Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = tamm plasmons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 30298 KiB  
Review
Topological Photonic Crystal Sensors: Fundamental Principles, Recent Advances, and Emerging Applications
by Israa Abood, Sayed El. Soliman, Wenlong He and Zhengbiao Ouyang
Sensors 2025, 25(5), 1455; https://doi.org/10.3390/s25051455 - 27 Feb 2025
Cited by 4 | Viewed by 2587
Abstract
Topological photonic sensors have emerged as a breakthrough in modern optical sensing by integrating topological protection and light confinement mechanisms such as topological states, quasi-bound states in the continuum (quasi-BICs), and Tamm plasmon polaritons (TPPs). These devices exhibit exceptional sensitivity and high-Q [...] Read more.
Topological photonic sensors have emerged as a breakthrough in modern optical sensing by integrating topological protection and light confinement mechanisms such as topological states, quasi-bound states in the continuum (quasi-BICs), and Tamm plasmon polaritons (TPPs). These devices exhibit exceptional sensitivity and high-Q resonances, making them ideal for high-precision environmental monitoring, biomedical diagnostics, and industrial sensing applications. This review explores the foundational physics and diverse sensor architectures, from refractive index sensors and biosensors to gas and thermal sensors, emphasizing their working principles and performance metrics. We further examine the challenges of achieving ultrahigh-Q operation in practical devices, limitations in multiparameter sensing, and design complexity. We propose physics-driven solutions to overcome these barriers, such as integrating Weyl semimetals, graphene-based heterostructures, and non-Hermitian photonic systems. This comparative study highlights the transformative impact of topological photonic sensors in achieving ultra-sensitive detection across multiple fields. Full article
(This article belongs to the Special Issue Feature Review Papers in Optical Sensors)
Show Figures

Figure 1

28 pages, 13067 KiB  
Review
Tamm Plasmons: Properties, Applications, and Tuning with Help of Liquid Crystals
by Victor Yu. Reshetnyak, Igor P. Pinkevych, Michael E. McConney, Timothy J. Bunning and Dean R. Evans
Crystals 2025, 15(2), 138; https://doi.org/10.3390/cryst15020138 - 27 Jan 2025
Cited by 2 | Viewed by 1436
Abstract
This article provides a brief overview of the research on localized optical states called Tamm plasmons (TPs) and their potential applications, which have been extensively studied in recent decades. These states arise under the influence of incident light at the interface between a [...] Read more.
This article provides a brief overview of the research on localized optical states called Tamm plasmons (TPs) and their potential applications, which have been extensively studied in recent decades. These states arise under the influence of incident light at the interface between a metal film and a medium with the properties of a Bragg mirror, or between two media with the properties of a Bragg mirror. The localization of the states in the interfacial region is a consequence of the negative dielectric constant of the metal and the presence of a photonic band gap of the Bragg reflector. Optically, TPs appear as resonant reflection dips or peaks in the transmission and absorption spectra in the region corresponding to the photonic band gap. The relative simplicity of creating a Tamm structure and the significant sensitivity of TPs to its parameters make them attractive for applications. The formation of broadband and tunable TP modes in hybrid structures containing, in particular, rugate filters and porous distributed Bragg reflectors are considered. Considerable attention is paid to TP designs that include liquid crystals, which allow for the remote tuning of the TP spectrum without the mechanical restructuring of the system. The application of TPs in sensors, thermal emitters, absorbers, laser generation, and the experimental capabilities of TP-liquid crystal devices are also discussed. Full article
(This article belongs to the Special Issue Liquid Crystal Research and Novel Applications in the 21st Century)
Show Figures

