Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = tablet fillers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1905 KiB  
Article
Wax-Based Sustained-Release Felodipine Oral Dosage Forms Manufactured Using Hot-Melt Extrusion and Their Resistance to Alcohol-Induced Dose Dumping
by Gerard Sweeney, Dijia Liu, Taher Hatahet, David S. Jones, Shu Li and Gavin P. Andrews
Pharmaceutics 2025, 17(8), 955; https://doi.org/10.3390/pharmaceutics17080955 - 24 Jul 2025
Viewed by 397
Abstract
Background/Objectives: Hot-melt extrusion (HME) has gained prominence for the manufacture of sustained-release oral dosage forms, yet the application of wax-based matrices and their resilience to alcohol-induced dose dumping (AIDD) remains underexplored. This study aimed to develop and characterise wax-based sustained-release felodipine formulations, with [...] Read more.
Background/Objectives: Hot-melt extrusion (HME) has gained prominence for the manufacture of sustained-release oral dosage forms, yet the application of wax-based matrices and their resilience to alcohol-induced dose dumping (AIDD) remains underexplored. This study aimed to develop and characterise wax-based sustained-release felodipine formulations, with a particular focus on excipient functionality and robustness against AIDD. Methods: Felodipine sustained-release formulations were prepared via HME using Syncrowax HGLC as a thermally processable wax matrix. Microcrystalline cellulose (MCC) and lactose monohydrate were incorporated as functional fillers and processing aids. The influence of wax content and filler type on mechanical properties, wettability, and drug release behaviour was systematically evaluated. Ethanol susceptibility testing was conducted under simulated co-ingestion conditions (4%, 20%, and 40% v/v ethanol) to assess AIDD risk. Results: MCC-containing tablets demonstrated superior sustained-release characteristics over 24 h, showing better wettability and disintegration. In contrast, tablets formulated with lactose monohydrate remained structurally intact during dissolution, overly restricting drug release. This limitation was effectively addressed through granulation, where reduced particle size significantly improved surface accessibility, with 0.5–1 mm granules achieving a satisfactory release profile. Ethanol susceptibility testing revealed divergent behaviours between the two filler systems. Unexpectedly, MCC-containing tablets showed suppressed drug release in ethanolic media, likely resulting from inhibitory effect of ethanol on filler swelling and disintegration. Conversely, formulations containing lactose monohydrate retained their release performance in up to 20% v/v ethanol, with only high concentrations (40% v/v) compromising matrix drug-retaining functionality and leading to remarkably increased drug release. Conclusions: This study highlights the pivotal role of excipient type and constitutional ratios in engineering wax-based sustained-release formulations. It further contributes to the understanding of AIDD risk through in vitro assessment and offers a rational design strategy for robust, alcohol-resistant oral delivery systems for felodipine. Full article
(This article belongs to the Special Issue Advances in Hot Melt Extrusion Technology)
Show Figures

Figure 1

18 pages, 4528 KiB  
Article
Behavior of Aqueous Medicated Inks on Porous Tablet Surfaces
by Krisztina Ludasi, Anna Sass, Katalin Kristó, András Kelemen, Klára Pintye-Hódi and Tamás Sovány
Pharmaceutics 2025, 17(7), 908; https://doi.org/10.3390/pharmaceutics17070908 - 14 Jul 2025
Viewed by 349
Abstract
Background/Objectives: Although technology has progressed and novel dosage forms have been developed, tablets are still the most used form of medication. However, the present manufacturing methods of these oral solid dosage forms offer limited capacity for personalized treatment and adaptable dosing. Personalized therapy, [...] Read more.
Background/Objectives: Although technology has progressed and novel dosage forms have been developed, tablets are still the most used form of medication. However, the present manufacturing methods of these oral solid dosage forms offer limited capacity for personalized treatment and adaptable dosing. Personalized therapy, with a few exceptions, is not yet a part of routine clinical practice. Drug printing could be a possible approach to increase the use of personalized therapy. The aim of this work was to investigate the role of surface tension and the viscosity of inks in the formation of the printing pattern and to investigate how the porosity of substrate tablets influences the behavior of inks on the surface. Methods: Spray-dried mannitol served as a binder and filler, while magnesium stearate functioned as a lubricant in the preparation of substrate tablets. Brilliant Blue dye was a model “drug”. The ink formulation was applied to the substrates in three varying quantities. Results: Increasing the viscosity enhanced the drug content, potentially improving printing speed and pattern accuracy. However, it negatively impacted the dosing accuracy due to nozzle clogging and prolonged drying time. Viscosity had a significantly higher impact on the ink behavior than surface tension. Lowering the surface tension improved the dosing accuracy and reduced the drying time but resulted in smaller drop sizes and decreases in pattern accuracy. Reducing the substrate porosity led to longer drying times and diminished pattern accuracy. Conclusions: A target surface tension of around 30 mN/m is suggested for inkjet printing. It is necessary to further investigate the applicability of the technology with solutions of inks with high viscosity and low surface tension, including the API. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

