc. Chem. Res. 2010, 43, 541–550. [Google Scholar] [CrossRef]
- André, R.M.; Warren-Smith, S.C.; Becker, M.; Dellith, J.; Rothhardt, M.; Zibaii, M.I.; Latifi, H.; Marques, M.B.; Bartelt, H.; Frazão, O. Tapered optical fiber tip probes based on focused ion beam-milled Fabry-Perot microcavities. Nanoeng. Fabr. Prop. Opt. Devices XIII 2016, 9927, 99270R. [Google Scholar]
- Tan, W.; Shi, Z.Y.; Kopelman, R. Development of submicron chemical fiber optic sensors. Anal. Chem. 1992, 64, 2985–2990. [Google Scholar] [CrossRef]
- Liu, Y.H.; Dam, T.H.; Pantano, P. A pH-sensitive nanotip array imaging sensor. Anal. Chim. Acta 2000, 419, 215–225. [Google Scholar] [CrossRef]
- Jorge, P.A.S.; Caldas, P.; Rosa, C.C.; Oliva, A.G.; Santos, J.L. Optical fiber probes for fluorescence based oxygen sensing. Sens. Actuators B Chem. 2004, 103, 290–299. [Google Scholar] [CrossRef] [Green Version]
- Lechasseur, Y.; Dufour, S.; Lavertu, G.; Bories, C.; Deschênes, M.; Vallée, R.; De Koninck, Y. A microprobe for parallel optical and electrical recordings from single neurons in vivo. Nat. Methods 2011, 8, 319–325. [Google Scholar] [CrossRef]
- Chen, K.; Adam, C.; Sojic, N.; Schmittel, M. Photochemical functionalisation of optical nanotips with a rhodamine chemosensor for remote through-fiber detection of Hg2+. RSC Adv. 2013, 3, 24140–24145. [Google Scholar] [CrossRef]
- Hossein-Zadeh, M.; Delgado, J.; Schweizer, F.; Lieberman, R. Sub-micron opto-chemical probes for studying living neurons. Neural Imaging Sens. 2017, 10051, 100510G. [Google Scholar]
- Gao, H.H.; Chen, Z.; Kumar, J.; Tripathy, S.K.; Kaplan, D.L. Tapered fiber tips for fiber optic biosensors. Opt. Eng. 1995, 34, 3465–3470. [Google Scholar] [CrossRef]
- Barucci, A.; Berneschi, S.; Cosi, F.; Nunzi Conti, G.; Pelli, S.; Quercioli, F.; Soria, S.; Righini, G.C. Fiber optic nanoprobes for biological sensing. In Proceedings of the 22nd Congress of the International Commission for Optics: Light for the Development of the World, Puebla, Mexico, 2 November 2011; Volume 8011, p. 80118X. [Google Scholar]
- Giannetti, A.; Barucci, A.; Cosi, F.; Pelli, S.; Tombelli, S.; Trono, C.; Baldini, F. Optical fiber nanotips coated with molecular beacons for DNA detection. Sensors 2015, 15, 9666–9680. [Google Scholar] [CrossRef] [Green Version]
- Vo-Dinh, T.; Zhang, Y. Single-cell monitoring using fiberoptic nanosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2011, 3, 79–85. [Google Scholar] [CrossRef]
- Zhang, Y.; Dhawan, A.; Vo-Dinh, T. Design and fabrication of fiber-optic nanoprobes for optical sensing. Nanoscale Res. Lett. 2012, 7, 6–18. [Google Scholar] [CrossRef] [Green Version]
- Vo-Dinh, T. Nanobiosensors: Probing the sanctuary of individual living cells. J. Cell. Biochem. 2002, 87, 154–161. [Google Scholar] [CrossRef]
- Vo-Dinh, T.; Alarie, J.P.; Cullum, B.M.; Griffin, G.D. Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell. Nat. Biotechnol. 2000, 18, 764–767. [Google Scholar] [CrossRef]
- Vo-Dinh, T.; Griffin, G.D.; Alarie, J.P.; Cullum, B.; Sumpter, B.; Noid, D. Development of nanosensors and bioprobes. J. Nanopart. Res. 2000, 2, 17–27. [Google Scholar] [CrossRef]
- Zheng, X.T.; Li, C.M. Single living cell detection of telomerase over-expression for cancer detection by an optical fiber nanobiosensor. Biosens. Bioelectron. 2010, 25, 1548–1552. [Google Scholar] [CrossRef]
- Vo-Dinh, T.; Kasili, P. Fiber-optic nanosensors for single-cell monitoring. Anal. Bioanal. Chem. 2005, 382, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Cullum, B.M.; Griffin, G.D.; Miller, G.H.; Vo-Dinh, T. Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors. Anal. Biochem. 2000, 277, 25–32. [Google Scholar] [CrossRef]
- Zheng, X.T.; Yang, H.B.; Li, C.M. Optical detection of single cell lactate release for cancer metabolic analysis. Anal. Chem. 2010, 82, 5082–5087. [Google Scholar] [CrossRef]
- Barker, S.L.R.; Kopelman, R.; Meyer, T.E.; Cusanovich, M.A. Fiber-optic nitric oxide-selective biosensors and nanosensors. Anal. Chem. 1998, 70, 971–976. [Google Scholar] [CrossRef]
- Song, J.M.; Kasili, P.M.; Griffin, G.D.; Vo-Dinh, T. Detection of Cytochrome c in a single cell using an optical nanobiosensor. Anal. Chem. 2004, 76, 2591–2594. [Google Scholar] [CrossRef]
- Kasili, P.M.; Song, J.M.; Vo-Dinh, T. Optical sensor for the detection of caspase-9 activity in a single cell. J. Am. Chem. Soc. 2004, 126, 2799–2806. [Google Scholar] [CrossRef]
- Vo-Dinh, T.; Kasili, P.; Wabuyele, M. Nanoprobes and nanobiosensors for monitoring and imaging individual living cells. Nanomed. Nanotechnol. Biol. Med. 2006, 2, 22–30. [Google Scholar] [CrossRef]
- Kasili, P.M.; Vo-Dinh, T. Optical nanobiosensor for monitoring an apoptotic signaling process in a single living cell following photodynamic therapy. J. Nanosci. Nanotechnol. 2005, 5, 2057–2062. [Google Scholar] [CrossRef]
- Tuniz, A.; Schmidt, M.A. Interfacing optical fibers with plasmonic nanoconcentrators. Nanophotonics 2018, 7, 1279–1298. [Google Scholar] [CrossRef]