Figure 1

11 pages, 4529 KiB  
Article
Reversibly Alterable Hot-Electron Photodetection Without Altering Working Wavelengths Through Phase-Change Material Sb2S3
by Yaoyao Li, Xiaoyan Yang, Jia Hao, Junhui Hu, Qingjia Zhou and Weijia Shao
Micromachines 2025, 16(2), 146; https://doi.org/10.3390/mi16020146 - 26 Jan 2025
Viewed by 848
Abstract
Generally, the responsivities of hot-electron photodetectors (HE PDs) are mainly dependent on the device working wavelengths. Therefore, a common approach to altering device responsivities is to change the working wavelengths. Another strategy for manipulating electrical performances of HE PDs is to harness electric [...] Read more.
Generally, the responsivities of hot-electron photodetectors (HE PDs) are mainly dependent on the device working wavelengths. Therefore, a common approach to altering device responsivities is to change the working wavelengths. Another strategy for manipulating electrical performances of HE PDs is to harness electric bias that can be used to regulate hot-electron harvesting at specified working wavelengths. However, the reliance on bias hampers the flexibility in device operations. In this study, we propose a purely planar design of HE PDs that contains the phase-change material Sb2S3, realizing reversibly alterable hot-electron photodetection without altering the working wavelengths. Optical simulations show that the designed device exhibits strong absorptance (>0.95) at the identical resonance wavelengths due to the excitations of Tamm plasmons (TPs), regardless of Sb2S3 phases. Detailed electrical calculations demonstrate that, by inducing Sb2S3 transitions between crystalline and amorphous phases back and forth, the device responsivities at TP wavelengths can be reversibly altered between 59.9 nA/mW to 128.7 nA/mW. Moreover, when device structural parameters are variable and biases are involved, the reversibly alterable hot-electron photodetection at specified TP wavelengths is maintained. Full article
(This article belongs to the Special Issue Advanced Photodetectors: Materials, Design and Applications)
Show Figures

Figure 1

18 pages, 6456 KiB  
Article
Highly Tunable Light Absorber Based on Topological Interface Mode Excitation of Optical Tamm State
by Xiangjun Liu, Jingxu Shi, Yixuan Wang, Shiyao Sun and Xiangfu Wang
Sensors 2024, 24(17), 5772; https://doi.org/10.3390/s24175772 - 5 Sep 2024
Cited by 1 | Viewed by 1249
Abstract
Optical absorbers based on Tamm plasmon states are known for their simple structure and high operational efficiency. However, these absorbers often have limited absorption channels, and it is challenging to continuously adjust their light absorption rates. Here, we propose a Tamm plasmon state [...] Read more.
Optical absorbers based on Tamm plasmon states are known for their simple structure and high operational efficiency. However, these absorbers often have limited absorption channels, and it is challenging to continuously adjust their light absorption rates. Here, we propose a Tamm plasmon state optical absorber composed of a layered stack structure consisting of one-dimensional topological photonic crystals and graphene nano-composite materials. Using the four-by-four transfer matrix method, we investigate the structural relationship of the absorber. Our results reveal that topological interface states (TISs) effectively excite the optical Tamm state (OTS), leading to multiple absorption peaks. This expands the number of absorption channels, with the coupling number of the TIS determining the transmission quality of these channels—a value further adjustable by the period number of the photonic crystals. Tuning the filling factor, refractive index, and thickness of the graphene nano-composite material allows for a wide range of control over the device’s absorption rate, from 0 to 1. Additionally, adjusting the defect layer thickness, incident angle, and Fermi energy enables us to control the absorber’s operational bandwidth and the switching of its absorption effect. This work presents a new approach to expanding the tunability of optoelectronic devices. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

13 pages, 1635 KiB  
Article
Optical Biosensor Based on Porous Silicon and Tamm Plasmon Polariton for Detection of CagA Antigen of Helicobacter pylori
by Guoguang Rong, Alexey Kavokin and Mohamad Sawan
Sensors 2024, 24(16), 5153; https://doi.org/10.3390/s24165153 - 9 Aug 2024
Cited by 2 | Viewed by 1750
Abstract
Helicobacter pylori (H. pylori) is a common pathogen with a high prevalence of infection in human populations. The diagnosis of H. pylori infection is critical for its treatment, eradication, and prognosis. Biosensors have been demonstrated to be powerful for the rapid [...] Read more.
Helicobacter pylori (H. pylori) is a common pathogen with a high prevalence of infection in human populations. The diagnosis of H. pylori infection is critical for its treatment, eradication, and prognosis. Biosensors have been demonstrated to be powerful for the rapid onsite detection of pathogens, particularly for point-of-care test (POCT) scenarios. In this work, we propose a novel optical biosensor, based on nanomaterial porous silicon (PSi) and photonic surface state Tamm Plasmon Polariton (TPP), for the detection of cytotoxin-associated antigen A (CagA) of H. pylori bacterium. We fabricated the PSi TPP biosensor, analyzed its optical characteristics, and demonstrated through experiments, with the sensing of the CagA antigen, that the TPP biosensor has a sensitivity of 100 pm/(ng/mL), a limit of detection of 0.05 ng/mL, and specificity in terms of positive-to-negative ratio that is greater than six. From these performance factors, it can be concluded that the TPP biosensor can serve as an effective tool for the diagnosis of H. pylori infection, either in analytical labs or in POCT applications. Full article
(This article belongs to the Special Issue Optical Biosensors and Applications)
Show Figures

