The Biopolymer Active Surface for Optical Fibre Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Biopolymer
2.2. Experimental Materials
3. Measurements
3.1. Optical Fibre Taper Element Manufacturing
3.2. System of Deposition Thin Layers and Measurement Arrangements
4. Results and Discussion
4.1. IR Spectra
4.2. Atomic Force Microscope Topography
4.3. Propagation of the Light Beam in the Fabricated Structures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Yan, M.; Bao, Y. Measurement of cable forces for automated monitoring of engineering structures using fiber optic sensors: A review. Autom. Constr. 2021, 126, 103687. [Google Scholar] [CrossRef]
- Lee, B. Review of the present status of optical fiber sensors. Opt. Fiber Technol. 2003, 9, 57–79. [Google Scholar] [CrossRef]
- Duan, Q.; Liu, Y.; Chang, S.; Chen, H.; Chen, J. Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications. Sensors 2021, 21, 5262. [Google Scholar] [CrossRef] [PubMed]
- Pitarke, J.M.; Silkin, V.M.; Chulkov, E.V.; Echenique, P.M. Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 2006, 70, 1–87. [Google Scholar] [CrossRef]
- Homola, J.; Yee, S.S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Sens. Actuators B Chem. 1999, 54, 3–15. [Google Scholar] [CrossRef]
- Jorgenson, R.C.; Yee, S.S. A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators B Chem. 1993, 12, 213–220. [Google Scholar] [CrossRef]
- Jorgenson, R.C.; Yee, S.S. Control of the dynamic range and sensitivity of a surface plasmon resonance based fiber optic sensor. Sens. Actuators A Phys. 1994, 43, 44–48. [Google Scholar] [CrossRef]
- Grate, J.W.; Martin, S.J.; White, R.M. Acoustic wave microsensors. Anal. Chem. 2008, 65, 940A–948A. [Google Scholar] [CrossRef]
- McCallum, J.J. Piezoelectric devices for mass and chemical measurements: An update. Analyst 1989, 114, 1173–1189. [Google Scholar] [CrossRef]
- D’Amico, A.; Verona, E. Saw sensors. Sens. Actuators 1989, 17, 55–66. [Google Scholar] [CrossRef]
- Ballantine, D.S.; Wohltjen, H. Surface acoustic wave devices for chemical analysis. Anal. Chem. 2008, 61, 704A–715A. [Google Scholar] [CrossRef]
- Flammini, A.; Depari, A. Advanced interfaces for resistive sensors. In Smart Sensors and MEMs; Woodhead Publishing: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Madej-Kiełbik, L.; Gzyra-Jagieła, K.; Jóźwik-Pruska, J.; Dziuba, R.A. Bednarowicz Biopolymer Composites with Sensors for Environmental and Medical Applications. Materials 2022, 15, 7493. [Google Scholar] [CrossRef]
- Abhilash, M.; Thomas, D. Biopolymers for Biocomposites and Chemical Sensor Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780081009741. [Google Scholar] [CrossRef]
- Mallik, T. Biopolymers: Classification and properties. J. Emerg. Technol. Innov. Res. 2022, 9, 69–73. [Google Scholar] [CrossRef]
- Spadło, A.; Bennis, N.; Węgłowski, R.; Węgłowska, D.; Czupryński, K. Biopolymer as alignment layer for liquid crystal mixtures. Mol. Cryst. Liq. Cryst. 2017, 657, 56–65. [Google Scholar] [CrossRef]
- Grote, G.; Diggs, D.E.; Nelson, R.L.; Zetts, J.S.; Hopkins, F.K.; Ogata, N.; Hagen, J.A.; Heckman, E.; Yaney, P.P.; Stone, M.O.; et al. DNA Photonics [Deoxyribonucleic Acid]. Mol. Cryst. Liq. Cryst. 2005, 426, 3–17. [Google Scholar] [CrossRef]
- Steckl, A.J. DNA—A new material for photonics. Nat. Photonics 2007, 1, 3–5. [Google Scholar] [CrossRef]