- Uebel, P.; Bauerschmidt, S.T.; Schmidt, M.A.; Russell, P.S.J. A gold-nanotip optical fiber for plasmon-enhanced near-field detection. Appl. Phys. Lett. 2013, 103, 021101. [Google Scholar] [CrossRef] [Green Version]
- Auwärter, D.; Mihaljevic, J.; Meixner, A.J.; Zimmermann, C.; Slama, S. Coupling of optical far fields into apertureless plasmonic nanofiber tips. Phys. Rev. A—At. Mol. Opt. Phys. 2013, 88, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Sciacca, B.; Monro, T.M. Dip biosensor based on localized surface plasmon resonance at the tip of an optical fiber. Langmuir 2014, 30, 946–954. [Google Scholar] [CrossRef]
- Viets, C.; Hill, W. Fibre-optic SERS sensors with angled tips. J. Mol. Struct. 2001, 565, 515–518. [Google Scholar] [CrossRef]
- Chen, Z.; Dai, Z.; Chen, N.; Liu, S.; Pang, F.; Lu, B.; Wang, T. Gold nanoparticles-modified tapered fiber nanoprobe for remote SERS detection. IEEE Photonics Technol. Lett. 2014, 26, 777–780. [Google Scholar] [CrossRef]
- Liu, S.; Huang, J.; Chen, Z.; Chen, N.; Pang, F.; Wang, T.; Hu, L. Raman spectroscopy measurement of levofloxacin lactate in blood using an optical fiber nano-probe. J. Raman Spectrosc. 2015, 46, 197–201. [Google Scholar] [CrossRef]
- Morozov, Y.M.; Lapchuk, A.S.; Prygun, A.V.; Kryuchyn, A.A.; Dostalek, J. Investigation of optical fiber-tip probes for common and ultrafast SERS. New J. Phys. 2020, 22, 033027. [Google Scholar] [CrossRef]
- Jin, D.; Bai, Y.; Chen, H.; Liu, S.; Chen, N.; Huang, J.; Huang, S.; Chen, Z. SERS detection of expired tetracycline hydrochloride with an optical fiber nano-probe. Anal. Methods 2015, 7, 1307–1312. [Google Scholar] [CrossRef]
- Roth, R.M.; Panoiu, N.C.; Adams, M.M.; Osgood, R.M.; Neacsu, C.C.; Raschke, M.B. Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips. Opt. Express 2006, 14, 2921. [Google Scholar] [CrossRef]
- Le Nader, V.; Mevellec, J.Y.; Minea, T.; Louarn, G. Gold nanoparticles as probes for nano-Raman spectroscopy: Preliminary experimental results and modeling. Int. J. Opt. 2012. [Google Scholar] [CrossRef]
- Stadler, J.; Schmid, T.; Zenobi, R. Developments in and practical guidelines for tip-enhanced Raman spectroscopy. Nanoscale 2012, 4, 1856–1870. [Google Scholar] [CrossRef]
- Bazylewski, P.; Ezugwu, S.; Fanchini, G. A review of three-dimensional scanning near-field optical microscopy (3D-SNOM) and its applications in nanoscale light management. Appl. Sci. 2017, 7, 973. [Google Scholar] [CrossRef] [Green Version]
- Tugchin, B.N.; Janunts, N.; Klein, A.E.; Steinert, M.; Fasold, S.; Diziain, S.; Sison, M.; Kley, E.B.; Tünnermann, A.; Pertsch, T. Plasmonic tip based on excitation of radially polarized conical surface plasmon polariton for detecting longitudinal and transversal fields. ACS Photonics 2015, 2, 1468–1475. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Li, Z.; Gong, Q. Fabrication of high-quality SNOM probes by pre-treating the fibres before chemical etching. J. Microsc. 2007, 228, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Hecht, B.; Sick, B.; Wild, U.P.; Deckert, V.; Zenobi, R.; Martin, O.J.F.; Pohl, D.W. Scanning near-field optical microscopy with aperture probes: Fundamentals and applications. J. Chem. Phys. 2000, 112, 7761–7774. [Google Scholar] [CrossRef]
- Essaidi, N.; Chen, Y.; Kottler, V.; Cambril, E.; Mayeux, C.; Ronarch, N.; Vieu, C. Fabrication and characterization of optical-fiber nanoprobes for scanning near-field optical microscopy. Appl. Opt. 1998, 37, 609. [Google Scholar] [CrossRef]
- Kim, S.; Yu, N.; Ma, X.; Zhu, Y.; Liu, Q.; Liu, M.; Yan, R. High external-efficiency nanofocusing for lens-free near-field optical nanoscopy. Nat. Photonics 2019, 13, 636–643. [Google Scholar] [CrossRef]
- Janunts, N.A.; Baghdasaryan, K.S.; Nerkararyan, K.V.; Hecht, B. Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip. Opt. Commun. 2005, 253, 118–124. [Google Scholar] [CrossRef]
- Karrai, K.; Grober, R.D. Piezoelectric tip-sample distance control for near field optical microscopes. Appl. Phys. Lett. 1995, 66, 1842–1844. [Google Scholar] [CrossRef]
- Durkan, C.; Shvets, I.V. Study of shear force as a distance regulation mechanism for scanning near-field optical microscopy. J. Appl. Phys. 1996, 79, 1219–1223. [Google Scholar] [CrossRef]
- Muramatsu, H.; Chiba, N.; Yamamoto, N.; Homma, K.; Ataka, T.; Shigeno, M.; Monobe, H.; Fujihira, M. Multi-functional SNOM/AFM probe with accurately controlled low spring constant. Ultramicroscopy 1998, 71, 73–79. [Google Scholar] [CrossRef]
- David, T.; Chicanne, C.; Richard, N.; Krenn, J.R.; Scheurer, F.; Ounadjela, K.; Hehn, M.; Lacroute, Y.; Goudonnet, J.P. Application to dielectric, metallic, and magnetic samples of a transmission mode scanning near field optical microscope with normal force distance regulation on bent optical fibers. Rev. Sci. Instrum. 1999, 70, 4587–4594. [Google Scholar] [CrossRef]