Figure 1

11 pages, 5483 KiB  
Article
High Sensitivity Hydrogen Sensor via the Coupling of Tamm Plasmon Polaritons and Defect Mode
by Feng Zhang, Weifeng Yin and Jianxia Zhang
Chemosensors 2024, 12(4), 67; https://doi.org/10.3390/chemosensors12040067 - 18 Apr 2024
Cited by 2 | Viewed by 2157
Abstract
Optical hydrogen sensors offer high sensitivity, high accuracy, and non-invasive sensing capabilities, making them promising devices in various fields, including the construction of hydrogen fuel cells, storage and transportation, and aerospace. However, to achieve better sensitivity and faster reaction times, such sensors are [...] Read more.
Optical hydrogen sensors offer high sensitivity, high accuracy, and non-invasive sensing capabilities, making them promising devices in various fields, including the construction of hydrogen fuel cells, storage and transportation, and aerospace. However, to achieve better sensitivity and faster reaction times, such sensors are often constructed as nano-arrays or nano-gratings, leading to increased manufacturing costs and complexity. In this study, we propose and demonstrate a highly sensitive hydrogen sensor based on a multilayer structure. The proposed structure consists of a Pd metal film and a photonic crystal with a defect layer, in which the photonic crystal is designed by an alternating arrangement of Ta2O5 and SiO2, and the material comprising the defect layer is SiO2. With a sensitivity of up to 16,020 at 670 nm, the proposed sensor relies on the coupling of Tamm plasmon polaritons and defect modes. The electric field distribution inside the structure is also provided in order to reveal its physical mechanism. Furthermore, we investigate the effects of the thickness of the defect layer and the angle of incident light on the sensor’s performance. The study results show that the sensor has good fault tolerance in either scenario. The findings of this study open up new possibilities for hydrogen sensor applications. Full article
(This article belongs to the Section Nanostructures for Chemical Sensing)
Show Figures

Figure 1

3 pages, 3142 KiB  
Abstract
The Improvement of Tamm Interface State Detection by Using a Porous Layer between a Metal Nanostructured Grating and a DBR
by Oumaima Haidar, Baptiste Mathmann, Yannick Dusch, Mohamed El Barghouti, Gaëtan Lévêque, Abdellatif Akjouj, Abdellah Mir and Abdelkrim Talbi
Proceedings 2024, 97(1), 136; https://doi.org/10.3390/proceedings2024097136 - 2 Apr 2024
Cited by 1 | Viewed by 1038
Abstract
In this work, we propose a sensor based on Tamm plasmonic resonance; the structure is composed of gold nanoribbons deposited on a Distributed Bragg Reflector (DBR) (SiO2/Si3N4)6. We have enhanced the sensitivity of our sensor [...] Read more.
In this work, we propose a sensor based on Tamm plasmonic resonance; the structure is composed of gold nanoribbons deposited on a Distributed Bragg Reflector (DBR) (SiO2/Si3N4)6. We have enhanced the sensitivity of our sensor from 40 nm/RIU to 200 nm/RIU for a refractive index change of 1% by replacing the last layer of Si3N4 in contact with gold with porous Si3N4 with a porosity of p = 40%. Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

