Fibre Coupled Photonic Crystal Cavity Arrays on Transparent Substrates for Spatially Resolved Sensing
Abstract
:1. Introduction
2. Experimental Section
2.1. Photonic Crystal Fabrication and PDMS Transfer
2.2. Tapered Fibre Fabrication
3. Results and Discussion
3.1. Photonic Crystal Arrays and Refractive Index Sensitivity Measurements
3.2. Coupling to Photonic Crystal via Tapered Fibres on SOI
3.3. Photonic Waveguides Transferred to PDMS
4. Conclusions
Acknowledgments
Author Contributions
Conflict of Interest
References
- De Vos, K.; Bartolozzi, I.; Schacht, E.; Bienstman, P.; Baets, R. Silicon-on-insulator resonator for sensitive and label-free biosensing. Opt. Exp. 2007, 15, 7610–7615. [Google Scholar] [CrossRef]
- Ksendzov, A.; Lin, Y. Integrated optics ring-resonator sensors for protein detection. Opt. Exp. 2005, 30, 3344–3346. [Google Scholar]
- Iqbal, M.; Gleeson, M.A.; Spaugh, B.; Tybor, F.; Gunn, W.G.; Hochberg, M.; Baehr-Jones, T.; Bailey, R.C.; Gunn, L.C. Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation. IEEE J. Sel. Top. Quant. 2010, 16, 654–661. [Google Scholar] [CrossRef]
- Barrios, C.A.; Gylfason, K.B.; Sanchez, B.; Griol, A.; Sohlstrom, H.; Holgado, M.; Casquel, R. Slot-waveguide biochemical sensor. Opt. Exp. 2007, 32, 3080–3082. [Google Scholar]
- Lee, M.; Fauchet, P.M. Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Opt. Exp. 2007, 15, 4530–4535. [Google Scholar] [CrossRef]
- Skivesen, N.; Tetu, A.; Kristensen, M.; Kjems, J.; Frandsen, L.H.; Borel, P.I. Photonic-crystal waveguide biosensor. Opt. Exp. 2007, 15, 3169–3176. [Google Scholar] [CrossRef]
- Toccafondo, V.; Garcia-Ruperez, J.; Banuls, M.J.; Griol, A.; Castello, J.G.; Peransi-Llopis, S.; Maquieira, A. Single-strand DNA detection using a planar photonic-crystal-waveguide-based sensor. Opt. Exp. 2010, 35, 3673–3675. [Google Scholar]
- Scullion, M.G.; Di Falco, A.; Krauss, T.F. Slotted Photonic Crystal Cavities with Integrated Microfluidics for Biosensing Applications. Biosens. Bioelectron. 2011, 27, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Goddard, J.M.; Erickson, D. A multiplexed optofluidic biomolecular sensor for low mass detection. Lab Chip 2009, 9, 2924–2932. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.R.; Fauchet, P. Nanoscale microcavity sensor for single particle detection. Opt. Exp. 2007, 32, 3284–3286. [Google Scholar]
- Descharmes, N.; Dharanipathy, U.P.; Diao, Z.; Tonin, M.; Houdre, R. Observation of Backaction and Self-Induced Trapping in a Planar Hollow Photonic Crystal Cavity. Phys. Rev. Lett. 2013, 110, 123601. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.B.; Su, C.B. Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fibre optic Fresnel ratio meter. Meas. Sci. Technol. 2004, 15, 1683–1686. [Google Scholar] [CrossRef]
- Wei, T.; Han, Y.; Li, Y.; Tsai, H.L.; Xiao, H. Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement. Opt. Exp. 2008, 16, 5764–5769. [Google Scholar] [CrossRef]
- Lo, S.; Hu, S.; Weiss, S.M.; Fauchet, P. Photonic Crystal Microring Resonator based Sensors. In Proceedings of the CLEO: Applications and Technology, San Jose, CA, USA, 8–13 June 2014.
- Hu, J.; Carlie, N.; Feng, N.N.; Petit, L.; Agarwal, A.; Richardson, K.; Kimerling, L. Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing. Opt. Exp. 2008, 33, 2500–2502. [Google Scholar]
- Dharanipathy, U.P. On the Investigation of Light-Matter Interactions in Slab Photonic Crystal Cavities. Ph.D. Thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, 2014. [Google Scholar]
- Groblacher, S.; Hill, J.T.; Safavi-Naenini, A.H.; Chan, J.; Painter, O. Highly efficient coupling from an optical fiber to a nanoscale silicon optomechanical cavity. Appl. Phys. Lett. 2013, 103, 181104. [Google Scholar] [CrossRef]
- Shoji, T.; Tsuchizawa, T.; Watanabe, T.; Yamada, K.; Morita, H. Low loss mode convertor from 0.3 µm square Si wire waveguides to singlemode fibres. Electron. Lett. 2002, 38, 1669–1670. [Google Scholar] [CrossRef]
- Meitl, M.A.; Zhu, Z.T.; Kumar, V.; Lee, K.J.; Feng, X.; Huang, Y.Y.; Adesida, I.; Nuzzo, R.G.; Rogers, J.A. Transfer printing by kinetic adhesion to an elastomeric stamp. Nat. Mater. 2006, 5, 33–38. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, D.; Chuwongin, S.; Seo, J.H.; Yang, W.; Shuai, Y.; Berrgren, J.; Hammar, M.; Ma, Z.; Zhou, W. Transfer-printed stacked nanomembrane lasers on silicon. Nat. Photon. 2012, 6, 615–620. [Google Scholar]
- Shambat, G.; Kothapalli, S.R.; Provine, J.; Sarmiento, T.; Harris, J.; Gambhir, S.S.; Vuckovic, J. Single-Cell Photonic Nanocavity Probes. Nano. Lett. 2013, 13, 4999–5005. [Google Scholar] [CrossRef] [PubMed]
- Shambat, G.; Provine, J.; Rivoire, K.; Sarmiento, T.; Harris, J.; Vuckovic, J. Optical fiber tips functionalized with semiconductor photonic crystal cavities. Appl. Phys. Lett. 2011, 99, 191102. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scullion, M.G.; Fischer, M.; Krauss, T.F. Fibre Coupled Photonic Crystal Cavity Arrays on Transparent Substrates for Spatially Resolved Sensing. Photonics 2014, 1, 412-420. https://doi.org/10.3390/photonics1040412
Scullion MG, Fischer M, Krauss TF. Fibre Coupled Photonic Crystal Cavity Arrays on Transparent Substrates for Spatially Resolved Sensing. Photonics. 2014; 1(4):412-420. https://doi.org/10.3390/photonics1040412
Chicago/Turabian StyleScullion, Mark G., Matthias Fischer, and Thomas F. Krauss. 2014. "Fibre Coupled Photonic Crystal Cavity Arrays on Transparent Substrates for Spatially Resolved Sensing" Photonics 1, no. 4: 412-420. https://doi.org/10.3390/photonics1040412
APA StyleScullion, M. G., Fischer, M., & Krauss, T. F. (2014). Fibre Coupled Photonic Crystal Cavity Arrays on Transparent Substrates for Spatially Resolved Sensing. Photonics, 1(4), 412-420. https://doi.org/10.3390/photonics1040412