- Chimmalgi, A.; Hwang, D.J.; Grigoropoulos, C.P. Nanoscale rapid melting and crystallization of semiconductor thin films. Nano Lett. 2005, 5, 1924–1930. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, L.; Martínez-Martín, D.; Otero, J.; de Pablo, P.J.; Puig-Vidal, M.; Gómez-Herrero, J. Improving the lateral resolution of quartz tuning fork-based sensors in liquid by integrating commercial AFM tips into the fiber end. Sensors 2015, 15, 1601–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smirnov, A.; Yasinskii, V.M.; Filimonenko, D.S.; Rostova, E.; Dietler, G.; Sekatskii, S.K. True tapping mode scanning near-field optical microscopy with bent glass fiber probes. Scanning 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiribilli, B.; Margheri, G.; Baschieri, P.; Menozzi, C.; Chavan, D.; Iannuzzi, D. Fibre-top atomic force microscope probe with optical near-field detection capabilities. J. Microsc. 2011, 242, 10–14. [Google Scholar] [CrossRef]
- Higbie, J. Microscope resolution. Am. J. Phys. 1981, 49, 40–42. [Google Scholar] [CrossRef]
- Small, A. Spherical aberration, coma, and the Abbe sine condition for physicists who don’t design lenses. Am. J. Phys. 2018, 86, 487–494. [Google Scholar] [CrossRef]
- Sandoghdar, V.; Wegscheider, S.; Krausch, G.; Mlynek, J. Reflection scanning near-field optical microscopy with uncoated fiber tips: How good is the resolution really? J. Appl. Phys. 1997, 81, 2499–2503. [Google Scholar] [CrossRef]
- Choo, A.G.; Jackson, H.E.; Thiel, U.; De Brabander, G.N.; Boyd, J.T. Near field measurements of optical channel waveguides and directional couplers. Appl. Phys. Lett. 1994, 65, 947–949. [Google Scholar] [CrossRef]
- Bourzeix, S.; Moison, J.M.; Mignard, F.; Barthe, F.; Boccara, A.C.; Licoppe, C.; Mersali, B.; Allovon, M.; Bruno, A. Near-field optical imaging of light propagation in semiconductor waveguide structures. Appl. Phys. Lett. 1998, 73, 1035–1037. [Google Scholar] [CrossRef]
- Vohnsen, B.; Bozhevolnyi, S.I. Comment on “local observations of phase singularities in optical fields in waveguide structures”. Phys. Rev. Lett. 2001, 87, 259401. [Google Scholar] [CrossRef]
- Balistreri, M.L.M.; Driessen, A.; Korterik, J.P.; Kuipers, L.; van Hulst, N.F. Quasi interference of perpendicularly polarized guided modes observed with a photon scanning tunneling microscope. Opt. Lett. 2000, 25, 637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chicanne, C.; Emonin, S.; Richard, N.; David, T.; Bourillot, E.; Goudonnet, J.P.; Lacroute, Y. Characterization of optogeometric parameters of optical fibers by near-field scanning probe microscopies. J. Opt. Soc. Am. B 2000, 17, 1473. [Google Scholar] [CrossRef]
- Nesci, A.; Fainman, Y. Complex amplitude of an ultrashort pulse in a waveguide measured with a coherent, femtosecond resolution NSOM at 1550 nm. In Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society LEOS 2003, Tucson, AZ, USA, 27 October 2003; Volume 1, pp. 49–50. [Google Scholar]
- Abashin, M.; Tortora, P.; Märki, I.; Levy, U.; Nakagawa, W.; Vaccaro, L.; Herzig, H.P.; Fainman, Y. Near-field characterization of propagating optical modes in photonic crystal waveguides. Opt. Express 2006, 14, 1643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozhevolnyi, S.I.; Kuipers, L. Near-field characterization of photonic crystal waveguides. Semicond. Sci. Technol. 2006, 21, R1. [Google Scholar] [CrossRef] [Green Version]
- Knight, J.C.; Dubreuil, N.; Sandoghdar, V.; Hare, J.; Lefèvre-Seguin, V.; Raimond, J.M.; Haroche, S. Mapping whispering-gallery modes in microspheres with a near-field probe. Opt. Lett. 1995, 20, 1515. [Google Scholar] [CrossRef]
- Balistreri, M.L.; Klunder, D.J.; Blom, F.C.; Driessen, A.; Hoekstra, H.W.; Korterik, J.P.; Kuipers, L.; van Hulst, N.F. Visualizing the whispering gallery modes in a cylindrical optical microcavity. Opt. Lett. 1999, 24, 1829. [Google Scholar] [CrossRef]
- Götzinger, S.; Demmerer, S.; Benson, O.; Sandoghdar, V. Mapping and manipulating whispering gallery modes of a microsphere resonator with a near-field probe. J. Microsc. 2001, 202, 117–121. [Google Scholar] [CrossRef] [Green Version]
- Mazzei, A.; Götzinger, S.; Menezes, L.D.S.; Sandoghdar, V.; Benson, O. Optimization of prism coupling to high-Q modes in a microsphere resonator using a near-field probe. Opt. Commun. 2005, 250, 428–433. [Google Scholar] [CrossRef]
- Mazzei, A.; Götzinger, S.; Menezes, D.S.; Zumofen, G.; Benson, O.; Sandoghdar, V. Controlled coupling of counterpropagating Whispering-Gallery modes by a single rayleigh scatterer: A classical problem in a quantum optical light. Phys. Rev. Lett. 2007, 99, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Valaskovic, G.A.; Holton, M.; Morrison, G.H. Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes. Appl. Opt. 1995, 34, 1215. [Google Scholar] [CrossRef]
