Magnetic Field Sensing Using Tapered Small-Core Optical Fibre Surrounded by Different Concentrations of Magnetic Fluid
Abstract
:1. Introduction
2. Theory
2.1. Operating Principle of Magnetic Fluid
- : critical magnetic field intensity, which starts to change the RI of the MF,
- : RI of the MF under fields lower than ,
- : saturated value of the RI of the MF, and
- : fitting parameter.
2.2. Operating Principle of STSCS Sensor
3. Experimental Setup
4. Results and Discussion
4.1. Effect of MF Concentration and Reversibility
4.2. Effect of the Taper Waist Diameter of STSCS
4.3. Sensitivity Comparison
4.4. Effect of Magnetic Field Orientation
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yin, J.; Ruan, S.; Liu, T.; Jiang, J.; Wang, S.; Wei, H.; Yan, P. All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber. Sens. Actuators B Chem. 2017, 238, 518–524. [Google Scholar] [CrossRef]
- Zu, P.; Chan, C.C.; Lew, W.S.; Hu, L.; Jin, Y.; Liew, H.F.; Chen, L.H.; Wong, W.C.; Dong, X. Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber. IEEE Photonics J. 2012, 4, 491–498. [Google Scholar]
- Dai, J.; Yang, M.; Li, X.; Liu, H.; Tong, X. Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating. Opt. Fiber Technol. 2011, 17, 210–213. [Google Scholar] [CrossRef]
- Zheng, J.; Dong, X.; Zu, P.; Shao, L.Y.; Chan, C.C.; Cui, Y.; Shum, P.P. Magnetic field sensor using tilted fiber grating interacting with magnetic fluid. Opt. Express 2013, 21, 17863–17868. [Google Scholar] [CrossRef]
- Zu, P.; Chan, C.C.; Lew, W.S.; Jin, Y.; Zhang, Y.; Liew, H.F.; Chen, L.H.; Wong, W.C.; Dong, X. Magneto-optical fiber sensor based on magnetic fluid. Opt. Lett. 2012, 37, 398–400. [Google Scholar] [CrossRef]
- Zheng, Y.; Dong, X.; Chan, C.C.; Shum, P.P.; Su, H. Optical fiber magnetic field sensor based on magnetic fluid and microfiber mode interferometer. Opt. Commun. 2015, 336, 5–8. [Google Scholar] [CrossRef]
- Deng, M.; Liu, D.; Li, D. Magnetic field sensor based on asymmetric optical fiber taper and magnetic fluid. Sens. Actuators A Phys. 2014, 211, 55–59. [Google Scholar] [CrossRef]
- Luo, L.; Pu, S.; Tang, J.; Zeng, X.; Lahoubi, M. Highly sensitive magnetic field sensor based on microfiber coupler with magnetic fluid. Appl. Phys. Lett. 2015, 106, 193507. [Google Scholar] [CrossRef]
- Wei, F.; Mallik, A.K.; Liu, D.; Wu, Q.; Peng, G.D.; Farrell, G.; Semenova, Y. Magnetic field sensor based on a combination of a microfiber coupler covered with magnetic fluid and a Sagnac loop. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Zhang, X.; Zhang, Q.; Wang, Z.; Chen, Y.; Liu, X.; Yang, Y.; Dong, Y.; Huang, Y.; Wang, T. Packaged optofluidic microbottle resonator for high-sensitivity bidirectional magnetic field sensing. Opt. Lett. 2022, 47, 2766–2769. [Google Scholar] [CrossRef]
- Kumar, A.; Sahu, S.; Jha, R. Small angles vector magnetometer based on anisotropic ferromagnetic nanofluid functionalized fiber interferometer. J. Phys. D Appl. Phys. 2022, 55, 405102. [Google Scholar] [CrossRef]
- Zhang, Y.; Pu, S.; Li, Y.; Hao, Z.; Li, D.; Yan, S.; Yuan, M.; Zhang, C. Magnetic Field and Temperature Dual-Parameter Sensor Based on Nonadiabatic Tapered Microfiber Cascaded With FBG. IEEE Access 2022, 10, 15478–15486. [Google Scholar] [CrossRef]
- Shi, F.; Bai, X.; Wang, F.; Pang, F.; Pu, S.; Zeng, X. All-fiber magnetic field sensor based on hollow optical fiber and magnetic fluid. IEEE Sens. J. 2016, 17, 619–622. [Google Scholar] [CrossRef]
- Xu, F.T.; Luan, P.P.; Jia, K.S.; Zhang, A.L. An optical fiber magnetic field sensor based on fiber spherical structure interferometer coated by magnetic fluid. Optoelectron. Lett. 2015, 11, 379–381. [Google Scholar] [CrossRef]