- Dias, R.; Lindman, B. DNA Interactions with Polymers and Surfactants; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Radko, A.; Lalik, S.; Deptuch, A.; Jaworska-Gołąb, T.; Ekiert, R.; Górska, N.; Makyła-Juzak, K.; Nizioł, J.; Marzec, M. Physicochemical characterisation of the DNA complexes with different surfactants. Polymer 2021, 235, 124277. [Google Scholar] [CrossRef]
- Liu, K.; Zheng, L.; Ma, C.; Göstl, R.; Herrmann, A. DNA–surfactant complexes: Self-assembly properties and applications. Chem. Soc. Rev. 2017, 46, 5147–5172. [Google Scholar] [CrossRef]
- Marć, P.; Bennis, N.; Spadło, A.; Kalbarczyk, A.; Węgłowski, R.; Garbat, K.; Jaroszewicz, L.R. Monochromatic Depolarizer Based on Liquid Crystal. Crystals 2019, 9, 387. [Google Scholar] [CrossRef]
- Kenney, D.E.; Borisy, G.G. Thomas Hunt Morgan at the Marine Biological Laboratory: Naturalist and Experimentalist. Genetics 2009, 181, 841–846. [Google Scholar] [CrossRef]
- Katsunari, O. Wave Theory of Optical Waveguides. In Fundamentals of Optical Waveguides, 2nd ed.; Academic Press: London, UK, 2006; Chapter 1; pp. 32–47. [Google Scholar] [CrossRef]
- Bikiaris, D.; Matzinos, P.; Larena, A.; Flaris, V.C. Panayiotou. Use of silane agents and poly(propylene-g-maleic anhydride) copolymer as adhesion promoters in glass fiber/polypropylene composites. J. Appl. Polym. Sci. 2001, 81, 701–709. [Google Scholar] [CrossRef]
- Howarter, J.A.; Youngblood, J.P. Optimisation of Silica Silanization by 3-Aminopropyltriethoxysilane. Langmuir 2006, 22, 11142–11147. [Google Scholar] [CrossRef]
- Stasiewicz, K.A.; Jakubowska, I.; Dudek, M. Detection of Organosulfur and Organophosphorus Compounds Using a Hexafluorobutyl Acrylate-Coated Tapered Optical Fibers. Polymers 2022, 14, 612. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, G. Optical fibre nanowires and mikrowires: Review. J. Opt. 2010, 12, 1–19. [Google Scholar] [CrossRef]
- Zhang, L.; Lou, J.; Tong, L. Micro/Nanofiber Optical Sensors. Photonic Sens. 2011, 1, 31–42. [Google Scholar] [CrossRef]
- Stasiewicz, K.A.; Krajewski, R.; Jaroszewicz, L.R.; Kujawińska, M.R. Świłło Influence of the tapering process on optical fiber refractive index distribution changes along the structure. Opto-Electron. Rev. 2010, 18, 102–109. [Google Scholar] [CrossRef]
- Stasiewicz, K.A.; Jakubowska, I.; Moś, J.; Kosturek, R.; Kowiorski, K. In-Line Gas Sensor Based on the Optical Fiber Taper Technology with a Graphene Oxide Layer. Electronics 2023, 12, 830. [Google Scholar] [CrossRef]
- Korec, J.; Stasiewicz, K.A.; Jaroszewicz, L.R.; Garbat, K. SPR Effect Controlled by an Electric Field in a Tapered Optical Fiber Surrounded by a Low Refractive Index Nematic Liquid Crystal. Materials 2020, 13, 4942. [Google Scholar] [CrossRef]
- Nowak, E.; Świder, A.W.; Khachatryan, G.; Fiedorowicz, M.; Danel, K. Possible sensor applications of selected DNA–surfactant, complexes. Eur. Biophys. J. 2019, 48, 371–381. [Google Scholar] [CrossRef]
- Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C15980151&Units=SI&Mask=80#IR-Spec (accessed on 3 April 2024).
- Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C512561&Units=SI&Type=IR-SPEC&Index=3#IR-SPEC (accessed on 3 April 2024).
- Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C7664417&Units=SI&Type=IR-SPEC&Index=1#IR-SPEC (accessed on 3 April 2024).