- Sayah, A.; Philipona, C.; Lambelet, P.; Pfeffer, M.; Marquis-Weible, F. Fiber tips for scanning near-field optical microscopy fabricated by normal and reverse etching. Ultramicroscopy 1998, 71, 59–63. [Google Scholar] [CrossRef]
- Stöckle, R.; Fokas, C.; Deckert, V.; Zenobi, R.; Sick, B.; Hecht, B.; Wild, U.P. High-quality near-field optical probes by tube etching. Appl. Phys. Lett. 1999, 75, 160–162. [Google Scholar] [CrossRef]
- Wan, M.M.; Menon, P.S.; Sahbudin, S. Microfabricated fiber probe by combination of electric arc discharge and chemical etching techniques. Adv. Mater. Res. 2012, 462, 38–41. [Google Scholar]
- Demagh, N.E.; Guessoum, A.; Aissat, H. Chemical etching of concave cone fibre ends for core fibre alignment. Meas. Sci. Technol. 2006, 17, 119–122. [Google Scholar] [CrossRef]
- Rickelt, L.F.; Ottosen, L.D.M.; Kühl, M. Etching of multimode optical glass fibers: A new method for shaping the measuring tip and immobilization of indicator dyes in recessed fiber-optic microprobes. Sens. Actuators B Chem. 2015, 211, 462–468. [Google Scholar] [CrossRef] [Green Version]
- Tao, M.; Jin, Y.; Gu, N.; Huang, L. A method to control the fabrication of etched optical fiber probes with nanometric tips. J. Opt. A Pure Appl. Opt. 2010, 12, 1–5. [Google Scholar] [CrossRef]
- Okayama, T.; Seki, H. Fabrication and evaluation of silica-based optical fiber probes by chemical etching method. Opt. Rev. 2005, 12, 25–28. [Google Scholar] [CrossRef]
- Hoffmann, P.; Dutoit, B.; Salathé, R.P. Comparison of mechanically drawn and protection layer chemically etched optical fiber tips. Ultramicroscopy 1995, 61, 165–170. [Google Scholar] [CrossRef]
- Lazarev, A.; Fang, N.; Luo, Q.; Zhang, X. Formation of fine near-field scanning optical microscopy tips. Part I. By static and dynamic chemical etching. Rev. Sci. Instrum. 2003, 74, 3679–3683. [Google Scholar] [CrossRef] [Green Version]
- Gu, N.; Li, C.A.; Sun, L.; Liu, Z.H.; Sun, Y.K.; Xu, L.N. Controllable fabrication of fiber nano-tips by dynamic chemical etching based on siphon principle. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2004, 22, 2283–2285. [Google Scholar] [CrossRef]
- Barucci, A.; Cosi, F.; Giannetti, A.; Pelli, S.; Griffini, D.; Insinna, M.; Salvadori, S.; Tiribilli, B.; Righini, G.C. Optical fibre nanotips fabricated by a dynamic chemical etching for sensing applications. J. Appl. Phys. 2015, 117, 053104. [Google Scholar] [CrossRef]
- Griffini, D.; Insinna, M.; Salvadori, S.; Barucci, A.; Cosi, F.; Pelli, S.; Righini, G.C. On the CFD analysis of a stratified taylor-couette system dedicated to the fabrication of nanosensors. Fluids 2017, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Vaiano, P.; Carotenuto, B.; Pisco, M.; Ricciardi, A.; Quero, G.; Consales, M.; Crescitelli, A.; Esposito, E.; Cusano, A. Lab on Fiber Technology for biological sensing applications. Laser Photonics Rev. 2016, 10, 922–961. [Google Scholar] [CrossRef]
- Rodrigues Ribeiro, R.S.; Dahal, P.; Guerreiro, A.; Jorge, P.; Viegas, J. Optical fibers as beam shapers: From Gaussian beams to optical vortices. Opt. Lett. 2016, 41, 2137. [Google Scholar] [CrossRef] [PubMed]
- Meingailis, J. Focused ion beam technology and applications. J. Vac. Sci. Technol. B 1987, 5, 469–495. [Google Scholar] [CrossRef]
- Bassim, N.; Scott, K.; Giannuzzi, L.A. Recent advances in focused ion beam technology and applications. MRS Bull. 2014, 39, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Micco, A.; Ricciardi, A.; Pisco, M.; La Ferrara, V.; Cusano, A. Optical fiber tip templating using direct focused ion beam milling. Sci. Rep. 2015, 5, 15935. [Google Scholar] [CrossRef]
- Kang, S.; Joe, H.E.; Kim, J.; Jeong, Y.; Min, B.K.; Oh, K. Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation. Appl. Phys. Lett. 2011, 98, 97–99. [Google Scholar] [CrossRef]
- Mivelle, M.; Ibrahim, I.A.; Baida, F.; Burr, G.W.; Nedeljkovic, D.; Charraut, D.; Rauch, J.-Y.; Salut, R.; Grosjean, T. Bowtie nano-aperture as interface between near-fields and a single-mode fiber. Opt. Express 2010, 18, 15964. [Google Scholar] [CrossRef]
- André, R.M.; Pevec, S.; Becker, M.; Dellith, J.; Rothhardt, M.; Marques, M.B.; Donlagic, D.; Bartelt, H.; Frazão, O. Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications. Opt. Express 2014, 22, 13102. [Google Scholar] [CrossRef]
- Kim, J.K.; Kim, J.; Oh, K.; Sohn, I.B.; Shin, W.; Choi, H.Y.; Lee, B. Fabrication of micro fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system. IEEE Photonics Technol. Lett. 2009, 21, 21–23. [Google Scholar] [CrossRef]
- Rao, Y.J.; Ran, Z.L. Optic fiber sensors fabricated by laser-micromachining. Opt. Fiber Technol. 2013, 19, 808–821. [Google Scholar] [CrossRef]
- Wei, T.; Han, Y.; Tsai, H.-L.; Xiao, H. Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser. Opt. Lett. 2008, 33, 536. [Google Scholar] [CrossRef]
- Frazão, O.; Caldas, P.; Santos, J.L.; Marques, P.V.S.; Turck, C.; Lougnot, D.J.; Soppera, O. Fabry-Perot refractometer based on an end-of-fiber polymer tip. Opt. Lett. 2009, 34, 2474. [Google Scholar] [CrossRef]