9 pages, 2574 KiB  
Article
Atomic Layer Deposition for Tailoring Tamm Plasmon-Polariton with Ultra-High Accuracy
by Mantas Drazdys, Ernesta Bužavaitė-Vertelienė, Darija Astrauskytė and Zigmas Balevičius
Coatings 2024, 14(1), 33; https://doi.org/10.3390/coatings14010033 - 26 Dec 2023
Viewed by 1710
Abstract
In this study, we demonstrate the potential capability to control Tamm plasmon-polaritons (TPP) by applying atomic layer deposition (ALD) as a highly precise technique for plasmonic applications. Applications in plasmonics usually require tens of nanometers or less thick layers; thus, ALD is a [...] Read more.
In this study, we demonstrate the potential capability to control Tamm plasmon-polaritons (TPP) by applying atomic layer deposition (ALD) as a highly precise technique for plasmonic applications. Applications in plasmonics usually require tens of nanometers or less thick layers; thus, ALD is a very suitable technique with monolayer-by-monolayer growth of angstrom resolution. Spectroscopic ellipsometry and polarized reflection intensity identified the TPP resonances in the photonic band gap (PBG) formed by periodically alternating silicon oxide and tantalum oxide layers. The sub-nanometer control of the Al2O3 layer by ALD allows precise tailoring of TPP resonances within a few nanometers of spectral shift. The employing of the ALD method for the fabrication of thin layers with sub-nanometer thickness accuracy in more complex structures proves to be a versatile platform for practical applications where tunable plasmonic resonances of high quality are required. Full article
Show Figures

Figure 1

12 pages, 6663 KiB  
Article
Tuning Q-Factor and Perfect Absorption Using Coupled Tamm States on Polarization-Preserving Metasurface
by Natalya V. Rudakova, Rashid G. Bikbaev, Larisa E. Tyryshkina, Stepan Ya. Vetrov and Ivan V. Timofeev
Photonics 2023, 10(12), 1391; https://doi.org/10.3390/photonics10121391 - 18 Dec 2023
Cited by 1 | Viewed by 2300
Abstract
The circular polarization of light flips its handedness after a conventional metallic mirror reflection. Therefore, a polarization-preserving metasurface is a crucially important element in a series of chiral photonic structures. They include tunable cholesteric LCs and anisotropic photonic crystals. Chiral structures are rich [...] Read more.
The circular polarization of light flips its handedness after a conventional metallic mirror reflection. Therefore, a polarization-preserving metasurface is a crucially important element in a series of chiral photonic structures. They include tunable cholesteric LCs and anisotropic photonic crystals. Chiral structures are rich in interfacial localized modes including Tamm states. In this report, coupled modes formed as a result of the interaction between two chiral optical Tamm states or a chiral optical Tamm state and a chiral Tamm plasmon polariton are analytically and numerically investigated. It is shown that the effective control of coupled modes can be carried out by changing the pitch of the cholesteric and the angle between the optical axis of the cholesteric and the polarization-preserving anisotropic mirror. The influence of the metasurface period on the spectral characteristics of coupled modes is investigated. The possibility of realizing a bound state in the continuum of the Friedrich–Wintgen type, resulting from the destructive interference of coupled modes, which leads to the collapse of the resonance line corresponding to the chiral optical Tamm state, has been demonstrated. Full article
(This article belongs to the Special Issue Multifunctional Metasurfaces: Design Strategies and Applications)
Show Figures

Figure 1

13 pages, 2831 KiB  
Article
Tamm Plasmon Polariton Biosensors Based on Porous Silicon: Design, Validation and Analysis
by Guoguang Rong and Mohamad Sawan
Biosensors 2023, 13(12), 1026; https://doi.org/10.3390/bios13121026 - 11 Dec 2023
Cited by 2 | Viewed by 2945
Abstract
Tamm Plasmon Polariton (TPP) is a nanophotonic phenomenon that has attracted much attention due to its spatial strong field confinement, ease of mode excitation, and polarization independence. TPP has applications in sensing, storage, lasing, perfect absorber, solar cell, nonlinear optics, and many others. [...] Read more.
Tamm Plasmon Polariton (TPP) is a nanophotonic phenomenon that has attracted much attention due to its spatial strong field confinement, ease of mode excitation, and polarization independence. TPP has applications in sensing, storage, lasing, perfect absorber, solar cell, nonlinear optics, and many others. In this work, we demonstrate a biosensing platform based on TPP resonant mode. Both theoretical analyses based on the transfer matrix method and experimental validation through nonspecific detection of liquids of different refractive indices and specific detection of SARS-CoV-2 nucleocapsid protein (N-protein) are presented. Results show that the TPP biosensor has high sensitivity and good specificity. For N-protein detection, the sensitivity can be up to 1.5 nm/(µg/mL), and the limit of detection can reach down to 7 ng/mL with a spectrometer of 0.01 nm resolution in wavelength shift. Both nonspecific detection of R.I. liquids and specific detection of N-protein have been simulated and compared with experimental results to demonstrate consistency. This work paves the way for design, optimization, fabrication, characterization, and performance analysis of TPP based biosensors. Full article
(This article belongs to the Special Issue New Biosensors and Nanosensors)
Show Figures