Properties/Characterisation | Compound | ||
---|---|---|---|
ammonia solution | 1,4-thioxane | trimethyl phosphate | |
Structural Formula | |||
Physical State | liquid | liquid | liquid |
Appearance | clear, colourless | clear, colourless | clear, colourless |
Odor | strong, irritating, pungent | strong, irritating, pungent | no |
Melting Point (°C)/Freezing Point (°C) | −72 °C | 30 °C | −46 °C |
Boiling Point (°C) | 36 °C | 147 °C | 197 °C |
Density (g/cm3) | 0.965 | 1.114 | 1.197 |
Vapor Pressure (mmHg) | 115 | 5.7 | 0.415 |
Refractive Index | 1.355 | 1.509 | 1.379 |
Hazards Identification | corrosive; causes severe skin, eye, and digestive tract burns; harmful if swallowed; mist or vapor extremely irritating to eyes and respiratory tract | flammable liquid and vapour; causes skin irritation; causes serious eye irritation; may cause respiratory irritation | harmful if swallowed; causes skin irritation; causes serious eye irritation; may cause genetic defects; suspected of causing cancer |
THX Compound | ||||
---|---|---|---|---|
Wavelength (nm) | 1 min (dBm) | 5 min/per min (dBm) | 30 min/per min (dBm) | 120 min/per min (dBm) |
800.8 | 0.09 | 0.08/0.016 | 0.122/0.002 | 0.027/0.0003 |
827 | 0.088 | 0.117/0.023 | 0.038/0.003 | 0.01/0.0001 |
1019.6 | 0.057 | 0.097/0.019 | 0.275/0.011 | 0.347/0.004 |
1102.6 | 0.031 | 0.035/0.007 | 0.184/0.007 | 0.423/0.005 |
TMP Compound | ||||
---|---|---|---|---|
Wavelength (nm) | 1 min (dBm) | 5 min/per min (dBm) | 30 min/per min (dBm) | 120 min/per min (dBm) |
719.2 | 0.088 | 0.205/0.041 | 0.667/0.027 | 0.266/0.003 |
881 | 0.063 | 0.327/0.065 | 0.655/0.026 | 0.051/0.0006 |
983.6 | 0.089 | 0.307/0.061 | 0.869/0.035 | 0.569/0.006 |
1010.8 | 0.04 | 0.135/0.027 | 0.73/0.029 | 0.057/0.0006 |
NH4OH Compound | ||||
---|---|---|---|---|
Wavelength (nm) | 1 min (dBm) | 5 min/per min (dBm) | 30 min/per min (dBm) | 120 min/per min (dBm) |
601.2 | 0.052 | 0.035/0.007 | 0.876/0.035 | 0.072/0.008 |
840.2 | 0.043 | 0.023/0.005 | 0.361/0.014 | 0.495/0.005 |
957.4 | 0.066 | 0.026/0.005 | 0.012/0.0005 | 0.762/0.008 |
1082.8 | 0.083 | 0.319/0.064 | 0.389/0.015 | 0.023/0.0003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stasiewicz, K.A.; Bereski, W.; Jakubowska, I.; Kowerdziej, R.; Węgłowska, D.; Spadło, A. The Biopolymer Active Surface for Optical Fibre Sensors. Polymers 2024, 16, 2114. https://doi.org/10.3390/polym16152114
Stasiewicz KA, Bereski W, Jakubowska I, Kowerdziej R, Węgłowska D, Spadło A. The Biopolymer Active Surface for Optical Fibre Sensors. Polymers. 2024; 16(15):2114. https://doi.org/10.3390/polym16152114
Chicago/Turabian StyleStasiewicz, Karol A., Wiktor Bereski, Iwona Jakubowska, Rafał Kowerdziej, Dorota Węgłowska, and Anna Spadło. 2024. "The Biopolymer Active Surface for Optical Fibre Sensors" Polymers 16, no. 15: 2114. https://doi.org/10.3390/polym16152114
APA StyleStasiewicz, K. A., Bereski, W., Jakubowska, I., Kowerdziej, R., Węgłowska, D., & Spadło, A. (2024). The Biopolymer Active Surface for Optical Fibre Sensors. Polymers, 16(15), 2114. https://doi.org/10.3390/polym16152114