- Jradi, S.; Soppera, O.; Lougnot, D.J. Fabrication of polymer waveguides between two optical fibers using spatially controlled light-induced polymerization. Appl. Opt. 2008, 47, 3987–3993. [Google Scholar] [CrossRef]
- Soppera, O.; Jradi, S.; Lougnot, D.J. Photopolymerization with microscale resolution: Influence of the physico-chemical and photonic parameters. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 3783–3794. [Google Scholar] [CrossRef]
- Bachelot, R.; Ecoffet, C.; Deloeil, D.; Royer, P.; Lougnot, D.-J. Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization. Appl. Opt. 2001, 40, 5860–5871. [Google Scholar] [CrossRef]
- Bachelot, R.; Fares, A.; Fikri, R.; Barchiesi, D.; Lerondel, G.; Royer, P. Coupling semiconductor lasers into single-mode optical fibers by use of tips grown by photopolymerization. Opt. Lett. 2004, 29, 1971. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.; Jeong, Y.; Kim, J.-K.; Jung, Y.; Merenda, F.; Salathè, R.-P.; Shin, J.-S.; Oh, K. Crossed fiber optic Bessel beams for curvilinear optofluidic transport of dielectric particles. Opt. Express 2013, 21, 23021. [Google Scholar] [CrossRef]
- Jradi, S.; Balan, L.; Zeng, X.H.; Plain, J.; Lougnot, D.J.; Royer, P.; Bachelot, R.; Akil, S.; Soppera, O.; Vidal, L. Spatially controlled synthesis of silver nanoparticles and nanowires by photosensitized reduction. Nanotechnology 2010, 21, 1–7. [Google Scholar] [CrossRef]
- Ton, X.A.; Bui, B.T.S.; Resmini, M.; Bonomi, P.; Dika, I.; Soppera, O.; Haupt, K. A versatile fiber-optic fluorescence sensor based on molecularly imprinted microstructures polymerized in situ. Angew. Chem. 2013, 52, 8317–8321. [Google Scholar] [CrossRef]
- Pisco, M.; Galeotti, F.; Quero, G.; Iadicicco, A.; Giordano, M.; Cusano, A. Miniaturized sensing probes based on metallic dielectric crystals self-assembled on optical fiber tips. ACS Photonics 2014, 1, 917–927. [Google Scholar] [CrossRef]
- Novotny, L.; Pohl, D.W.; Hecht, B. Scanning near-field optical probe with ultrasmall spot size. Opt. Lett. 1995, 20, 970. [Google Scholar] [CrossRef]
- Betzig, E.; Trautman, J.K.; Harris, T.D.; Weiner, J.S.; Kostelak, R.L. Breaking the diffraction barrier: Optical microscopy on a nanometric scale. Science 1991, 251, 1468–1470. [Google Scholar] [CrossRef]
- Foti, A.; D’Andrea, C.; Bonaccorso, F.; Lanza, M.; Calogero, G.; Messina, E.; Maragò, O.M.; Fazio, B.; Gucciardi, P.G. A shape-engineered surface-enhanced raman scattering optical fiber sensor working from the visible to the near-infrared. Plasmonics 2013, 8, 13–23. [Google Scholar] [CrossRef]
- Vo-Dinh, T.; Scaffidi, J.; Gregas, M.; Zhang, Y.; Seewaldt, V. Applications of fiber-optics-based nanosensors to drug discovery. Expert Opin. Drug Discov. 2009, 4, 889–900. [Google Scholar] [CrossRef]
- Vo-Dinh, T. Nanosensing at the single cell level. Spectrochim. Acta—Part B At. Spectrosc. 2008, 63, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Rosenzweig, Z. Nanoscale fluorescent sensors for intracellular analysis. Fresenius. J. Anal. Chem. 2000, 366, 569–575. [Google Scholar] [CrossRef]
- Tai, Y.-H.; Wei, P.-K. Sensitive liquid refractive index sensors using tapered optical fiber tips. Opt. Lett. 2010, 35, 944. [Google Scholar] [CrossRef]
- Stoddart, P.R.; White, D.J. Optical fibre SERS sensors. Anal. Bioanal. Chem. 2009, 394, 1761–1774. [Google Scholar] [CrossRef]
- Scaffidi, J.P.; Gregas, M.K.; Seewaldt, V.; Vo-Dinh, T. SERS-based plasmonic nanobiosensing in single living cells. Anal. Bioanal. Chem. 2009, 393, 1135–1141. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.; Shi, Z.Y.; Smith, S.; Birnbaum, D.; Kopelman, R. Submicrometer intracellular chemical optical fiber sensors. Science 1992, 258, 778–781. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Kim, I.; Kim, J. Fabrication of the optical fiber pH sensor based on CdSe/ZnS quantum dot. J. Nanosci. Nanotechnol. 2014, 14, 5650–5653. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, H.; Lan, X.; Cheng, B.; Chen, S.; Shi, H.; Xiao, H.; Ma, Y. Reflection-mode micro-spherical fiber-optic probes for in vitro real-time and single-cell level pH sensing. Sens. Actuators B Chem. 2015, 207, 571–580. [Google Scholar] [CrossRef] [Green Version]
- Rosenzweig, Z.; Kopelman, R. Development of a submicrometer optical fiber oxygen sensor. Anal. Chem. 1995, 67, 2650–2654. [Google Scholar] [CrossRef]
- Rosenzweig, Z.; Kopelman, R. Analytical properties of miniaturized oxygen and glucose fiber optic sensor. Sens. Actuators B. Chem. 1996, 35–36, 475–483. [Google Scholar] [CrossRef]
- Wanga, S.; Ye, F.; Lang, X.; Fei, D.; Ge, Y.; Turner, A.P.F. Detection of [Ca2+]i changes in sub-plasma membrane microdomains in a single living cell by an optical fiber-based nanobiosensor. Austin J. Nanomed. Nanotechnol. 2014, 2, 1022. [Google Scholar]