17 pages, 2694 KiB  
Article
Evaluation of Vibratory Ball Mill Mixing as an Alternative to Wet Granulation in the Manufacturing of Sodium Naproxen Tablets with Dolomite-Based Formulations
by Mateusz Przywara, Klaudia Jękot and Wiktoria Jednacz
Appl. Sci. 2025, 15(13), 6966; https://doi.org/10.3390/app15136966 - 20 Jun 2025
Viewed by 255
Abstract
The development of robust and scalable tablet manufacturing methods remains a key objective in pharmaceutical technology, especially when dealing with active pharmaceutical ingredients (APIs) and excipients that exhibit suboptimal processing properties. This study evaluated two alternative manufacturing strategies for tablets containing sodium naproxen [...] Read more.
The development of robust and scalable tablet manufacturing methods remains a key objective in pharmaceutical technology, especially when dealing with active pharmaceutical ingredients (APIs) and excipients that exhibit suboptimal processing properties. This study evaluated two alternative manufacturing strategies for tablets containing sodium naproxen (20%, API), dolomite (65%, sustainable mineral filler), cellulose (7%), polyvinylpyrrolidone (5%, binder), and magnesium stearate (3%, lubricant). The direct compression method used a vibrating ball mill (SPEX SamplePrep 8000M), while the indirect method employed wet granulation using a pan granulator at different inclination angles. Physical properties of raw materials and granules were assessed, and final tablets were evaluated for mass, thickness, mechanical resistance, abrasiveness, and API content uniformity. Direct compression using vibratory mixing for 5–10 min (DT2, DT3) resulted in average tablet masses close to the target (0.260 g) and improved reproducibility compared to a reference V-type blender. Wet granulation produced tablets with the lowest abrasiveness (<1.0%) and minimal variability in dimensions and API content. The best uniformity (SD < 0.5%) was observed in batch IT2. Overall, vibratory mixing proved capable of achieving tablet quality comparable to that of wet granulation, while requiring fewer processing steps. This highlights its potential as an efficient and scalable alternative in solid dosage manufacturing. Full article
Show Figures