- Violakis, G.; Korakas, N.; Pissadakis, S. Differential loss magnetic field sensor using a ferrofluid encapsulated D-shaped optical fiber. Opt. Lett. 2018, 43, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhao, Y.; Tong, Z.R.; Wang, Y. Optical fiber magnetic field sensors with peanut-shape structure cascaded with LPFG. Optoelectron. Lett. 2016, 12, 358–360. [Google Scholar] [CrossRef]
- Liu, D.; Mallik, A.K.; Yuan, J.; Yu, C.; Farrell, G.; Semenova, Y.; Wu, Q. High sensitivity refractive index sensor based on a tapered small core single-mode fiber structure. Opt. Lett. 2015, 40, 4166–4169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Mallik, A.K.; Yuan, J.; Yu, C.; Farrell, G.; Semenova, Y.; Wu, Q. Review on optical fiber sensors based on the refractive index tunability of ferrofluid. J. Light. Technol. 2017, 35, 3406–3412. [Google Scholar]
- Alberto, N.; Domingues, M.F.; Marques, C.; André, P.; Antunes, P. Optical Fiber Magnetic Field Sensors Based on Magnetic Fluid: A Review. Sensors 2018, 18, 4325. [Google Scholar] [CrossRef] [Green Version]
- Kötitz, R.; Fannin, P.C.; Trahms, L. Time domain study of Brownian and Néel relaxation in ferrofluids. J. Magn. Magn. Mater. 1955, 149, 42–46. [Google Scholar] [CrossRef]
- Yang, S.Y.; Chen, Y.F.; Horng, H.E.; Hong, C.Y.; Tse, W.S.; Yang, H.C. Magnetically modulated refractive index of magnetic fluid films. Appl. Phys. Lett. 2002, 81, 4931. [Google Scholar] [CrossRef] [Green Version]
- Hong, C.Y.; Horng, H.E.; Yang, S.Y. Tunable refractive index of magnetic fluids and its application. Phys. Status Solidi (C) 2004, 1, 1604–1609. [Google Scholar] [CrossRef]
- Arjmand, M.; Saghafifar, H.; Alijanianzadeh, M.; Soltanolkotabi, M. A sensitive tapered-fiber optic biosensor for the label-free detection of organophosphate pesticides. Sens. Actuators B Chem. 2017, 249, 523–532. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, Y.N.; Han, B.; Zhang, A.; Fu, D. Low-cost non-adiabatic tapered fiber for high-sensitive temperature sensing. Opt. Fiber Technol. 2018, 45, 53–57. [Google Scholar] [CrossRef]
- Kumar. R. High Sensitivity Micro/Nano Singlemode-Multimode-Singlemode Fibre Sensors; Northumbria University: Newcastle upon Tyne, UK, 2019; pp. 68–70. [Google Scholar]
- Bunting-eMagnets. Available online: https://e-magnetsuk.com/magnetpro ducts/all_other_magnets/measurement_and_experi mentation_tools/ferrofluid.aspx (accessed on 4 August 2022).
% of FMPs in MF | Sensitivity (nm/mT) | ||
---|---|---|---|
STSCS dia. = 20 μm | STSCS dia. = 15 μm | STSCS dia. = 10 μm | |
1.22 | 0.26 | 0.365 | 0.466 |
0.81 | 0.12 | 0.208 | 0.275 |
0.39 | 0.049 | 0.086 | 0.122 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R. Magnetic Field Sensing Using Tapered Small-Core Optical Fibre Surrounded by Different Concentrations of Magnetic Fluid. Sensors 2022, 22, 8536. https://doi.org/10.3390/s22218536
Kumar R. Magnetic Field Sensing Using Tapered Small-Core Optical Fibre Surrounded by Different Concentrations of Magnetic Fluid. Sensors. 2022; 22(21):8536. https://doi.org/10.3390/s22218536
Chicago/Turabian StyleKumar, Rahul. 2022. "Magnetic Field Sensing Using Tapered Small-Core Optical Fibre Surrounded by Different Concentrations of Magnetic Fluid" Sensors 22, no. 21: 8536. https://doi.org/10.3390/s22218536
APA StyleKumar, R. (2022). Magnetic Field Sensing Using Tapered Small-Core Optical Fibre Surrounded by Different Concentrations of Magnetic Fluid. Sensors, 22(21), 8536. https://doi.org/10.3390/s22218536