- Dufour, S.; Lavertu, G.; Dufour-Beauséjour, S.; Juneau-Fecteau, A.; Calakos, N.; Deschênes, M.; Vallée, R.; De Koninck, Y. A multimodal micro-optrode combining field and single unit recording, multispectral detection and photolabeling capabilities. PLoS ONE 2013, 8, e57703. [Google Scholar] [CrossRef] [Green Version]
- Giannetti, A.; Tombelli, S.; Baldini, F. Oligonucleotide optical switches for intracellular sensing optical nanosensing in cells. Anal. Bioanal. Chem. 2013, 405, 6181–6196. [Google Scholar] [CrossRef]
- Carpi, S.; Fogli, S.; Giannetti, A.; Adinolfi, B.; Tombelli, S.; Da Pozzo, E.; Vanni, A.; Martinotti, E.; Martini, C.; Breschi, M.C.; et al. Theranostic properties of a survivin-directed molecular beacon in human melanoma cells. PLoS ONE 2014, 9, e114588. [Google Scholar] [CrossRef] [Green Version]
- Adinolfi, B.; Pellegrino, M.; Giannetti, A.; Tombelli, S.; Trono, C.; Sotgiu, G.; Varchi, G.; Ballestri, M.; Posati, T.; Carpi, S.; et al. Molecular beacon-decorated polymethylmethacrylate core-shell fluorescent nanoparticles for the detection of survivin mRNA in human cancer cells. Biosens. Bioelectron. 2017, 88, 15–24. [Google Scholar] [CrossRef]
- Synge, E.H. A suggested method for extending microscopic resolution into the ultra-microscopic region. Philos. Mag. Ser. 7 XXXVIII 1928, 6, 356–362. [Google Scholar] [CrossRef]
- Lewis, A.; Isaacson, M.; Harootunian, A.; Muray, A. Development of a 500 Å spatial resolution light microscope. I. light is efficiently transmitted through λ/16 diameter apertures. Ultramicroscopy 1984, 13, 227–231. [Google Scholar] [CrossRef]
- Pohl, D.W.; Denk, W.; Lanz, M. Optical stethoscopy: Image recording with resolution λ/20. Appl. Phys. Lett. 1984, 44, 651–653. [Google Scholar] [CrossRef]
- Lee, H.; Lee, D.Y.; Kang, M.G.; Koo, Y.; Kim, T.; Park, K. Tip-enhanced photoluminescence nano-spectroscopy and nano-imaging. Nanophotonics 2020. [Google Scholar] [CrossRef]
- Bogdanowicz, J.; Gilbert, M.; Koelling, S.; Vandervorst, W. Impact of the apex of an elongated dielectric tip upon its light absorption properties. Appl. Surf. Sci. 2014, 302, 223–225. [Google Scholar] [CrossRef]
- Thu, N.T.; Tanaka, K.; Tanaka, M.; Chien, D.N. Superfocusing of surface plasmon polaritons by metal-coated dielectric probe of tilted conical shape. J. Opt. Soc. Am. A 2013, 30, 1113. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Burr, G.W.; Grosjean, T.; Maletzky, T.; Fischer, U.C. Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes. Appl. Phys. B Lasers Opt. 2008, 93, 257–266. [Google Scholar] [CrossRef]
- Fischer, U.C.; Koglin, J.; Fuchs, H. The tetrahedral tip as probe for scanning near-field optical microscopy at 30 nm resolution. J. Microsc. 1994, 176, 231–237. [Google Scholar] [CrossRef]
- Wang, X.Q.; Wu, S.F.; Jian, G.S.; Pan, S. The advantages of a pyramidal probe tip entirely coated with a thin metal film for SNOM. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2003, 319, 514–517. [Google Scholar] [CrossRef]
- Sandoghdar, V.; Mlynek, J. Prospects of apertureless SNOM with active probes. J. Opt. A Pure Appl. Opt. 1999, 1, 523–530. [Google Scholar] [CrossRef]
- Bek, A.; Vogelgesang, R.; Kern, K. Apertureless scanning near field optical microscope with sub- 10 nm resolution. Rev. Sci. Instrum. 2006, 77, 043703. [Google Scholar] [CrossRef] [Green Version]
- Betzig, E.; Finn, P.L.; Weiner, J.S. Combined shear force and near-field scanning optical microscopy. Appl. Phys. Lett. 1992, 60, 2484–2486. [Google Scholar] [CrossRef]
- Shang, G.Y.; Wang, C.; Wu, J.; Bai, C.L.; Lei, F.H. Shear force scanning near-field optical microscope based on a piezoelectric bimorph cantilever. Rev. Sci. Instrum. 2001, 72, 2344–2349. [Google Scholar] [CrossRef]
- Gao, F.; Li, X.; Wang, J.; Fu, Y. Dynamic behavior of tuning fork shear-force structures in a SNOM system. Ultramicroscopy 2014, 142, 10–23. [Google Scholar] [CrossRef]
- Gao, F.; Li, X. Research on the sensing performance of the tuning fork-probe as a micro interaction sensor. Sensors 2015, 15, 24530–24552. [Google Scholar] [CrossRef]
- Schürmann, G.; Noell, W.; Staufer, U.; De Rooij, N.F. Microfabrication of a combined AFM-SNOM sensor. Ultramicroscopy 2000, 82, 33–38. [Google Scholar] [CrossRef]
- Grabiec, P.; Gotszalk, T.; Radojewski, J.; Edinger, K.; Abedinov, N.; Rangelow, I.W. SNOM/AFM microprobe integrated with piezoresistive cantilever beam for multifunctional surface analysis. Microelectron. Eng. 2002, 61–62, 981–986. [Google Scholar] [CrossRef]
- Antognozzi, M.; Szczelkun, M.D.; Round, A.N.; Miles, M.J. Comparison between shear force and tapping mode AFM-high resolution imaging of DNA. Single Mol. 2002, 3, 105–110. [Google Scholar] [CrossRef]
- Payton, O.; Champneys, A.R.; Homer, M.E.; Picco, L.; Miles, M.J. Feedback-induced instability in tapping mode atomic force microscopy: Theory and experiment. Proc. R. Soc. A Math. Phys. Eng. Sci. 2011, 467, 1801–1822. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Parajo, M.; Cambril, E.; Chen, Y. Simultaneous scanning tunneling microscope and collection mode scanning near-field optical microscope using gold coated optical fiber probes. Appl. Phys. Lett. 1994, 65, 1498–1500. [Google Scholar] [CrossRef]