Figure 1

20 pages, 2208 KiB  
Article
Food Effect and Formulation: How Soluble Fillers Affect the Disintegration and Dissolution of Tablets in Viscous Simulated Fed State Media
by Muhammad Farooq Umer, Valentin Stahl, Jozef Al-Gousous, Thomas Nawroth, Wei-Jhe Sun, Fang Wu, Wenlei Jiang, Zongming Gao and Peter Langguth
Pharmaceutics 2025, 17(5), 567; https://doi.org/10.3390/pharmaceutics17050567 - 25 Apr 2025
Viewed by 743
Abstract
The food-induced viscosity of the media can alter tablet disintegration and eventually the release of the drug it contains. The extent of this retardation depends on tablet formulation factors, such as the solubility of its excipients. Objectives: This research aimed to study [...] Read more.
The food-induced viscosity of the media can alter tablet disintegration and eventually the release of the drug it contains. The extent of this retardation depends on tablet formulation factors, such as the solubility of its excipients. Objectives: This research aimed to study the effect of filler solubility on the disintegration and dissolution of tablets under different testing conditions. Methods: Tablet formulations containing acetaminophen (as a model compound), mixtures of different ratios of fillers, and other excipients were directly compressed using uniform manufacturing parameters. These formulations were investigated under fasted- and fed-state conditions to determine the influence of viscosity on their disintegration, inspired by the liquid penetration ratio (LPR) theoretical framework. Disintegration and dissolution tests were performed using both compendial and novel testing apparatuses. Results: The soluble fillers in the tablets affected their disintegration and dissolution in the simulated fed-state medium, while fasted-state conditions affected the tablets only marginally. The testing devices showed partially contrasting results, which appeared to be due to the hydrodynamics of the testing media used. The novel CNC (computed numerical control) apparatus offered 3D motion and effectively exposed the tablets to the viscous testing media, unlike the compendial paddle apparatus. Conclusions: This study explored the impact of filler solubility on the disintegration and dissolution of tablets. As the LPR framework revealed, fillers with a higher solubility have positive effects on the disintegration and dissolution of tablets in viscous conditions. Additionally, the proportion of soluble filler used is also inversely correlated with the disintegration time. Further investigation of the formulation parameters, as well as the testing conditions, would provide additional insights into the effects of food on these tablets. Full article
Show Figures

Graphical abstract

11 pages, 4732 KiB  
Article
Enhanced Epoxy Composites Reinforced by 3D-Aligned Aluminum Borate Nanowhiskers
by Hyunseung Song, Kiho Song, Haejin Hwang and Changui Ahn
Materials 2024, 17(19), 4727; https://doi.org/10.3390/ma17194727 - 26 Sep 2024
Cited by 1 | Viewed by 921
Abstract
Recently, the durability of high-performance and multifunctional portable electronic devices such as smartphones and tablets, has become an important issue. Electronic device housing, which protects internal components from external stimuli, such as vibration, shock, and electrical hazards, is essential for resolving durability issues. [...] Read more.
Recently, the durability of high-performance and multifunctional portable electronic devices such as smartphones and tablets, has become an important issue. Electronic device housing, which protects internal components from external stimuli, such as vibration, shock, and electrical hazards, is essential for resolving durability issues. Therefore, the materials used for electronic device housing must possess good mechanical and electrical insulating properties. Herein, we propose a novel high-strength polymer nanocomposite based on 3D-aligned aluminum borate nanowhisker (ABOw) structures. ABOw was synthesized using a facile hydrothermal method, and 3D-aligned ABOw structures were fabricated using a freeze-casting process. The 3D-aligned ABOw/epoxy composites consist of repetitively layered structures, and the microstructures of these composites are controlled by the filler content. The developed 3D-aligned ABOw/epoxy composite had a compressive strength 56.72% higher than that of pure epoxy, indicating that it can provide high durability when applied as a protective material for portable electronic devices. Full article
Show Figures