Figure 1

9 pages, 7188 KiB  
Article
Two-Dimensional Dynamic Beam Steering by Tamm Plasmon Polariton
by Rashid G. Bikbaev, Kuo-Ping Chen and Ivan V. Timofeev
Photonics 2023, 10(10), 1151; https://doi.org/10.3390/photonics10101151 - 13 Oct 2023
Cited by 4 | Viewed by 1735
Abstract
The dynamic steering of a beam reflected from a photonic structure supporting Tamm plasmon polariton is demonstrated. The phase and amplitude of the reflected wave are adjusted by modulating the refractive index of a transparent conductive oxide layer by applying a bias voltage. [...] Read more.
The dynamic steering of a beam reflected from a photonic structure supporting Tamm plasmon polariton is demonstrated. The phase and amplitude of the reflected wave are adjusted by modulating the refractive index of a transparent conductive oxide layer by applying a bias voltage. It is shown that the proposed design allows for two-dimensional beam steering by deflecting the light beam along the polar and azimuthal angles. Full article
Show Figures

Figure 1

11 pages, 1740 KiB  
Article
Machine Learning Techniques for Effective Pathogen Detection Based on Resonant Biosensors
by Guoguang Rong, Yankun Xu and Mohamad Sawan
Biosensors 2023, 13(9), 860; https://doi.org/10.3390/bios13090860 - 31 Aug 2023
Cited by 8 | Viewed by 3440
Abstract
We describe a machine learning (ML) approach to processing the signals collected from a COVID-19 optical-based detector. Multilayer perceptron (MLP) and support vector machine (SVM) were used to process both the raw data and the feature engineering data, and high performance for the [...] Read more.
We describe a machine learning (ML) approach to processing the signals collected from a COVID-19 optical-based detector. Multilayer perceptron (MLP) and support vector machine (SVM) were used to process both the raw data and the feature engineering data, and high performance for the qualitative detection of the SARS-CoV-2 virus with concentration down to 1 TCID50/mL was achieved. Valid detection experiments contained 486 negative and 108 positive samples, and control experiments, in which biosensors without antibody functionalization were used to detect SARS-CoV-2, contained 36 negative samples and 732 positive samples. The data distribution patterns of the valid and control detection dataset, based on T-distributed stochastic neighbor embedding (t-SNE), were used to study the distinguishability between positive and negative samples and explain the ML prediction performance. This work demonstrates that ML can be a generalized effective approach to process the signals and the datasets of biosensors dependent on resonant modes as biosensing mechanism. Full article
(This article belongs to the Topic Machine Learning and Biomedical Sensors)
Show Figures

Figure 1

9 pages, 1926 KiB  
Article
Tunable Low-Threshold Optical Bistability in Optical Tamm Plasmon Superlattices
by Fengyu Li, Jiao Xu, Wei Li, Jianbo Li, Yuxiang Peng and Mengdong He
Coatings 2023, 13(5), 938; https://doi.org/10.3390/coatings13050938 - 17 May 2023
Cited by 4 | Viewed by 1688
Abstract
We propose a scheme to obtain tunable low-threshold optical bistability of reflected beams in optical Tamm plasmon superlattices (TPS). The low-threshold optical bistability is triggered due to the strong third-order non-linearity of graphene and the local field enhancement in the TPS. Our results [...] Read more.
We propose a scheme to obtain tunable low-threshold optical bistability of reflected beams in optical Tamm plasmon superlattices (TPS). The low-threshold optical bistability is triggered due to the strong third-order non-linearity of graphene and the local field enhancement in the TPS. Our results show that the optical Tamm plasmon superlattices have the ability to lower the bistable threshold even further than the single optical Tamm state. The results show that the hysteresis behavior and optical bistability threshold can be continuously adjusted by changing the applied voltage and the number of graphene layers (N ≤ 4). In particular, the optical bistability in the TPS is affected by the incident angle. Our results introduce a new possible route for low threshold optical bistability in the THz range and provide a new method in the field of all-optical switching applications. Full article
(This article belongs to the Special Issue Optical Properties of Crystals and Thin Films)
Show Figures