- Nakajima, K.; Micheletto, R.; Mitsui, K.; Isoshima, T.; Hara, M.; Wada, T.; Sasabe, H.; Knoll, W. Development of a hybrid SNOM/STM and its application to organic ultra-thin films. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A Mol. Cryst. Liq. Cryst. 1998, 322, 209–214. [Google Scholar] [CrossRef]
- Heimel, J.; Fischer, U.C.; Fuchs, H. SNOM/STM using a tetrahedral tip and a sensitive current-to-voltage converter. J. Microsc. 2001, 202, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Jeong, S.; Kang, Y. Topography and near-field image measurement of soft biological samples in liquid by using a tuning fork based bent optical-fiber sensor. Rev. Sci. Instrum. 2011, 82, 043707. [Google Scholar] [CrossRef] [PubMed]
- Serebryakov, D.V.; Sekatskii, S.K.; Cherkun, A.P.; Dukenbayev, K.; Morozov, I.V.; Letokhov, V.S.; Dietler, G. Scanning near-field optical microscope based on a double resonant fibre probe montage and equipped with time-gated photon detection. J. Microsc. 2008, 229, 287–292. [Google Scholar] [CrossRef]
- Farnesi, D.; Barucci, A.; Righini, G.C.; Berneschi, S.; Soria, S.; Conti, G.N. Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators. Phys. Rev. Lett. 2014, 112, 1–5. [Google Scholar] [CrossRef]
- Frigenti, G.; Arjmand, M.; Barucci, A.; Baldini, F.; Berneschi, S.; Farnesi, D.; Gianfreda, M.; Pelli, S.; Soria, S.; Aray, A.; et al. Coupling analysis of high Q resonators in add-drop configuration through cavity ringdown spectroscopy. J. Opt. 2018, 20, 065706. [Google Scholar] [CrossRef] [Green Version]
- Ward, J.; Benson, O. WGM microresonators: Sensing, lasing and fundamental optics with microspheres. Laser Photonics Rev. 2011, 5, 553–570. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, Z.; Shum, P.P.; Xu, Z.; Keiser, G.; Humbert, G.; Zhang, H.; Zeng, S.; Dinh, X.Q. Sensing and lasing applications of whispering gallery mode microresonators. Opto-Electron. Adv. 2018, 1. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.; Painter, O.; Vahala, K.J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 2000, 85, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Grimaldi, I.A.; Berneschi, S.; Testa, G.; Baldini, F.; Nunzi Conti, G.; Bernini, R. Polymer based planar coupling of self-assembled bottle microresonators. Appl. Phys. Lett. 2014, 105, 231114. [Google Scholar] [CrossRef]
- Righini, G.C.; Dumeige, Y.; Feron, P.; Ferrari, M.; Conti, G.N.; Ristic, D.; Soria, S. Whispering gallery mode microresonators: Fundamentals and applications. Riv. Nuovo Cim. 2011, 34, 435–488. [Google Scholar]
- Götzinger, S.; Benson, O.; Sandoghdar, V. Influence of a sharp fiber tip on high-Q modes of a microsphere resonator. Opt. Lett. 2002, 27, 80. [Google Scholar] [CrossRef] [PubMed]
- Berneschi, S.; Bettazzi, F.; Giannetti, A.; Baldini, F.; Conti, G.N.; Pelli, S.; Palchetti, I. Optical whispering gallery mode resonators for label-free detection of water contaminants. TrAC—Trends Anal. Chem. 2020, 126, 115856. [Google Scholar] [CrossRef]
- Schmidt, C.; Liebsch, M.; Klein, A.; Janunts, N.; Chipouline, A.; Käsebier, T.; Etrich, C.; Lederer, F.; Kley, E.B.; Tünnermann, A.; et al. Near-field mapping of optical eigenstates in coupled disk microresonators. Phys. Rev. A—At. Mol. Opt. Phys. 2012, 85, 1–11. [Google Scholar] [CrossRef]
- Ostrowski, M.; Pignalosa, P.; Smith, H.; Yi, Y. Higher-order optical resonance node detection of integrated disk microresonator. Opt. Lett. 2011, 36, 3042. [Google Scholar] [CrossRef] [Green Version]
- Blaize, S.; Gesuele, F.; Stefanon, I.; Bruyant, A.; Lérondel, G.; Royer, P.; Martin, B.; Morand, A.; Benech, P.; Fedeli, J.-M. Real-space observation of spectral degeneracy breaking in a waveguide-coupled disk microresonator. Opt. Lett. 2010, 35, 3168. [Google Scholar] [CrossRef] [Green Version]
- Bhadkamkar, A.; Dwyer, M.; van der Weide, D. Analysis of half-tapered fiber coupling for microresonators. Opt. Express 2017, 25, 32841. [Google Scholar] [CrossRef]
- Rasoloniaina, A.; Huet, V.; Nguyên, T.K.N.; Le Cren, E.; Mortier, M.; Michely, L.; Dumeige, Y.; Féron, P. Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification. Sci. Rep. 2014, 4, 1–8. [Google Scholar]
- Pham, V.H.; Bui, H.; Pham, T.S.; Nguyen, T.A.; Van Nguyen, T.; Le, H.T.; Bui, T.N.; Nguyen, V.P.; Coisson, R. Control of whispering-gallery-mode spectrum from erbium-doped silica microsphere lasers. J. Opt. Soc. Am. B 2013, 30, 1586. [Google Scholar] [CrossRef]
- Avino, S.; Krause, A.; Zullo, R.; Giorgini, A.; Malara, P.; De Natale, P.; Loock, H.P.; Gagliardi, G. Direct sensing in liquids using whispering-gallery-mode droplet resonators. Adv. Opt. Mater. 2014, 2, 1155–1159. [Google Scholar] [CrossRef] [Green Version]