Figure 1

20 pages, 5201 KiB  
Article
A Novel Lactose/MCC/L-HPC Triple-Based Co-Processed Excipients with Improved Tableting Performance Designed for Metoclopramide Orally Disintegrating Tablets
by Xiaorong Dai, Jiamin Wang, Bo Yan, Qian Wang, Yan Shen, Yongkang Chen and Yu Tian
Pharmaceutics 2024, 16(7), 959; https://doi.org/10.3390/pharmaceutics16070959 - 19 Jul 2024
Cited by 1 | Viewed by 1895
Abstract
New co-processed excipients comprising lactose (filler and sweetener), microcrystalline cellulose (MCC, filler), and low-substituted hydroxypropyl cellulose (L-HPC, disintegrant and binder) were developed via solvent evaporation for the preparation of metoclopramide orally disintegrating tablets (MCP ODTs). Single-factor and Box–Behnken experimental designs were employed to [...] Read more.
New co-processed excipients comprising lactose (filler and sweetener), microcrystalline cellulose (MCC, filler), and low-substituted hydroxypropyl cellulose (L-HPC, disintegrant and binder) were developed via solvent evaporation for the preparation of metoclopramide orally disintegrating tablets (MCP ODTs). Single-factor and Box–Behnken experimental designs were employed to optimize the formulation. The optimized formulation ratios were water: MCC: lactose (g/g) = 17.26:2.79:4.54:1. The results demonstrated that particles formed by solvent evaporation had superior flowability and compressibility compared to the physical mixture. Tablets compressed with these co-processed excipients exhibited a significantly reduced disintegration time of less than 25 s and achieved complete dissolution within 5 min. Pharmacokinetic studies revealed that MCP ODTs significantly improved Cmax, which was 1.60-fold higher compared to conventional tablets. In summary, the lactose/L-HPC/MCC triple-based co-processed excipients developed in this study are promising and could be successfully utilized in orally disintegrating and fast-release tablets. Full article
Show Figures

Graphical abstract

25 pages, 10024 KiB  
Review
Consistency in Young’s Modulus of Powders: A Review with Experiments
by Maria-Graciela Cares-Pacheco, Ellen Cordeiro-Silva, Fabien Gerardin and Veronique Falk
Powders 2024, 3(2), 280-304; https://doi.org/10.3390/powders3020017 - 21 May 2024
Cited by 3 | Viewed by 2954
Abstract
This review, complemented by empirical investigations, delves into the intricate world of industrial powders, examining their elastic properties through diverse methodologies. The study critically assesses Young’s modulus (E) across eight different powder samples from various industries, including joint filler, wheat flour, [...] Read more.
This review, complemented by empirical investigations, delves into the intricate world of industrial powders, examining their elastic properties through diverse methodologies. The study critically assesses Young’s modulus (E) across eight different powder samples from various industries, including joint filler, wheat flour, wheat starch, gluten, glass beads, and sericite. Employing a multidisciplinary approach, integrating uniaxial compression methodologies—both single and cyclic—with vibration techniques, has revealed surprising insights. Particularly notable is the relationship between porosity and Young’s modulus, linking loose powders to the compacts generated under compression methods. Depending on the porosity of the powder bed, Young’s modulus can vary from a few MPa (loose powder) to several GPa (tablet), following an exponential trend. The discussion emphasizes the necessity of integrating various techniques, with a specific focus on the consolidation state of the powder bed, to achieve a comprehensive understanding of bulk elasticity. This underscores the need for low-consolidation methodologies that align more closely with powder technologies and unit operations such as conveying, transport, storage, and feeding. In conclusion, the study suggests avenues for further research, highlighting the importance of exploring bulk elastic properties in loose packing conditions, their relation with flowability, alongside the significance of powder conditioning. Full article
(This article belongs to the Special Issue Feature Papers in Powders 2023)
Show Figures

Figure 1

29 pages, 1791 KiB  
Article
Comparative Fitting of Mathematical Models to Carvedilol Release Profiles Obtained from Hypromellose Matrix Tablets
by Tadej Ojsteršek, Franc Vrečer and Grega Hudovornik
Pharmaceutics 2024, 16(4), 498; https://doi.org/10.3390/pharmaceutics16040498 - 4 Apr 2024
Cited by 8 | Viewed by 1830
Abstract
The mathematical models available in DDSolver were applied to experimental dissolution data obtained by analysing carvedilol release from hypromellose (HPMC)-based matrix tablets. Different carvedilol release profiles were generated by varying a comprehensive selection of fillers and carvedilol release modifiers in the formulation. Model [...] Read more.
The mathematical models available in DDSolver were applied to experimental dissolution data obtained by analysing carvedilol release from hypromellose (HPMC)-based matrix tablets. Different carvedilol release profiles were generated by varying a comprehensive selection of fillers and carvedilol release modifiers in the formulation. Model fitting was conducted for the entire relevant dissolution data, as determined by using a paired t-test, and independently for dissolution data up to approximately 60% of carvedilol released. The best models were selected based on the residual sum of squares (RSS) results used as a general measure of goodness of fit, along with the utilization of various criteria for visual assessment of model fit and determination of the acceptability of estimated model parameters indicating burst release or lag time concerning experimental dissolution results and previous research. In addition, a model-dependent analysis of carvedilol release mechanisms was carried out. Full article
(This article belongs to the Special Issue Feature Papers in Physical Pharmacy and Formulation)
Show Figures