Figure 1

9 pages, 2084 KiB  
Article
Wavelength- and Angle-Selective Photodetectors Enabled by Graphene Hot Electrons with Tamm Plasmon Polaritons
by Cheng-Han Huang, Chia-Hung Wu, Rashid G. Bikbaev, Ming-Jyun Ye, Chi-Wen Chen, Tung-Jung Wang, Ivan V. Timofeev, Wei Lee and Kuo-Ping Chen
Nanomaterials 2023, 13(4), 693; https://doi.org/10.3390/nano13040693 - 10 Feb 2023
Cited by 12 | Viewed by 3041
Abstract
Recently, two-dimensional materials have attracted attention owing to their special optical characteristics and miniaturization, with low thickness as well as extremely high responsivity. Additionally, Tamm plasmon polariton (TPP) resonance can be observed by combining a metal film and a one-dimensional (1D) photonic crystal [...] Read more.
Recently, two-dimensional materials have attracted attention owing to their special optical characteristics and miniaturization, with low thickness as well as extremely high responsivity. Additionally, Tamm plasmon polariton (TPP) resonance can be observed by combining a metal film and a one-dimensional (1D) photonic crystal (PC), where an electric field confinement is located at the metal–1D PC interface. In this study, a graphene layer combined with a TPP is proposed as a wavelength- and angle-selective photodetector. The graphene layer is located where the strong field confinement occurs, and the photocurrent response is significantly enhanced with increasing absorption by over four times (from 62.5 μA⋅W−1 to 271 μA⋅W−1 and undetected state to 330 μA⋅W−1 in two different samples). Moreover, the graphene–TPP photodetector has wavelength and angle selectivity, which can be applied in LiDAR detecting, sun sensors, laser beacon tracking, and navigational instruments in the future. Full article
Show Figures

Figure 1

16 pages, 4463 KiB  
Article
MXenes as Alternative Plasmonic Coatings on 1D Photonic Crystals Platforms for Tamm Plasmon Polaritons
by Marko Obradov, Zoran Jakšić, Ivana Mladenović, Anja Bartula and Olga Jakšić
Coatings 2023, 13(1), 198; https://doi.org/10.3390/coatings13010198 - 16 Jan 2023
Cited by 2 | Viewed by 2592
Abstract
New materials are of essential importance for the advancement of nanophotonics and nanoplasmonics. Numerous electromagnetic modes, especially various evanescent surface waves, prove themselves useful in multitudinous practical applications. Here we investigate the use of MXenes as alternative plasmonic materials in freestanding (substrateless) planar [...] Read more.
New materials are of essential importance for the advancement of nanophotonics and nanoplasmonics. Numerous electromagnetic modes, especially various evanescent surface waves, prove themselves useful in multitudinous practical applications. Here we investigate the use of MXenes as alternative plasmonic materials in freestanding (substrateless) planar nanocomposites that support the existence of Tamm plasmon polaritons (TPP). We use finite element simulations to consider the influence of using MXenes on the propagation and distribution of TPP and the difference in their electromagnetic behavior compared to that of commonly used noble metals. While MXenes allow for somewhat weaker coupling between incident light and TPP, even the thinnest MXene layers practically completely screen the structure behind them. Our diffraction grating-enhanced stacks achieved incident light direction-dependent improvement of the coupling strength and polarization-dependent hybridization of electromagnetic states. MXene ensures improvements in functionality, especially spectral, directional, and polarization selectivity, by imparting rich modal behavior. Importantly, we observed high optical asymmetry of reflectance when illuminating the structures from opposite directions and obtained large high-to-low reflection ratios with a very small number of dielectric layers in the capping 1D photonic crystal. We conclude that MXenes represent a viable alternative for TPP-supporting structures, offering many advantages. Full article
(This article belongs to the Special Issue Application of Graphene and Two-Dimensional Materials in Thin Films)
Show Figures

Graphical abstract

Back to TopTop