- Giorgini, A.; Avino, S.; Malara, P.; De Natale, P.; Gagliardi, G. Liquid droplet microresonators. Sensors 2019, 19, 473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Li, H.; Zhao, L.; Liu, Y.; Liu, S.; Yang, J. Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application. Opt. Express 2017, 25, 918. [Google Scholar] [CrossRef] [PubMed]
- Duan, R.; Li, Y.; Li, H.; Yang, J. Detection of heavy metal ions using whispering gallery mode lasing in functionalized liquid crystal microdroplets. Biomed. Opt. Express 2019, 10, 6073–6083. [Google Scholar] [CrossRef] [PubMed]
- Duan, R.; Li, Y.; Shi, B.; Li, H.; Yang, J. Real-time, quantitative and sensitive detection of urea by whispering gallery mode lasing in liquid crystal microdroplet. Talanta 2020, 209, 120513. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, L.; Xu, A.; Wang, L.; Zhang, L.; Liu, S.; Liu, Y.; Li, H. Detecting enzymatic reactions in penicillinase via liquid crystal microdroplet-based pH sensor. Sens. Actuators B Chem. 2018, 258, 1090–1098. [Google Scholar] [CrossRef]
- Minn, K.; Birmingham, B.; Zhang, Z. New development of nanoscale spectroscopy using scanning probe microscope. J. Vac. Sci. Technol. A 2020, 38, 030801. [Google Scholar] [CrossRef]
- Dombi, P.; Pápa, Z.; Vogelsang, J.; Yalunin, S.V.; Sivis, M.; Herink, G.; Schäfer, S.; Groß, P.; Ropers, C.; Lienau, C. Strong-field nano-optics. Rev. Mod. Phys. 2020, 92, 1–66. [Google Scholar] [CrossRef]
Fabrication Technique | Advantages | Disadvantages | Ref. |
---|---|---|---|
Grinding and Polishing | Low cost | Mechanical instability | [9] |
Environmental sensitivity | |||
Low reproducibility | |||
Low accuracy | |||
Simple instrumentation | Low control of the surface roughness | ||
Thermal Pulling | Low cost | No conical shape in the final tip | [82] |
Low reproducibility | |||
Low accuracy | |||
Smooth surface roughness | Poor control of surface roughness | ||
Chemical Etching | Low cost | Mechanical instability | [55,83,84,85,86,87,88,89,90,91,92,93,94] |
Environmental sensitivity | |||
Low reproducibility | |||
Low accuracy | |||
Possible online monitoring | Low control of surface roughness | ||
Smooth surface roughness | |||
Simple instrumentation | |||
Focused Ion Beam (FIB) milling | High reproducibility | High cost | [11,95,96,97,98,99,100,101,102] |
Time consuming | |||
Possible online monitoring | Complex instrumentation | ||
Femtosecond laser machining | High resolution | Limited use | [9,103,104,105] |
High cost | |||
Complex instrumentation | |||
Lithography | High resolution | High cost | [9] |
Complex instrumentation | |||
Photopolymerisation methods | Low cost | Complex processing | [11,63,106,107,108,109,110,111,112,113,114] |
Operating Mode (Sketch) | Feedback Type | Tips Adopted | Advantages | Disadvantages |
---|---|---|---|---|
SFM/SNOM | Tuning fork/Shear force | Tapered optical fibre/aperture tips | No limits to sample types | Complex operating mode |
Easy fabrication methods for tips | ||||
Versatility and adaptability | Poor lateral resolution | |||
AFM/SNOM | Optical cantilever/Tapping mode | Metal/metal coated cantilever tips aperture tips | No limits to sample types Easy operating mode | Possibility to damage the metallic tip |
Stray light from the cantilever (spectral interferences on the measurement) | ||||
STM/SNOM | Tunneling current | Sharp metal tips/apertureless apex | High spatial resolution and control precision Working in non-contact mode (gap mode) Mature fabrication methods for tips | Limitation on the sample type (only conducting) operating mode only in reflection applicable only to samples with limited surface ripple |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berneschi, S.; Barucci, A.; Baldini, F.; Cosi, F.; Quercioli, F.; Pelli, S.; Righini, G.C.; Tiribilli, B.; Tombelli, S.; Trono, C.; et al. Optical Fibre Micro/Nano Tips as Fluorescence-Based Sensors and Interrogation Probes. Optics 2020, 1, 213-242. https://doi.org/10.3390/opt1020017
Berneschi S, Barucci A, Baldini F, Cosi F, Quercioli F, Pelli S, Righini GC, Tiribilli B, Tombelli S, Trono C, et al. Optical Fibre Micro/Nano Tips as Fluorescence-Based Sensors and Interrogation Probes. Optics. 2020; 1(2):213-242. https://doi.org/10.3390/opt1020017
Chicago/Turabian StyleBerneschi, Simone, Andrea Barucci, Francesco Baldini, Franco Cosi, Franco Quercioli, Stefano Pelli, Giancarlo C. Righini, Bruno Tiribilli, Sara Tombelli, Cosimo Trono, and et al. 2020. "Optical Fibre Micro/Nano Tips as Fluorescence-Based Sensors and Interrogation Probes" Optics 1, no. 2: 213-242. https://doi.org/10.3390/opt1020017
APA StyleBerneschi, S., Barucci, A., Baldini, F., Cosi, F., Quercioli, F., Pelli, S., Righini, G. C., Tiribilli, B., Tombelli, S., Trono, C., & Giannetti, A. (2020). Optical Fibre Micro/Nano Tips as Fluorescence-Based Sensors and Interrogation Probes. Optics, 1(2), 213-242. https://doi.org/10.3390/opt1020017