Figure 1

12 pages, 3676 KiB  
Article
Studying the API Distribution of Controlled Release Formulations Produced via Continuous Twin-Screw Wet Granulation: Influence of Matrix Former, Filler and Process Parameters
by Phaedra Denduyver, Chris Vervaet and Valérie Vanhoorne
Pharmaceutics 2024, 16(3), 341; https://doi.org/10.3390/pharmaceutics16030341 - 28 Feb 2024
Cited by 2 | Viewed by 2128
Abstract
Hydroxypropyl methylcellulose (HPMC) is a preferred hydrophilic matrix former for controlled release formulations produced through continuous twin-screw wet granulation. However, a non-homogeneous API distribution over sieve fractions with underdosing in the fines fraction (<150 µm) was previously reported. This could result in content [...] Read more.
Hydroxypropyl methylcellulose (HPMC) is a preferred hydrophilic matrix former for controlled release formulations produced through continuous twin-screw wet granulation. However, a non-homogeneous API distribution over sieve fractions with underdosing in the fines fraction (<150 µm) was previously reported. This could result in content uniformity issues during downstream processing. Therefore, the current study investigated the root cause of the non-homogeneous theophylline distribution. The effect of process parameters (L/S-ratio and screw configuration) and formulation parameters (matrix former and filler type) on content uniformity was studied. Next, the influence of the formulation parameters on tableting and dissolution behavior was investigated. Altering the L/S-ratio or using a more aggressive screw configuration did not result in a homogeneous API distribution over the granule sieve fractions. Using microcrystalline cellulose (MCC) as filler improved the API distribution due to its similar behavior as HPMC. As excluding HPMC or including a hydrophobic matrix former (Kollidon SR) yielded granules with a homogeneous API distribution, HPMC was identified as the root cause of the non-homogeneous API distribution. This was linked to its fast hydration and swelling (irrespective of the HPMC grade) upon addition of the granulation liquid. Full article
Show Figures

Figure 1

23 pages, 1816 KiB  
Article
Formulation and Preparation of Losartan-Potassium-Loaded Controlled-Release Matrices Using Ethocel Grade 10 to Establish a Correlation between In Vitro and In Vivo Results
by Kamran Ahmad Khan, Ashfaq Ahmad, Carlotta Marini, Mario Nicotra, Alessandro Di Cerbo, Fazal-Ur-Rehman, Naveed Ullah and Gul Majid Khan
Pharmaceutics 2024, 16(2), 186; https://doi.org/10.3390/pharmaceutics16020186 - 28 Jan 2024
Cited by 2 | Viewed by 3646
Abstract
In the current study, matrices of losartan potassium were formulated with two different polymers (Ethocel 10 premium and Ethocel 10FP premium), along with a filler and a lubricant, at different drug-to-polymer w/w ratios (10:3, 10:4, and 10:5). The matrices were tested [...] Read more.
In the current study, matrices of losartan potassium were formulated with two different polymers (Ethocel 10 premium and Ethocel 10FP premium), along with a filler and a lubricant, at different drug-to-polymer w/w ratios (10:3, 10:4, and 10:5). The matrices were tested by the direct compression method, and their hardness, diameter, thickness, friability, weight variation, content uniformity, and in vitro dissolution tests were assessed to determine 24-h drug release rates. The matrices with Ethocel 10 FP at a 10:4 ratio exhibited pseudo-zero-order kinetics (n-value of 0.986), while the dissolution data of the test matrices and reference tablets did not match. The new test-optimized matrices were also tested in rabbits, and their pharmacokinetic parameters were investigated: half-life (11.78 ± 0.018 h), Tmax (2.105 ± 1.131 h), Cmax (205.98 ± 0.321 μg/mL), AUCo (5931.10 ± 1.232 μg·h/mL), AUCo-inf (7348.46 ± 0.234 μg·h/mL), MRTo-48h (17.34 ± 0.184 h), and Cl (0.002 ± 0.134 mL/min). A correlation value of 0.985 between the in vitro and in vivo results observed for the test-optimized matrices was observed, indicating a level-A correlation between the percentage of the drug released in vitro and the percentage of the drug absorbed in vivo. The matrices might improve patient compliance with once-a-day dosing and therapeutic outcomes. Full article
(This article belongs to the Special Issue Biodegradable Nanomaterials for Targeted Drug Delivery)
Show Figures

Figure 1

22 pages, 9081 KiB  
Article
One Step In Situ Co-Crystallization of Dapsone and Polyethylene Glycols during Fluidized Bed Granulation
by Shizhe Shao, David Bonner, Brendan Twamley, Abhishek Singh and Anne Marie Healy
Pharmaceutics 2023, 15(9), 2330; https://doi.org/10.3390/pharmaceutics15092330 - 16 Sep 2023
Viewed by 2570
Abstract
Several studies have demonstrated the feasibility of in situ co-crystallization in different pharmaceutical processes such as spray drying, hot melt extrusion, and fluidized bed granulation (FBG) to produce co-crystal-in-excipient formulations. However, no previous studies have examined such a one step in situ co-crystallization [...] Read more.
Several studies have demonstrated the feasibility of in situ co-crystallization in different pharmaceutical processes such as spray drying, hot melt extrusion, and fluidized bed granulation (FBG) to produce co-crystal-in-excipient formulations. However, no previous studies have examined such a one step in situ co-crystallization process for co-crystal formulations where the coformer is a polymer. In the current study, we explored the use of FBG to produce co-crystal granules of dapsone (DAP) and different molecular weight polyethylene glycols (PEGs). Solvent evaporation (SE) was proven to generate DAP-PEGs co-crystals at a particular weight ratio of 55:45 w/w between DAP and PEG, which was subsequently used in FBG, using microcrystalline cellulose and hydroxypropyl methyl cellulose as filler excipient and binder, respectively. FBG could generate co-crystals with higher purity than SE. Granules containing DAP-PEG 400 co-crystal could be prepared without any additional binder. DAP-PEG co-crystal granules produced by FBG demonstrated superior pharmaceutical properties, including flow properties and tableting properties, compared to DAP and DAP-PEG co-crystals prepared by SE. Overall, in situ co-crystallization via FBG can effectively produce API-polymer co-crystals and enhance the pharmaceutical properties. Full article
Show Figures

Graphical abstract

12 pages, 2555 KiB  
Article
Modification of Bulk Density, Flow Property and Crystallinity of Microcrystalline Cellulose Prepared from Waste Cotton
by Sabiha Tasnim, Md. Fazlul Karim Tipu, Md. Sohel Rana, Md. Abdur Rahim, Mithila Haque, Md. Shah Amran, Abu Asad Chowdhury and Jakir Ahmed Chowdhury
Materials 2023, 16(16), 5664; https://doi.org/10.3390/ma16165664 - 17 Aug 2023
Cited by 13 | Viewed by 2942
Abstract
The most affordable type of tablet is the immediately compressible tablet, which uses microcrystalline cellulose (MCC), a popular pharmaceutical excipient, as a filler or binder. To make it compatible with different active drugs and excipients, we tried to change some physical properties of [...] Read more.
The most affordable type of tablet is the immediately compressible tablet, which uses microcrystalline cellulose (MCC), a popular pharmaceutical excipient, as a filler or binder. To make it compatible with different active drugs and excipients, we tried to change some physical properties of the MCC. In the current study, we used a chelating agent to pretreat the waste cotton before pulping, bleaching, and finally, hydrochloric acid degradation with a concentration of 2N at 100 °C temperature for 20 min to prepare MCC. The prepared MCC was treated with different concentrations of sodium hydroxide at room temperature or at −20 °C followed by precipitation with hydrochloric acid or ethanol with complete washing with distilled water till neutralization. Evaluation of the degree of polymerization (DP) and FT-IR spectrum confirm the identity of the microcrystalline cellulose. The DP was found to be 216. The bulk density of the unmodified MCC was 0.21 while that of modified MCC varied from 0.253 to 0.594. The modified MCC powder showed good flow properties compared to the unmodified MCC as evaluated by the Hausner index, Carr’s index and the angle of repose. The scanning electron microscopy (SEM) of the MCC revealed that the rod shape has been changed to an oval shape due to treatment with sodium hydroxide at −20 °C. The X-ray crystallographic (XRD) analysis indicated that the unmodified MCC and standard MCC showed the crystallinity index (CrI) value of 86.82% and 87.63%, respectively, while the value ranges from 80.18% to 60.7% among the modified MCC powder. The differences in properties of the MCC might be due to the variation of rearrangement of the cellulose chain among the MCC particles due to treatment with different concentrations of a base at different temperatures and precipitation environments. This has enabled us to prepare MCC with different properties which might be compatible with different drugs. Full article
(This article belongs to the Topic Advances in Sustainable Materials and Products)
Show Figures

Figure 1

12 pages, 2289 KiB  
Article
Compaction Behavior of Co-Amorphous Systems
by Cecilie-Mathilde Sørensen, Jukka Rantanen and Holger Grohganz
Pharmaceutics 2023, 15(3), 858; https://doi.org/10.3390/pharmaceutics15030858 - 6 Mar 2023
Cited by 9 | Viewed by 3327
Abstract
Co-amorphous systems have been shown to be a promising strategy to address the poor water solubility of many drug candidates. However, little is known about the effect of downstream processing-induced stress on these systems. The aim of this study is to investigate the [...] Read more.
Co-amorphous systems have been shown to be a promising strategy to address the poor water solubility of many drug candidates. However, little is known about the effect of downstream processing-induced stress on these systems. The aim of this study is to investigate the compaction properties of co-amorphous materials and their solid-state stability upon compaction. Model systems of co-amorphous materials consisting of carvedilol and the two co-formers aspartic acid and tryptophan were produced via spray drying. The solid state of matter was characterized using XRPD, DSC, and SEM. Co-amorphous tablets were produced with a compaction simulator, using varying amounts of MCC in the range of 24 to 95.5% (w/w) as a filler, and showed high compressibility. Higher contents of co-amorphous material led to an increase in the disintegration time; however, the tensile strength remained rather constant at around 3.8 MPa. No indication of recrystallization of the co-amorphous systems was observed. This study found that co-amorphous systems are able to deform plastically under pressure and form mechanically stable tablets. Full article
(This article belongs to the Special Issue Amorphous Drug Formulations: Progress, Challenges and Perspectives)
Show Figures

Figure 1

18 pages, 4103 KiB  
Article
Design and Optimization of Lornoxicam Dispersible Tablets Using Quality by Design (QbD) Approach
by Nawaf Almotairi, Gamal M. Mahrous, Saleh Al-suwayeh and Mohsin Kazi
Pharmaceuticals 2022, 15(12), 1463; https://doi.org/10.3390/ph15121463 - 25 Nov 2022
Cited by 7 | Viewed by 4655
Abstract
The present study aims to design and optimize the lornoxicam dispersible tablet (LXDT) formulation using the Quality by design (QbD) approach. A randomized Box–Behnken experimental design was used to characterize the effect of the critical factors, such as filler (MCC/Mannitol) ratio, mixing time, [...] Read more.
The present study aims to design and optimize the lornoxicam dispersible tablet (LXDT) formulation using the Quality by design (QbD) approach. A randomized Box–Behnken experimental design was used to characterize the effect of the critical factors, such as filler (MCC/Mannitol) ratio, mixing time, and disintegrant concentration, and assessed for their impacts on the critical quality attributes (responses), including dispersibility time, friability, dissolution efficiency, and content uniformity, respectively. The drug-excipients interaction of the formulation was investigated using FTIR and DSC, respectively. The accelerated stability study at 40 °C/75% relative humidity was performed. FTIR revealed an absence of any significant chemical interaction in solid state. DSC thermogram suggested that LX endothermic peak was slightly decreased due to the dilution effect. LXDT formulations exhibited acceptable friability (0.2 to 0.9%). The dissolution efficiency of LXDT formulations ranged from 72.21 to 93.63%. The overall study showed that the optimum level of independent factors was found to be 3:1 MCC/Mannitol, 11 min mixing time, and 6.23% disintegrant concentration. Accelerated stability studies showed the compendial acceptable hardness, friability, and disintegration times. The application of QbD approach can help in the detailed understanding of the effect of CMAs and CPPs on the CQAs on LXDT final product. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

20 pages, 2091 KiB  
Article
Preparation and Evaluation of Directly Compressible Orally Disintegrating Tablets of Cannabidiol Formulated Using Liquisolid Technique
by Ekapol Limpongsa, Peera Tabboon, Thaned Pongjanyakul and Napaphak Jaipakdee
Pharmaceutics 2022, 14(11), 2407; https://doi.org/10.3390/pharmaceutics14112407 - 8 Nov 2022
Cited by 18 | Viewed by 4095
Abstract
This study demonstrated the implementation of a liquisolid technique to formulate directly compressible orally disintegrating tablets (ODTs). Cannabidiol (CBD), a hydrophobic cannabinoid, was prepared as a liquisolid powder using microcrystalline cellulose–colloidal silicon dioxide as a carrier–coating material. Different liquid vehicles differing in their [...] Read more.
This study demonstrated the implementation of a liquisolid technique to formulate directly compressible orally disintegrating tablets (ODTs). Cannabidiol (CBD), a hydrophobic cannabinoid, was prepared as a liquisolid powder using microcrystalline cellulose–colloidal silicon dioxide as a carrier–coating material. Different liquid vehicles differing in their volatility, hydrophilicity, and viscosity were investigated. Each of the CBD–ODTs comprised CBD liquisolid powder (10 mg CBD), superdisintegrant, flavors, lubricant, and filler. The physical mixture (PM) ODT was prepared as a control. Ethanol-based ODTs (CBD–EtOH–ODTs) had comparable tablet properties and stability to CBD–PM–ODTs. ODTs with nonvolatile-vehicle-based liquisolid powder had lower friability but longer disintegration times as compared with CBD–PM–ODTs and CBD–EtOH–ODTs. Compression pressure influenced the thickness, hardness, friability, and disintegration of the ODTs. With a suitable compression pressure to yield 31-N-hardness-ODTs and superdisintegrant (4–8%), CBD–ODTs passed the friability test and promptly disintegrated (≤25 s). Times to dissolve 50% of CBD–PM–ODTs, CBD–EtOH–ODTs, and nonvolatile-vehicle-based CBD–ODTs were 10.1 ± 0.7, 3.8 ± 0.2, and 4.2 ± 0.4–5.0 ± 0.1 min, respectively. CBD–EtOH–ODTs exhibited the highest dissolution efficiency of 93.5 ± 2.6%. Long-term and accelerated storage indicated excellent stability in terms of tablet properties and dissolution. Nonvolatile-vehicle-based CBD–ODTs exhibited a higher percentage of remaining CBD. This study provides useful basic information for the development of ODT formulations using a liquisolid technique application. Full article
(This article belongs to the Special Issue Development of Orally Dispersible Dosage Forms)
Show Figures

Graphical abstract

Back to TopTop